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The effect of the crystal-structure-dependent anisotropy of the electron distribution function on the 
resistivity p, magnetoresistance ~PH and Hall coefficient R at low temperatures in metals is analyzed. It 
is shown that the principal features in the temperature and concentration dependences of ~PH, R and the 
impurity part ~PT of the resistivity have a common physical nature, associated with the special role of the 
anisotropy of the electron distribution function in metals. It is shown, in particular, that the temperature 
dependence of the resistivity of a metal in the limit of high magnetic fields is very close to the temperature 
dependence of the resistivity (at H = O) in the so-called "dirty limit" (this also applies to the absolute 
values of these quantities). The results obtained make it possible to explain in a unified way the previously 
discovered anomalous dependences of ~PH, ~PT and the total resistivity on the temperature and impurity 
concentration, in particular, in the case of aluminum. The nature of the universal T3 dependence found 
experimentally for ~PT and P is analyzed. 

1. INTRODUCTION 

A number of experimental papers have recently ap
peared which demonstrate the anomalous character of 
the dependence of the reSistivity and magnetoresistance 
of non-transition metals with diamagnetic impurities on 
the concentration c of the latter and on the temperature 
T. We are concerned here with the low-temperature re
gion and with a broad range of low values of the concen
trations. The greatest interest here attaches to the 
results obtained for aluminum-based alloys, which are 
in fact the system most fully investigated up to the 
present time, although all the features are qualitatively 
the same for other alloys too (cf., e.g., the review [IJ). 

The first puzzling result was obtained in the work of 
Borovik et al. [2J, who discovered an increase, instead 
of a decrease, in the magnetoresistance ~PH of alumi
num on going from liquid-helium to liquid-hydrogen 
temperatures. In the later work of Tsien (Chiang) 
et al. [3J and Fickett [4J, not only was this result con
firmed but it was also established that, with increasing 
T in high fields, the magnetoresistance goes through 
a maximum, the magnitude of which depends on the 
impurity concentration. In general, the whole pattern 
of the temperature behavior of ~PH is found to be 
very sensitive to the impurity concentration, display
ing, in other words, a nonlinear dependence of the ac
tual shape of the curve ~PH(T) on the concentration for 
small c. 

A maximum in the curve of the temperature depen
dence of the Hall coefficient has also been observed 
recently ~in intermediate magnetic fields) in the alkali 
metals [5 and copper [6J. Up to now, none of these re
sults has received a theoretical explanation. 

Of the work in which the ordinary resistivity of 
metals is studied, the papers [7J of Caplin and Rizzutto 
have stimulated the most interest. In these papers it 
was established that the temperature-dependent part of 
the total reSistivity of aluminum in the "dirty limit" 
(cf. below) in the temperature range 10-50'1<: has a 
uni versal dependence of the form T3 for any type of 
impurity, whereas the resistivity of pure aluminum in 
this range essentially Qbeys the classical T 5 law. The 
concentration dependence is found to be very weak and, 
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at fixed T, becomes noticeable, on the other hand, only 
on going to low concentrations. It is interesting that the 
impurity part ~PT of the resistivity in the temperature 
and concentration ranges under consideration also has 
the same universal T3 dependence. 

The anomalous dependence of ~PT on the impurity 
concentration in aluminum was also clearly exhibited 
in the work of Fickett [4J. On the other hand, it was 
found experimentally even earlier that the impurity 
part of the resistivity as a function of T in alloys 
based on aluminum has, at somewhat higher tempera
tures, a sharp maximum whose magnitude depends non
linearly on the concentration and is of the same scale 
as the residual resistivity (cf., e.g., [8,9J). Similar be
havior has also been found in many other alloys (cf. 
the review [IJ). Actually, we shall be concerned with 
the general pattern of the anomalous temperature and 
concentration dependences of the reSistivity of metals 
with impurities. 

The data of Caplin and Rizzutto led to a series of 
publications [10-12 containing attempts to give a theo
retical explanation of the dependences observed in the 
experiment of [7J by turning away from the usual picture 
of the low-temperature reSistivity of metals. Unfortu
nately, these publications were found to be in error. 
Criticism of the ~apers [lO,l1J has already been pub
lished (cf., e.g., 13,14J). The paper by Dworin [12J, in 
which the observed results are associated with the drag 
effect, simply contains a mathematical error. A correct 
analysis of formula (8) of the text of his article leads 
to a T 5 law, corresponding to the result obtained earlier 
by Gurzhi [15] in the same problem, instead of T3. More
over, the entire anomalous pattern is observed in re
gions of temperature and concentration that are too high 
for the drag effect to play any role. 

In fact, all the above- mentioned effects in the low
temperature behavior of the reSistivity and magnetore
sistance have a common physical nature and can be ex
plained in a unified way. The starting point here turns 
out to be the fact that the electron distribution function 
f(p, n) in metals without impurities has, as a rule, 
sharply expressed anisotropy, which reflects the sym
metry of the lattice. The reasons for the appearance of 
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this anisotropy are the Umklapp processes in the elec
tron-phonon interaction, and the anisotropy of the pho
non spectrum and Fermi surface. It was shown in a 
paper by one of the authors and Zhernov [16) that, even 
if the Fermi surface is assumed spherical, the scale 
of the anisotropy of the electron distribution function in 
polyvalent metals is so great that taking it into account 
can change the resistivity of an ideal metal in a given 
temperature range by an order of magnitude. In this 
case, any scattering mechanism that decreases the 
anisotropy will strongly influence the magnitude of the 
resistivity. Elastic scattering by impurities or by any 
other lattice imperfections turns out to be just such a 
mechanism. As was shown in the same paper [16), al
lowance for this distinctive interference of inelastic 
scattering by phonons and elastic scattering by im
purities leads to a sharp deviation from Matthiessen's 
rule, of the same order as the residual resistivity, and 
to a nonlinear concentration dependence of the resis
tivity at low temperatures. The latter is found at any 
low concentration-only the temperature range in which 
the non-linear dependence appears is shifted. 

All these results enable us to explain the pattern of 
the behavior of the impurity resistivity in the tempera
ture range in which the characteristic peak in the de
pendence ~PT(T) is observed, and (in combination with 
the results of an earlier paper [17)) the behavior of ApT 

in the entire range of higher temperatures. As will be 
shown below, these results can also be used to explain 
fully, without invoking any additional ideas, the anom
alous behavior, found in the experiment of [7) , of the re
sistivity in alloys. 

Recognizing that the magnetoresistance ~PH in the 
isotropic approximation is in general equal to zero (cf., 
e.g., [18)), it is easily understood that a finite ~PH 
exists only to the extent that the electron distribution 
function possesses anisotropy, depending on the crystal 
structure. In accordance with this, the temperature de
pendence of the magneto resistance , especially at satura
tion, should reflect the temperature dependence of the 
generation, by scattering, of anisotropy in the distribu
tion of electrons, and the concentration dependence 
should reflect the "isotropization" of this distribution. 
As will be seen from the analysis carried out below, 
the dependences of ~PH and ~PT on T and c are both 
determined by the same quantities. This establishes the 
internal correlation between these, at first sight, differ
ent quantities, and makes it possible to understand the 
anomalous character of the behavior of ~PH and ~PT. 

Thus, allowance for the anisotropy of the electron 
distribution enables us to explain conSistently the ob
served pattern of the electrical conductivity and mag
netoresistance in metals with impurities. Moreover, a 
clear experimental check of the ideas developed appears 
possible. 

We begin with the determination of the exact asymp
totic value of the resistivity of a metal as H -00 in an 
arbitrary case, and then compare these results with the 
reSistivity in zero magnetic field. Allowance for the 
anisotropy of the distribution function requires, natu
rally, that we go outside the framework of the usual 
single-moment approximation in solving the kinetic 
equation. From a purely formal point of view, this pre
sents no fundamental difficulties (cf., e.g., the work of 
Bross[19) and Garcfa- Moliner [20)). 
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2. RESISTIVITY OF A METAL IN A STRONG MAG
NETIC FIELD. 

The semi-classical Boltzmann kinetic equation for 
electrons in a metal in a magnetic field can be repre
sented conveniently in the operator form 

N"(k) =1> (cp"(k» HI (cp" (k». (2.1) 

Here, 
N"(k) =-ev" (k) &j'O) (k)/&e (k), 

~ e &j\O)(k) {} 
M=----e.~VHyv·(k)-· 

c &e(k) &p~ , 
(2.2) 

k= p, n, where n is the band index and p is the quasi
momentum; v(k) is the group velocity of the electron, 
eO!f3y is the unit anti symmetric tensor of the rank three, 
and P is the standard collision operator, which takes 
into account the scattering by impurities and phonons. 
The correction to the equilibrium electron distribution 
function in these expressions is assumed to have the 
form 

f'l)(k)=- iJt<')(k) ( (k» =~. (2.3) 
&e (k) cp u, U lEI' 

In this paper we exclude from consideration the region 
of extremely low temperatures, in which drag effects 
can become important, and the phonon distribution ap
pearing in P will be assumed to be the equilibrium 
distribution. 

We shall expand the function rpO!(k) in a certain com
plete set of functions {</J(n)(p)}, chosen separately for 

I 

each n: 

'(1 (n) (n) 

cp"(k) = "'-' a, (a)1jJ, (p), a=1,2,3. (2.4) 

The scalar operator M with an arbitrary direction of the 
magnetic field connects functions of arbitrary symmetry; 
because of this, when considering the general problem 
we should, in prinCiple, understand by {</J\n)(p)} a com-

I 

plete set that is not restricted by the crystal symmetry. 

It is clear from general considerations, and also 
from the explicit form of (2.3), that we shall be inter
ested only in values of the function rpO!(k) at the Fermi 
surface. We shall assume that the latter does not inter
sect itself, so that, in principle, we can introduce in 
place of rpO!(k) a single function rpO!(p) for the entire 
Brillouin zone, ignoring the details of its behavior out
side the Fermi surface. For these functions we shall 
have an expansion of the type (2.4) with functions </Ji(P) 
defined in the entire Brillouin zone and can omit the 
index n; we shall construct the l/!i(P) with the aid of the 
polynomials </J\n)(p). 

I 

Such a representation for the distribution function is 
especially convenient when it is clear from physical 
considerations that it is fundamentally meaningful to 
make a single assignment of trial function for all the 
bands. Thus, in the case when the drift of particles 
plays the determining role, as, e.g., in a strong mag
netic field or in the presence of the drag effect, three 
piecewise-linear functions </Jy(p) of the quasi-momentum 
should be chosen as the prinCipal trial functions. 

In the framework of the repeated-zone scheme, the 
function rpO!(p) should be periodic in p in the reciprocal
lattice space, and at the same time continuous. With a 
view to using the method of moments (in other words, 
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using a limited number of functions in the representa
tion (2.4)), we should, generally speaking, require that 
the functions iJ!i(P) also satisfy periodicity and contin
uity con~itions. For such a choice of functions, the op
erator M turns out to be antisymmetric in the indices 
i and j. 

We shall consider the case of a closed Fermi surface. 
For the first three functions iJ!y( p) (I' = 1, 2, 3), we 
choose piecewise-linear functions of the y-th quasi
momentum component pI', measured, on each segment 
of the Fermi surface, from zero or from the appropri
ate value of G/2, where G is a reciprocal-lattice vec
tor. (If the Fermi surface goes outside the Brillouin
zone boundary, a piecewise-linear function makes it 
possible to ensure the periodiCity of iJ!y(p)-for more 
detail, cf. [21].) Then, 

&¢y(p) /&p"=6"' 

and 

e "S d8p VO(p) 
MTT · =-e"T -,----. ¢T(P) 

c 4n VF(P) (2.5) 

= .L,(±)+eoT·'H' S 4?6"T = .L, +eTT·'H'(±Nn)=--feTT·'H'(N.-Nh). 
n (n) n 

Here the second integral is taken over the volume de
limited by the close portions of the Fermi surface, and 
Nn is the number of electrons (+) or holes (-) in the 
band with index n; Ne,h is the total number of electrons 
or holes, respectively. 

We note that the choice of one set of functions or 
another in the expansion of <:pO!(k) is dictated primarily, 
especially in using the method of moments, by consider
ations of convenience. If, e.g., the drift is insignificant, 
the representation (2.4) with an independent expansion 
for each energy band may turn out to be more convenient. 
This is especially clear in the case of compensated 
metals, in which Ne = Nh (although a single representa
tion for all the bands can be used effectively in this 
case too). 

In order not to complicate the problem, we shall con
fine ourselves below to treating only noncompensated 
metals and shall use an expansion with the common 
functions iJ!i(P). For the first three functions we choose 
the iJ!y( p) introduced above, and for i 2:: 4 we choose a 
set of polynomials that are mutually orthogonal and 
orthogonal to vO!(p) with weight 8f<O)(p)/<1t::(p) (which is 
equivalent to integrating only over the Fermi surface). 
Such a choice is always possible, inasmuch as the scalar 
product of iJ!y(p) and vO!(p) with this weight is equal to 
Ne- Nh '" O. It is important that, with this choice, 

(2.6) 

We shall substitute the expansion of the distribution 
function <:p0!( p) into Eq. (2.1). Taking the scalar product 
of (2.1) with iJ!i(P) , we obtain a system of algebraic equa
tions for the coefficients ai (O!): 

(N"i¢i> =.L, a;(Ct) (Pi;+Mi;). (2.7) 

The left-hand side of (2.7) is nonzero only in the case 
i = O!, and the corresponding scalar product with the 
above choice of functions iJ!y(p) (1'= 1,2,3) does not de
pend on the label of the axis in a crystal of arbitrary 
symmetry: 

(N"I ¢">""i (Ct=1. 2, 3). (2.8) 

Then for the coefficients aj (O!) we find 
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(2.9) 

On the other hand, for the conductivity tensor we have 

cr"'=eS ~V"( )' (_ &/(O)(p) )_. 
(2n)' P (jJ (p) &e(p) -,ao(~). 

As a result, 
- , I 

cr"'=i'(P+M);'~ (Ct, ~=1, 2, 3). (2.10) 

When (2.6) is taken into account, the matrix K=P+M 
has the following structure: 

~ _ (Kl P' ') 
K - P' K2 . (2.11) 

Here K1 is a square third-order matrix, pi is a rec
tangular three-row m~trix, being the corresponding part 
of the matrix P, and pi is the transpose of the matrix 
p'. If we denote the inverse of the matrix K by 1', we 
have for the square third-order matrix 1'1 in the upper 
left corner of if 

It is clear that T1 coincides with the matrix appear
ing in the right-hand side of (2.10). Therefore, we ob
tain for the resistivity tensor in its most general form 

(2.12) 

We remark that the expression (2.12) is very convenient, 
inasmuch as it only requires inversion of the matrix K2. 

We shall analyze the question of the asymptotic be
havior of the resistivity tensor in strong magnetic 
fields. We shall confine ourselves to treating crystals 
of high symmetry and shall assume for simplicity that 
the metal possesses three mutually perpendicular sym
metry planes, defined by the prinCipal axes of the crys
tal, with the coordinate origin fixed at both the center 
of the Brillouin zone and the center of the individual 
segments of the Fermi surface (in the periodically
repeated zone representation). We introduce a coor
dinate frame rigidly attached to the principal axes of 
the crystal. Then the functions of the complete system 
should either be odd in pO! (for one of the O!) or contain 
combinations of the type p1p2p3. It is interesting that 
in the case when the magnetic field is directed along 
one of the principal axes of the crystal, combinations 
of the type p1p2p3 are not generated in the transverse 
components of the distribution function <:pO!(p). 

To make the subsequent analysis easier, we shall 
not take these functions into account. In this case we 
obtain an exact result for the asymptotic form of the 
transverse components of the resistivity tensor for H 
parallel to one of the prinCipal axes, and an approxi
mate result, equivalent to the method of moments, for an 
arbitrary direction of H. In this case, the set of func
tions {iJ!i} can be divided into three subsystems {iJ!0!;\} 
(O!= 1, 2, 3), each of which contains polynomials that are 
odd only in a certain component PAO!. The only nonzero 
matrix elements of the operator M are those between 
functions belonging to different subsystems, i.e., with 
O! '" O! I. It can be shown that, by an appropriate choice of 
the three orthogonal subsystems of functions, it is pos
sible to ensure that the conditions 

(2.13) 

are fulfilled. The condition (2.13) is found to be fulfilled 
automatically for A or A1 = 1, when the corresponding 
set of three functions is chosen in a form that is piece-
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wise-linear in p (as defined above) (cf. (2.6)). It should 
be specially emphasized that, when a system of inde
pendent functions with A> 1, orthogonal to v( p), is being 
chosen, the condition (2.13) ensures that the choice of 
the first set of three functions in precisely the form taken 
above is unique. 

In this case, the matrix 1<:2 has a comparatively sim
ple structure. In fact, with the condition (2.13), matrix 
elements of the operator M appear only in the square 
third:::order matrices lying along the diagonal of the ma
trix K2 in (2.11). Simple analysis then leads to the re
~;ult that all the elements of the inverse of the matrix 
K2 tend, in the general case, to constant values as H -00. 
This leads to the result that the second term in for
mula (2.12) has a finite value, determining the angular 
dependence of the resistivity on the direction of the 
magnetic field. This result, naturally, is in full agree
ment with the general result obtained for the asymp-
totic behavior of the resistivity tensor and found in the 
paper [221 by Lifshitz et al. 

Here, however, the case when H is directed along one 
of the prinCipal axes, e.g., along the axis 3, is found to 
be quite distinct from the others. In this case, the three
row matrix lying on the diagonal of the matrix 1<:2 has 
the form 

( PIAl'. M •• I" 0 ) 

\ M"IIA P21I" 0 , 
o 0 P"I'. 

which enables us to conclude that, for the resistivity
tensor components transverse to the direction of the 
magnetic field, the second term in (2.12) disappears 
completely as H -00. Hence follows the important re
sult that the transverse magnetoresistance is uniquely 
determined by the diagonal matrix element of the scat
tering operator, calculated for a piecewise-linear 
function of a component of the quasi-momentum. In 
this case, 

Ro=1/ (N,-Nh ) ec. 
(2.14) 

An expression for the resistivity in the absence of a 
magneti£ field is obtained from (2.12) if we put the op
erator M equal to zero. Comparing this result with 
(2.14), we find an expression for the transverse magneto
resistance, in the direction of the principal axes: 

Thus, when H is oriented along one of the principal 
axes, the magnetoresistance is strictly equal to the 
correction to the resistivity for H = 0 that arises when 
one goes beyond the standard single-moment approx
imation. As already noted in the Introduction (cf. 
also (161), because of the anisotropy ariSing in the elec
tron distribution function as a consequence of aniso-
tropy of the scattering and anisotropy of the electron 
spectrum, this correction turns out to be large, 
changing the resistivity by an order of magnitude in 
many cases. Inasmuch as the sharp deviation of the 
reSistivity from Matthiessen's rule and, in particular, 
the presence of the maximum in the curve of the de
pendence of the impurity part of the resistivity on Tare 
due to precisely this quantity, it is clear that these 
features of the behavior should also be clearly manifested 
in the asymptotic form of the magnetoresistance for 
large values of H. 

We have here specially singled out the magnetoresis-
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tance in the case when the magnetic field is directed 
along a principal axis of the crystal, since for an ar
bitrary field direction there is no longer any such 
simple connection between ApH and the resistivity. 
However, in all cases, the magnetoresistance arises 
only when one goes beyond the framework of the usual 
three-moment approximation (:\ = 1). (For H = 0, this 
corresponds to the single-moment approximation for 
each of the components of the resistivity tensor.) 

As was shown earlier [161, all the qualitative features 
of the behavior of the resistivity that are associated with 
anisotropy of the distribution function are already picked 
up in the two-moment approximation. In the six-
moment approximation, which is here equivalent to the 
latter, the resistivity tensor (2.12) in a cubic crystal 
has the following form: 

p"'=p6"'+p. ((j"'-h"h') +RHe""h'; 

R=R [1+ ~(P"/P")'] 
o 1+ (1H )' ' 

p;, (1H )' 
p.= j'P22 1+(,(H)' 

~Roj' 
1=--, P"'1..15!!!iPa,"'Ia.).,o 

P" 

(2.15) 

The quantity {3 = Ma21 aiMa11 a{ depends on the form of 
the functions with :\= 2 and on the shape of the Fermi 
surface. If these functions are chosen in the same form 
as in [161: 

1Jl",= (p") 3_'!,p"p/, 

then, in the case of a spherical fermi surface, {3 = 18/175. 

It can be seen from the expression (2.15) that, in the 
case of the magnetoresistance, the six- moment approxi
mation turns out to be fairly crude, leading, in contrast 
to the general case, to the absence of longitudinal mag
netoresistance and to a transverse magnetoresistance 
that is independent of the orientation of the magnetic 
field with respect to the crystallographic axes. However, 
it picks up the character of the dependence of ApH on 
the temperature and impurity concentration, and this is 
of very great interest for the subsequent analysis. 

3. TEMPERATURE AND CONCENTRATION DEPEN
DENCE OF THE RESISTIVITY AND MAGNETORE
SISTANCE. 

We now consider a real situation, in which scattering 
of electrons by phonons and impurities occurs simul
taneously. Assuming the impurity concentration c to 
be small, for the matrix elements of the collision op
erator we have (for a cubic crystal) 

(0) 

P)"1..1=Pu,+cRu.,o (3.1) 

With the object of simplicity, and in order to distinguish 
the effect greatest in magnitude in the intermediate re
gion of low temperatures, we shall ignore the change, 
associated with the introduction of the impurities, in the 
phonon spectrum, and also the vibrations of the impurity 
atoms themselves (cf. [171). Then R:\Al in (3.1) is a ma
trix element of the static- scattering operator. 

It follows from the form of the expression (2.14) that, 
by measuring the asymptotic behavior of the transverse 
resistivity in a magnetic field directed along one of the 
principal axes as a function of the temperature, we can 
determine the quantities 

(3.2) 
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On the other hand, in the two-moment (six-moment for 
H "0) approximation, we have for the change in resis
tivity in a magnetic field: 

(3.3) 

We shall consider the so-called "clean limit," i.e., 
those temperatures and impurity concentrations for 
which 

(3.4) 

Bearing in mind that, in the limit (3.4), the resistivity 
in the absence of a magnetic field is simply 

(0)2 (0) 

p(O'(T)=~ (p(o)_~) "'~(1- (0') r 11 P(:~ r 11, 
(3.5) 

we obtain for the magnitude of the relative magnetore
sistance in this case 

<'>PH-'-(T)/P(O' (T) =,](0'1(1-,](0». (3.6) 

As was shown earlier [16] , the function 17<O)(T) arIsmg 
by virtue of the anisotropy of the electron distribution 
function increases with T at low temperatures, passes 
through a maximum, and then decreases. It follows 
from (3.6) that the magnetoresistance will also behave 
in this way in the "clean limit." This result is general 
in character; specific cases and different models will 
correspond only to different positions and magnitudes of 
the maximum. The presence of defects, which, in par
ticular, lead to a "residual" magnetoresistance with 
the same form (3.6) but with 17(0) replaced by 

(3.7) 

leaves the pattern qualitatively unchanged, although, 
as a result of the "isotropization" of the distribution 
function, the pattern becomes less dramatic. 

The character of the behavior with temperature of 
~pt(T)/P(T), where the total resistivity for H = 0 is 

equal to 
peT) =Po+p(O, (T)+<'>PT, 

<'> =p(O) (PI~) _ R" )'/ ., (1 p,~O») 
PT " P(O) R I + , 

22 22 eRn 

(3.8) 

can be followed from the example of the curves shown 
in Fig. 1. The solid curves were constructed using the 
same model for the electron-phonon system of the 
metal as in [16], for the case PF/qo = 1.45, which is very 
close to the corresponding value for aluminum. The 
curves differ in the values of the residual resistivity, 

4p~(T)/p(T) 

0.08 1 t T8 

FIG. 1. The dependences .6.p~(T)/p(T) for different values of the 
residual resistivity: I) the "clean limit", 2) Po/p(O)(80 ) = 10.5 , 

3) pcip(O)(80 ) = 104 ,4) pcip(O)(80 ) = 10'3. 
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It::---
o 0,25 a5 0.75 T /0 

FIG. 2. The dependence R(T)/Ro for different values of the residual 
resistivity: I) the "clean limit", 2) Po/p(O)(80 ) = 10-3, 3) pcip(O)(80 ) = 
10-2,4) pcip(O)(80 ) = 10-1• 

which is characterized by the ratio Po/p<O) (T =(9D). 
In the same figure and purely illustratively, dashed 
curves corresponding to the parameter R12/R22 = 0.3 are 
given (in the framework of the model considered in [16], 

R12 = 0). It can be seen that allowance for the anisotropy 
of the scattering (as a result of the nonspherical shape 
of the Fermi surface) in the residual resistivity leaves 
the pattern qualitatively unchanged. 

The character of the dependence obtained for the 
relative magnetoresistance fully explains, at least qual
itatively, the results obtained in the experinents of 
Borovik et al. [2], Tsien (Chiang) et al. [3] and Fickett [4]. 

As is clear from the preceding discussion, the data 
from these experiments essentially determine directly 
the scale of the anisotropy of the electron distribution 
function. The better samples in the experiments [3,4] 

gave a value of the residual resistivity that corresponds 
approximately to the value taken for the curve 3 in 
Fig. 1. It is interesting that the pOSitions of the maxi
mum in the two cases are extremely close, although 
the absolute value of the effect is several times greater 
in the experiment. Thus, in reality, the anisotropy of the 
electron distribution function in the case of aluminum 
evidently turns out to be greater than with the assumed 
parameters of the model, and the reSistivity of the pure 
metal is reduced by almost an order of magnitude as a 
result of this anisotropy. We remark that, to judge from 
the curves of Fig. 1, the experimentally found maximum 
of the magnetoresistance is still appreciably lower than 
that attainable in the "clean limit." 

We must draw attention to the fact that measurement 
of the "residual" magnetoresistance in the limit of high 
magnetic fields makes it possible to determine the quan
tity 17i (cf. (3.3) and (3.2)). In practice, this opens up the 
possibility of a direct experimental estimate of the effect 
on the residual resistivity of anisotropy of the scattering. 
It is interesting that, from the results of the papers [4,3], 

it follows that 17i -0.6; thus, the role of anisotropy is 
great even in the case of the residual resistivity (in 
aluminum we certainly have 1-17~ax« 1-17i). 

The anisotropy of the scattering also has an effect 
on the magnitude of the Hall coefficient. It leads to the 
appearance of a correction to the value Ro = l(Ne- Nh)ec, 
and the temperature dependence of this correction in in
termediate magnetic fields (cf. (2.15)) also has the form 
of a function with a maximum of the same origin. Such 
a dependence of the Hall coefficient has been observed 
in alkali metals in [5]. In Fig. 2 the quantities R/Ro, 
found within the framework of the same model [16] but 
with the parameter value PF/qo=0.6, which corresponds 
exactly to the alkali metals, are given as functions of 
the temperature. It has been assumed here that yH« 1. 
It is interesting that the dependence found gives the cor
rect position of the maximum, the characteristic very 
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slow decrease of the Hall constant with temperature to 
the right of the maximum, and even an accurate absolute 
value of the effect at the maximum. (It should be noted 
that the model used is most adequate for precisely the 
alkali metals, the Fermi surfaces of which are almost 
spherical.) The small magnitude of the effect is, of 
course, a specific feature of the alkali metals, in which 
the anisotropy of the distribution function plays a small 
role. The effect can be much more striking in the poly
valent metals. We remark that, as can be seen from 
the figure, the impurities here have a weaker effect, 
inasmuch as the maximum is displaced into the region 
of higher temperatures. 

We now consider the range of temperatures and con
centrations that corresponds to the inequality opposite 
to (3.4)-the so-called "dirty limit." In this case, the 
resistivity in the absence of a magnetic field has the 
following value: 

(0) (0) (0) _ =~(1- R" 2R,J'12 -P" R12) (3.9) 
p Po., R P(O)R • 

J 22 Ii 22 

It can be seen from this expression that in the "dirty 
limit" this quantity does not depend on the impurity 
concentration and its dependence on T is close to that 
of P~~)(T). 

Returning now to the result (3.2), we can state that 
the temperature dependence of the transverse resistivity 
of a metal in the limit of high magnetic fields should be 
close to the temperature dependence of the resistivity in 
the "dirty limit" (for H = 0). It should be noted that this 
statement is also approximately true for polycrystalline 
samples, since the corrections to the result (2.14) for an 
arbitrary direction of the field H turn out, apparently, 
to be relatively small. We remark also that the assump
tions used about the character of the symmetry in the 
derivation of the asymptotic form of the magnetoresis
tance are satisfied in practice in most metals, at least 
with regard to an overwhelming proportion of the car
riers (in aluminum, in particular). 

With the object of checking this statement, we have 
made use of the data on the measurement of p(T) in 
aluminum in the limit of high fields, contained in a dis
sertation by Tsien (Chiang) [23]. These data are shown 
in Fig. 3. In this same figure we give the results ob
tained by Caplin and Rizzutto [7] from resistivity meas
urements for precisely the "dirty-limit" case. It can 
be seen that both series of results lie on straight lines 
(on a logarithmic scale), with similar slopes. The actual 
absolute values of the resistivity in the two cases also 
differ relatively little. Thus, the experimental results 
confirm the statement made above. On the other hand, 
the above analysis enables us to understand that the 
universal T3 dependence found by Caplin and Rizzutto[7] 
for the resistivity in the "dirty limit" is connected, in 
the temperature range studied, with the character of 
the temperature dependence of the matrix element 
pi~)(T). 

In connection with this result, it was of interest to 
elucidate independently the character of the temperature 
dependence of the other diagonal matrix element P~g)(T). 
For this, as follows from (3.8), we can use the depen
dence of p(T) - po on the inverse impurity concentration 
at a fixed value of T. The hyperbolic character of this 
dependence can be traced very clearly if we make use 
of, e.g., the corresponding curve first given in the 
paper [4] by Fickett. An analysis of the concentration 
dependence, carried out on the basis of the experimental 
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FIG. 3. Oependence of p(T,H) - Po(H) on temperature in a strong 
magnetic field, from the data of Tsien (Chiang) [23] (the straight line 
I), and the dependence p(T) - Po in the "dirty limit" from the data of 
Caplin and Rizzutto [7] (the straight line 2). 

FIG. 4. The dependence p(O)(T)/p(O)(00 ) (curve 1) and curves of 
L'lpT(T)fp<°Y00 ) for different values of the residual resistivity: 2) the 
"dirty limit", 3) Pofp<°Y00 ) = 10-2, 4) polp(O)(00 ) = 4 X 10-3; 

5) polp(O)(00) = 10-3; for clarity the dependence -T 3 is shown by a 
dashed line. 

data of [4,7-9], showed that the dependence P~g)(T) in the 
temperature range 10-40"K is also comparatively close 
to T3. 

Such a dependence of pi~)(T) and P~g)(T) on temper
ature is evidently connected with Umklapp processes in 
the electron-phonon scattering, which in aluminum are 
not frozen out until comparatively low temperatures are 
reached. Attention was specially drawn to this fact in 
the paper by Barabanov and Maksimov [24], in which, in 
a treatment of the electrical reSistivity of the pure 
metal, an attempt was made to take into account the 
real character of the electron and phonon spectra of 
aluminum. It is interesting that if, on the basis of the 
results obtained by these authors, we analyze separately 
the behavior of the diari0nal matrix elements, it turns 
out that pi~)(T) and P2g)(T) behave like T3 in precisely 
the interval 1O-30"K (private communication). At the 
same time, the total resistivity (3.8) of the pure metal 
in their calculations in this temperature interval was 
proportional to Tn with n > 4. 

Thus, the results given above apparently fully explain 
the mysterious universal temperature dependence found 
by Caplin and Rizzutto for the resistivity of aluminum 
in the "dirty limit." 

The results obtained above evidently also give a good 
description of the character of the temperature and con
centration dependences of the resistivity in the whole 
range of variation of the parameters, in particular, in 
passing from the "dirty" to the "clean limit." This is 
also clearly visible from the curves for the impurity 
part .:lPT (3.8) of the resistivity, which were obtained 
in the framework of the same model calculations [16] 

(PF/qo=1.45) and are given in Fig. 4; the curves fully 
reproduce, qualitatively, the pattern observed by Caplin 
and Rizzutto [7]. It is interesting that, even for a 
spherical Fermi surface, the model calculations give 
a dependence close to T3 for the temperature behavior 
of .:lPT in the "dirty limit" (and separately for pi~)(T)) 
and a dependence close to T 5 for the total reSistivity in 
the "clean limit." 
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In conclusion, we remark that, as is made clear by 
the preceding discussion, a combination of measure
ments of the resistivity andmagnetoresistance of a 
metal with impurities makes it possible to solve the 
problem of extracting individual matrix elements of the 
scattering operators or combinations of them. 
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