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We have investigated the power spectrum for fluctuations in the spontaneous emission of mercury 
vapor (;\=253.7 nm). Predictions of the shape of the spectrum based on semiclassical and quantum 
theories are shown to be mutually exclusive. On the other hand, the experimental result is in 
agreement with the quantum-mechanical description of the elementary emission process. Analysis of 
fluctuations in the luminescence spectrum of mercury, excited by a noise-law modulated electron 
beam, has yielded information on the lifetime of the 61 So state of mercury. 

1. INTRODUCTION 

This paper is concerned with the fluctuation spectrum 
of the spontaneous radiation from an ensemble of non­
interacting atoms. This problem is of interest, above all, 
as a very rare example of a sharp conflict between semi­
classical and quantum mechanical descriptions of the 
elementary process of emission. 

Any semiclassical analysis is essentially based on 
the classical description of the electromagnetic field 
and the quantum mechanical description of the quantum 
systems interacting with this radiation. This approach 
can be used in practically all cases to predict correctly 
the result of this kind of interaction. The semiclassical 
analysis is very attractive because of its ease of inter­
pretation and clear logic. It has recently been particu­
larly successful in the description of time-dependent 
resonance interactions (adiabatic inversion of popula­
tions, spin and photon echo, magnetic and optical nuta­
tions, and so on), parametric and nonlinear processes 
in optics, state interference phenomena, and also exper­
iments on photon correlations. In all these cases, the 
rigorous approach demanding field quantization leads 
to identical results. It would appear that it is precisely 
these successes that have led to the popularity of the 
semiclassical methods. In recent years these methods, 
or certain modifications of the quantum theory made in 
the spirit of semiclassical ideas, have been used more 
or less successfully to consider such-at first sight 
purely quantum mechanical-questions as spontaneous 
emiSSion, the photoelectric effect, resonance fluores­
cence, Lamb shift, and so on[1-9] (most of these papers 
are reviewed in[7] and[lO]). On the other hand, it has been 
said that radiation-field quantization is necessary only 
for the accurate calculation of radiation corrections. In 
this connection there is particular interest in the ele­
mentary situation where the semiclassical and quantum 
theories give, qualitatively, mutually exclusive predic­
tions.l) In this paper we report an experimental study 
of the validity of the semiclassical approach to the decay 
kinetics of the excited states of atoms. In essence, we 
are concerned with the phYSical Significance of the ele­
mentary process. Two alternative descriptions are com­
pared: 

1) The semiclassical description in which the decay 
of the excited state is treated in the spirit of the corre­
spondence principle as the damping of an oscillator and 
is accompanied by the continuous emission of a real 
electromagnetic wave packet, where the amplitude of 
the oscillations and the damping constant are expressed 
in terms of the matrix elements for the corresponding 
transition; the subsequent interaction of the field with a 
quantum-mechanical sytem (photodetector) leads to a 
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discrete detection event which is interpreted as the de­
tection of a photon. 

2) The quantum-mechanical description in which the 
damped field aSSigned to the radiating atom determines 
only the probability amplitude for the detection of the 
photon and does not in itself have a phySical meaning, 
i.e., we have the analog here of the wave-function field 
for an electron in an atom. 

The results obtained in this paper are in agreement 
with the second description and show that the atomic 
emission process is discrete in itself, independently of 
whether the recording device is discrete or not. This is 
not a new conclusion but it would appear that the present 
investigation provides the first direct experimental dem­
onstration of its validity. 

2. SEMICLASSICAL ANAL YSIS 

Our description will be based on the following simple 
idea. If we consider a system of noninteracting atoms 
excited independently in accordance with the random 
law, then provided the decay kinetics is the same for all 
the atoms, one would expect that the intensity fluctuation 
spectrum due to the system will exhibit properties which 
will reflect the spectrum of the elementary emission 
process. This conclusion can readily be accepted in the 
case of a classical detector, i.e., a detector which can 
follow the variation in the field intensity in a continuous 
fashion. However, the situation is complicated if the dis­
crete nature of the detector response has to be taken into 
account. It is clear that the discrete detector is basically 
incapable of following the decay of a single atom since, 
at best, it can react to such an event by the single action 
of emitting an electron which does not carry any informa­
tion about the structure of the electromagnetic wave 
packet producing the emission.2 ) However, in an experi­
ment using an ensemble of atoms, the photodetector is 
subjected to the action of the resultant field, the fluctua­
tions of which are readily seen to be connected with the 
law of decay of the atom and should lead to a character­
istic grouping in time of the discrete photoemissive 
events. In particular, if the decay of the excited atoms 
occurs exponentially, one should be able to observe 
againstthe 'white' background due to shot noise (con­
nected with the discrete nature of the photodetection 
process) the excess noise peak centered on zero fre­
quency and having a width of the order of the natural 
width of the radiating level. The foregoing, relatively 
obvious prediction, based on the assumption of continuous 
emission in the elementary event, is confirmed by calcu­
lations whose main aim is to establish a quantitative 
measure for the required excess noise. 

The photoelectric detection process in the semiclas-
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sical approximation is described by a stochastic temporal 
sequence consisting of detection events for photoelectrons 
emitted from the photocathode under the action of the in­
cident electromagnetic radiation. [11] The electric signal 
at the output of an arbitrary linear circuit connected to 
the photodetector can be written in the form 

U(t)= ~ U(t-tk)n(~kt, ~/S), (1 ) 
k,' 

where {~kt} is some sufficiently fine subdivision of the 
time of observation into elementary nonintersecting in­
tervals containing the times {tk}, {~lS} is an analogous 
subdivision of the photocathode area, n(~kt, ~lS) is the 
number of photoelectrons appearing in the interval ~kt 
on the area ~ls, and u(t-to) is the response of the cir­
cuit to a single electron appearing at time to (pulse char­
acteristic of the circuit). 

The stochastic properties of the signal U(t) are deter­
mined by the statistics of the occupation numbers 
{n(~kt, ~lS)} which in turn is described by a bistochastic 
Poisson process. [12] In particular, the joint probability 
distribution for the occupation numbers nkl = n(~kt, ~lS) 
is 

(2) 

where the positive quantities {Jl(~kt, ~lS)} describe the 
space-time dependence of the intensity of the photoelec­
tron production process and, in general, are subject to 
a probability distribution. In the ensuing discussion we 
shall be interested only in the second moments of the 
distribution (2), which are necessary for the calculation 
of the correlation function for the signal (1): 

(n(~kt, ~,s)n(~it, ~ms»=(I'(~kt, ~,s)I'(~,t, ~mS»+6ki6'm(I'(~kt, ~,s», 

(3 ) 

where the angle brackets represent averaging over the 
co rresponding distributions. 

It follows from the semiclassical theory of photo­
electric detection [11] that the elementary intensity of the 
photoelectron current is given by 

(4) 

where q is the quantum efficiency of the photodetector 
and I(t, r) is the instantaneous intensity of the optical 
field at the point r at time t. Using (1), (3) and (4), we 
can readily show that the correlation function for the 
electrical signal is 

Ku(t, t')=(U(t)U(t'»-(U(t»(U(t'»=q' J J u(t-t,)u(t'-t,)dt,dt, 

~ 

XKF(t .. t,) +q J u (t-t,) u(t' -t, ) dt,(F (t,», 

KF(t" t,) = J f [(/(t" r,)/(t" r,) )-(/(t" r,) )<1(t" r,» jds,ds" 

(5 ) 

• • 
(F(t,»= I (/(t" r»ds, 

where the integral sums generated by the subdivisions 
{~kt} and {~lS} are replaced by integrals by going to the 
limit in which the time of observation is assumed to be 
unbounded, and integration with respect to the space 
coordinates is extended over the entire surface area S 
of the photodetector. 

If we suppose that the optical intensity fluctuations 
are stationary in time, we can consider the spectral 
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representation of the process U(t) in the form 

(6) 

where GU and GF are the fluctuation power spectra [the 
Fourier transforms of the corresponding correlation 
functions KU(r) and KF(r)]. (F) is the mean flux at the 
photodetector, and u(w) is the frequency characteristic 
of the electron circuit. It is clear from (6) that the spec­
trum GU(w) is the product of the known frequency char­
acteristic of the detection circuit and the intrinsic fluc­
tuation spectrum of the photoemission process. The lat­
ter contains two parts. The term q(F) is a consequence 
of the fact that photoemission is discrete, i.e. it is the 
'white' shot noise. It complicates the analysis of the 
second component of the photoemission noise, which is 
connected with fluctuations in the light field intensity, 
but does not in principle prevent this analysis. It is pre­
cisely this component that is of main interest. 

The evaluation of GF(W) is given in Appendix 1. We 
now use the following model of emission by an excited 
atom: 

(1) the atonis are excited independently of one another 
at definite (random) instants of time, 

(2) the excited atom emits a field in the form of a 
continuous, damped, scalar, spherical wave, 

(3) the parameters describing the fields emitted by 
the different atoms are random, statistically indepen­
dent, and identically distributed, 

(4) the total number of atoms excited in the volume V 
during the observation T[N = N(T, V)] is a random quan­
tity, is independent of the parameters describing the 
fields due to the individual atoms, and is described by 
a distribution whose first moments are related by 

(N')=<N)'+(N), 

Condition (1) imposes a restriction on the type of 
excitation. It is undoubtedly satisfied in the case of 
electronic excitation and also when the spectrum of the 
optical excitation is much broader than the natural 
width of the excited state. Condition (2), with certain 
minor modifications concerned with the shape of the 
emitted wave, is the basis for any semiclassical descrip­
tion. Condition (3) is satisfied provided the concentration 
of the atoms is not too high. Finally, condition (4) cor­
responds to the Poisson distribution and is definitely 
satisfied when the number of excited atoms is small in 
comparison with their total number. 

The details of the calculations are given in Appendix 1. 
Here we merely quote the final expression which is 
valid for frequencies w much smaller than the (Doppler) 
width of the spectral line emitted by the ensemble of 
atoms: 

_ [ Qa(w) ] Gu(w)=lu(w)I'q(F) i+q6+q~ (7) 

In this expression 15 is the degeneracy parameter for 
the light field, [11] which is numerically equal to the num­
ber of photons passing through the coherence area dur-
ing the coherence time, and n is the solid angle within which 
the detector collects light from the source. 

In accordance with (7), the photoemission fluctuation 
spectrum consists of three components. As noted above, 
the first term represents shot noise. The other two give 
the excess noise connected with the optical-field statis-
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tics and is zero in the special case of a regular field 
(single frequency laser). More detailed analysis reveals 
that the second term describes the excess (wave) noise 
ariSing from the interference between radiation emitted 
by different atoms. This radiation was investigated by 
Hanbury Brown and by Twiss. It is usually very small: 
for nonlaser sources of light I) < 0.001 [11] and ql) « 1. 
Since, moreover, this component is constant over the 
spectrum in the region which we are conSidering, we 
shall not take it into account henceforth: its presence 
does not affect the detection of the third component of 
the power spectrum I u(w)1 2q2(F)Oa(w)/47T in which we 
are interested. This component of the excess noise is 
considered for the first time. It appears when we take 
into account the characteristic decay kinetics of the ex­
cited atom. The function a(w) is the normalized mean 
power spectrum of the elementary emission process. 
It is clear from (7) that the power carried by this partic­
ular excess-noise component depends on the quantum 
yield q of the detector and the collection factor O/47T, 
and in the limit (qO/47T = 1, w = 0) may approach the 
shot noise power. We note that the predicted new term 
in the noise spectrum is obtained at the same time as 
the other two known components, whose form in the 
quantum mechanical and semiclassical descriptions is 
the same. This gives us confidence in the belief that the 
new result is valid. 

3. EXPERIMENT 

The aim of the experiment was to try to detect the 
excess intensity fluctuations in the spontaneous emission 
which are predicted by the semiclassical theory and are 
governed by the spontaneous emission kinetics. We shall 
ignore interference phenomena[13] which are unimportant 
in the detection of radiation in a large solid angle, and 
shall assume that the decay of the atoms from excited 
states occurs exponentially with a damping constant r. 
In this case, equation (7) has the following form for 
ql) « 1: 

Q r' 
Gu(w)=IU'(w) l'q<F) (1+q--~). (8) 

4n r'+w' 

The normalized graph of this function is shown in Fig. 1. 

Standard spectroanalytic equipment is inconvenient 
for the experimental detection of the excess noise be­
cause the maximum excess noise exceeds the shot-noise 
level by only 1% (see below). It was therefore decided 
to carry out careful comparison between the noise power 
in two fixed frequency intervals one of which, /l.W[, cor­
responds to the low-frequency excess-noise plateau, and 
the other, /l.wh, includes the region in which the excess 
noise practically ceases to fall (Fig. 1). The width of 
these inte rvals must be as large as possible ,l14] but it 
is clear that it must satisfy the condition /l.W[ = /l.wh < r. 

G(w) 
~ 

zr 
FIG. I. Fluctuation spectrum for the intensity of spontaneous 

emission (semi-classical calculation). 
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The medium under investigation was mercury vapor. 
We investigated the luminescence due to the 63 Pl -61S0 

(2537.A, r- l = 1.2 x 10-7 sec) transition which was ex­
cited optically with the aid of a mercury lamp. The radi­
ation detector was the FEU-57 photomultiplier with a 
quantum yield at 2537.A amounting to q = 5% (this was 
the nominal figure, confirmed by direct measurement). 
The luminescence of the vapor was excited in a container 
which was designed to ensure maximum light collection 
onto the photomultiplier photocathode. The container was 
made of quartz and had an aluminized spherical outer 
part. The saturated vapor pressure in the container cor­
responded to the temperature of the cooling system. The 
cooling system was filled with a mixture of the solid and 
liquid phases of paraffins or mercury, which enabled us 
to hold the container for long periods of time at the 
melting points of nonane (-53°C), decane (-29°C), 
undecane (-26°C), and mercury (-39°C). At all these 
temperature points the mercury vapor pressure was 
low enough to enable us to neglect the trapping of reso­
nance radiation and the associated theoretical compli­
cations connected with the prediction of the noise spec­
trum. The source of the exciting radiation was a mer­
cury lamp, using a high-frequency discharge in a con­
trolled mercury-vapor density. The light from this lamp 
was collimated into a narrow beam which was received 
by the entrance window of the container. The signal from 
the cathode was fed into an amplifier with two isolated 
pass bands of /l.f[ = Wp/27T = /l.fh = 100 kHz around the 
frequencies of 400 kHz and 4 MHz. The low- and high­
frequency signals were separated by filters at the ampli­
fier output. They were then detected and fed into a bridge 
comparison circuit. 

The spectrum shown in Fig. 1 represents the fluctu­
ation spectrum of the photocurrent from an ideal photo­
electric detector. We used a special calibration proce­
dure to eliminate any non uniformity in the frequency 
characteristic of the photomultiplier itself and possible 
differences between the integrated gain in the two spec­
tral intervals. The photomultiplier was alternately ex­
posed to the luminescence and to equal intensity direct 
radiation from the mercury lamp. To achieve this, a 
small aperture covered by a diffuser was made in the 
aluminized dome of the reflector, opposite the photo­
multiplier window, and the radiation from the lamp was 
prOjected onto this aperture. Since the light from the 
lamp was collected from a small solid angle, its fluctua­
tion spectrum was not expected to contain the low-fre­
quency excess noise. Therefore, by balancing the bridge 
with the photomultiplier exposed to the radiation from 
the lamp, and then recording the luminescence, it was 
possible to estimate the required signal from the off­
balance voltage. To eliminate the effect of the slow zero 
drift, the radiation from the mercury lamp was period­
ically switched from luminescence excitation to direct 
illumination of the photomultiplier with the aid of a disk 
modulator (Fig. 2). This enabled us to use synchronous 
detection of the voltage across the bridge diagonal, 
which was monitored by a strip chart recorder. When 
the modulator was employed, steps were taken to ensure 
that the radiation intensity in the two optical channels 
was the same (to within 0.5%), which quaranteed the ab­
sence of parasitic synchronous Signals because of the 
highly sensitive balancing of the bridge. 

We shall not pause to describe in detail the balancing 
and calibration procedures, and will merely summarize 
the data on the sensitivity of the system. The time of a 
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FIG. 2. Block diagram of the apparatus: PA-power amplifier, AO­
audiofrequency oscillator, SD-synchronous detector, LA-low-frequency 
amplifier, PM-photomultiplier, BA-broadband amplifier, TA-tuned 
amplifier. 

f.O 2,0 C, MHz 

FIG. 3. Fluctuation spectrum 
for spontaneous emission of mer­
cury eX = 253.7 nm) under electron­
impact excitation. Points-experi­
mental, solid line-theoretical for 
r-I = 1.3 X 10-7 sec. 

single measurement was limited by the temperature 
stability of the cooling system and amounted to 10-15 
min. With this averaging period, the sensitivity of the 
system was sufficient to detect systematic deviations 
of 0.02% in the level of mean square fluctuations, which 
is close to the theoretical limit. [14) 

For the final verification of the nature of the expected 
signals we planned an additional control operation in 
which we recorded luminescence which was highly 
quenched by a molecular gas (in our case, hydrogen). 
This quenching gas reduced the luminescence intensity 
by a substantial factor (this was compensated by an in­
crease in the excitation intensity) and increased the 
damping constant r by the same factor Y5) In this way, 
we could vary the life-time of the excited atoms, and 
hence the expected shape of the spectrum, without vary­
ing the other experimental conditions. 

The temperature of the mercury vapor was chosen 
so that the luminescence intensity exceeded parastic 
scattered radiation by a factor of 3-10 in all cases (this 
was checked by freezing out the mercury vapor). The 
experiments were performed in a broad range of lumi­
nescence intensities, namely, between 3 x 108 and 1.6 
x 1010 photoelectrons collected per second from the 
photomultiplie r cathode. 

All the experiments gave a negative result. We did 
not record any systematic change (to within the limits 
of sensitivity, Le., 0.02%) in the noise power difference 
between the chosen spectral intervals on switching from 
luminescence to scattered radiation. The figure of 0.02% 
must be compared with the theoretical estimate of the 
signal. Let us suppose that the collection factor n/47T 
was 0.5, which is an underestimate. We must also allow 
for the reduction in the theoretical value of the signal 
due to the excess noise associated with multiplication 
in the photomultiplier. The experimental upper limit for 
the noise factor of the photomultiplier was found to be 3. 
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Finally, since the frequency intervals t::.Wl and t::.Wh were 
separated by a finite distance, the theoretical noise dif­
ference between them should be 0.8 of the maximum 
value. If the quantum efficiency of the photomultiplier 
is 5%, this gives a minimum of 0.6% of the shot noise 
power, which exceeds by a factor of at least 30 the sen­
sitivity within the limits of which the signal was not de­
tected. 

4. DISCUSSION 

We have thus found that the semiclassical description 
of spontaneous emission is not consist ant with experi­
mental results which can, however, be described in terms 
of quantum mechanical ideas. To elucidate this state­
ment, Appendix 2 gives a phenomenological calculation 
of the fluctuation spectrum for a model of the source 
based on the quantum mechanical description of the emis­
sion process. According to this model, there is a finite 
probability of detecting the photon as soon as the atom is 
excited, and this probability decays exponentially with 
time. Using this model, and neglecting interference be­
tween different atoms/) we can see that the flux of re­
corded photons has the same behavior (with random delay, 
on the average amounting to r-1 ) as the distribution of 
the excitation events in time. If the latte rare uncorre­
lated with one another, which was the case in our experi­
ment, then the photons originating from them cannot be 
correlated either. The expression for the spectrum of 
fluctuations in the photodetector output can in this model 
be written in the general form4 ) 

[ Qa(w) GJ (w) ] 
Gu(w)=lu(w) l'q<F> 1+q~<J> ' (9) 

where a(w) is determined directly by the probability of 
decay: a(w) = I p(w) I 2; GJ (w) and (J) are, respectively, 
the intensity fluctuation spectrum and mean excitation 
intensity J(t).5) It is clear from (9) that the spectrum of 
the elementary process now appears only in the product 
in which the spectrum of fluctuations in the excitation 
intensity is the other factor. If the pump is constant in 
time [GJ(w) = 0], the output-signal spectrum contains 
only the white component of shot noise. 

To complete the picture, these conclusions were veri­
fied in an additional experiment with fluctuating excita­
tion. The mercury vapor was excited by an electron 
beam whose intensity was modulated in accordance with 
a random law using a noise generator with a uniform 
spectrum between 0 and 6 MHz. The photocurrent 
fluctuation spectrum was recorded in this case by 
a standard spectrum analyzer. The spectral character­
istic of the receiving channel and the photomultiplier 
were allowed for by recording the photocurrent fluctua­
tion spectrum due to the photomultiplier itself with the 
mercury vapor replaced by hydrogen, whose lumines­
cence in our case can be regarded as having zero inertia. 
Measurements showed that the shot component of the 
noise was a small fraction of the resultant photocurrent 
noise, so that the procedure used to find the required 
spectrum a(w) from experimental data reduces to the 
division of the noise spectrum for the mercury lumines­
cence by the hydrogen noise spectrum, as shown in (9). 
The result is given in Fig. 3, where the solid line indi­
cates the theoretical curve. 

We note, in conclUSion, that the latter experiment is 
a demonstration of a new method of investigating the 
lifetimes of excited states of atoms, which is a linear 
variant of the method developed previously in. [16] 
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APPENDIX 1 

The classical radiation field due to a system of atoms 
or, more precisely, the complex analytic Signal associ­
ated with the real field observed at the point P on the 
photocathode at time t, can be written in the form 

N(r.v) 

A(t,P)= 1: A;(t,P), 
;-1 (1.1 ) 

where Aj(t, P) corresponds to the field of the j-th ex­
cited atom, i.e., a spherical wave of frequency Wj (kj is 
the wave-vector modulus) and initial phase <Pj' tj is the 
time at which the atom is excited, rj = r(P, Pj)is the 
distance between the point of observation and the radi­
ating atom, and v(t -tj) is a function which describes the 
attenuation of the wave and is zero for negative values 
of the argument. We shall use the normalization condition 

+-

N 

= <.& ,A;(t',P')A/(t', P')Ah(t", P")A." (t", P") ). (1.8) 

After averaging over the phases, and by virtue of the 
obvious result 

<exp [i (<p'-<P;+<Ph-<P') j)=Il;;lh,+Il"lljh-ll,jlljhll" (1 .9) 

the multiple sum in (1.8) splits into combinations of 
double and single sums. The single sums contain equally 
distributed terms and are averaged in an obvious fashion. 
When the double sums are averaged it must be remem­
bered that the 'diagonal' elements (equal labels) are 
distributed differently from the nondiagonal elements. 
Omitting the relatively elementary transformations, we 
give the final results for the second moment of the field 
intensity: 

(I (t', P')/(t", P") )=(1 (t', P') ) <I (t", P") )+If(t', t"; p', P") I' 

N < Iv(t'-t) l'lv(t"-t) I' ) (1.10) 
+< ) (4nr'r") , . 

In deriving this expression we used the condtion 
S v(t)v'(t)dt=1, 

(1.2) <N(N-1»=<N)'. 

i.e., the total energy emitted by the atom is equal to the 
energy of a single photon. 

The random quantities Wj' <Pj, tj an~ the vector d~­
fining the position of the point Pj nave mdependent dls­
tributions. In particular, the phase will be assumed to 
be uniformly distributed, i.e., 

(1.3) 

To begin with, let us calculate the coherence function 
for the field A: 

f(t', t"'; P', P") =<A (t', P')A' (t", P"» 

= (t .EA;(t',P')A."(t",P"»' 
(1.4 ) 

}-11=1 

After substituting (1.1) in (1.4), the averaging over the 
parameters of the elementary spherical waves can be 
carried out separately because they are independent. 
In particular, averaging over the phases gives 

<exp [i<p;-i<pd)=/l,;,. (1.5) 

Therefore 

( ( exP[ik(r'-r")]» 
r(t',t";P',P")=(N(T, V» exp[ioo(t'-t"')] 4nr'r" v 00 

X<v(t'-t)v·(t"-t»., (1.6) 

where r' = r(P', P), r U = r(P", Pl. 

In deriving (1.6) we allowed for the fact that the num­
ber of terms in the sums in (1.4) is random. The sub­
scripts T, V, and W represent averaging over the times 
of excitation, the positions of the radiating atoms, and 
the distribution of the optical frequencies which hence­
forth will be assumed to be the Doppler distribution. 
The mean light intenSity is obtained from (1.6) by 
equating the coordinates: 

<Itt', P'»=f(t',t'; P', P') =<N>«4nr' (P', P) ]-')v 

x <Iu(t'-t) \'),. (1.7) 

If the excitation probability is independent of time and 
T - 00, the time dependence in (1.7) will vanish when 
(1.2) is taken into account.6) 

We now calculate the correlation function for the in­
stantaneous intensity of the field: 

</(t', P')/ (t", P") )=(A (t', P')A' (t', P')A (t", P")A' (t", P"» 
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It is thus seen that the correlation function for the 
field intensity in the above model of the source consists 
of the two terms 

\f(t', t"; P', P") \ '+<N>«4nr'r")-' \ v(t'-t) \' 

x\v(t"-t)\'), (1.11) 

the first of which describes the spatial (for t ' = t" and 
pI -I P") and temporal (for T' -I T" and pI = p") intensity 
beats (these are the Hanbury Brown-Twiss and the Rebka 
and Pound effects), and the second term gives the spe­
cific time beats connected with the fact that the model 
which we are considering differs from the Gaussian 
model of the field.[ll] 

Further calculations connected with the substitution 
of (1.11) into (5) in the main text depend on the geometry 
of the experiment, since we have to integrate over the 
cathode of the photodetector and through the volume of 
the source. To obtain clearer results, we shall simplify 
the situation by supposing that the linear size of the 
source is small in comparison with the distance to the 
photosensitive surface. If the points P' and P" lie in the 
plane of the detector, and are not too far from one 
another in comparison with the distance of the source, 
we can write the normalized coherence function in the 
form 

(t' t"·p' P")=f(t' t"·p' P")[</(t' P'»<I(t" P"»]-'I, 
y , " '" , , (I.6a) 
=<exp [ioo (t' -t")] <exp [ioo (r' -r")/cl>v).· <u(t' -t) v'(t" -t» •. 

The assumption that the optical spectrum is relatively 
narrow enables us to separate the temporal and spatial 
coherence factors: 

y=(exp [ioo(t'-t") ]>.(exp [iOOo(r'-r")/cl>v·<v(t'-t)v·(t"-t» •. (1.6b) 

Hence the correlation function for the light-flux fluctua­
tions on the receiver is given by 

Kp(t', t") = \ (exp[ioo (t' -t") ]>.\'\ (v(t' -t) "'(t" -t».\' 

x S S <I(t',P'»</(t"',P"»lexp[ioo,(r'-r")/c]> .. I'ds' ds" (1.12) 
8 8 

+<Iv(t'-t) l'lv(t"-t) I'>. S S <I(t',P'» [4n(r")']-!ds' ds". 
B B 

Assuming that the coherence area is small, i.e., 

0= S 1 <exp[ioo,(r' -r")/e] > .. I'ds' <s, 
and neglecting edge effects, we can transform (1.12) to 
the form 
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K,(t'-t")=I<exp [i",(t'-t")).I' 

xl <v(t' -t)v'(t" -t»TI'Pcr[ 

+<Iv(t'-t) l'lv(t"-t) 1')rPQ/41l, 

bers nkj, it is natural to use the generating-function for­
(1.12a) . malism. The generating-moment function for the distri­

bution (2.1) is 

where n is the solid angle subtended by the photocathode 
at the center of the source, and i and Fare, respectively, 
the mean illuminance and radiation flux in the plane of 
the detector, 

We now obtain the fluctuation spectrum via the Fou­
rier transformation, remembering that the Doppler 
broadening is usually much greater than the natural 
width of the radiating state: 

GF (w) =g(w)Pcr[ +a(w)PQ/41l. (1.13) 

In this expression g(w) is the Fourier transform of the 
"Doppler term" 1 (exp(iwt)w 12 (practically the Doppler 
profile but with half-width greater by a factor of ..f2 than 
usual) and 

The spectrum a(w) has a width of the order of the natural 
width of the radiating state and, therefore, at frequencies 
of the same order, the function g(w) can be replaced by 

g(O)=~ l<e'··>.I'd't='t" 

which is equal to the coherence time defined in the usual 
way, Moreover, recalling the definition of the degeneracy 
parameter 0 = (JT ci, we finally obtain equation (7) of the 
main text. 

APPENDIX 2 

Let us now investigate the time statistics of fluctua­
tions in the photon flux incident on the photodetector for 
a simple quasicorpuscular model of the source. In par­
ticular, we shall suppose that a particular pump excites 
the atoms at random instants of time after which the 
atoms decay independently in such a way that the decay 
probability depends on the time measured from the in­
stant of excitation. Each decay is accompanied by the 
emission of a photon which is recorded by the photode­
tector with probability q' = qn/47T. In this model, we 
ignore the interference between the different atoms, 
which is unimportant for our purposes [see the discus­
sion of equation (7) in the main text]. 

As before, we subdivide the time scale into sufficiently 
small and equal intervals {6.kt} where k are integers be­
tween -00 and + 00 (we are considering the entire time 
axis), We shall use the following notation: rj-number 
of atoms excited in the interval Ajt, nkj -number of 
atoms excited in the interval Ajt and decaying in the in­
terval Akt, nk = Ljnkj -number of atoms decaying in the 
interval 6.kt (this is equal to thenumber of emitted pho­
tons), Pa(a = .,., -2, -1,0, +1, +2, ... )-probability 
of decay of the atom after a intervals following excita­
tion where Pa if COL < 0, and 

Since the atoms decay independently of one another, the 
numbers nkj have the distribution 

. '. _ ., rroo (Pk_;)nkj 
P( ... , nk" ' .. , r,) - r,. --I -, (2.1) 

k~ -00 nkj-

where ~knkj = rj and we suppose that 00 = 1. 

Since we are interested in the distribution of the num­
bers nk, which are the sum of independent random num-
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(2.2) 

where the mathematical expectation is evaluated for 
fixed rj' Since the nkj are independent, the generating 
function for the numbers nk is 

(2.3) 

We must now define the statistics for the numbers rj 
which govern the rate of creation of excited particles. 
We shall assume the Poisson statistics [which satisfies 
the more general condition given by (4)], i.e., 

e-1A1 

P(. .. , r;, ... J =II- fl./', (2.4) 
j Tif 

where /lj = J(tj)6.jt is the mean number of excited atoms 
in the interval 6. jt and J(t) is the intensity of the excita­
tion process. The generating-moment function for the 
numbers nk is obtained by averaging over the distribu­
tion given by (2.4): 

cD (. .• , z., " .J =Mz,,=McD, j=exp [~ fl.! (Zj-l) ] 
i 

=exp (~z,v,- ~fl.j), 
k , 

Vk= ~Pk-jJ..Lj, 
, 

(2.5) 

Using the normalization Lj /lj = Lkvk, we obtain the 
~enerating function in terms of only the parameters 
{v0: 

II> ( ... , z., ... J =exp (~z,v.-~ v.) . (2.6) . , 

It is readily verified that this function corresponds to 
the Poisson statistics (2.4) with modified mean occupa­
tion numbers vk' The intensity of the decay process is 
related to the intensity of the excitation process by the 
formula 

t 

I (t) = S J (t') p (t-t') dt, (2.7) 

which is obtained from (5) by paSSing to the limit of in­
finitesimal subdivision {Akt} where p( T)dT is the proba­
bility of decay in the interval (T, T + dT) after excitation 
at time T = 0.7 ) Therefore, the random delay of the de­
cay event relative to the excitation event preserves the 
Poisson statistics and the intensity is "smoothed" by 
the delay distribution function p( T). 

The photoelectron statistics is connected with the 
photon statistics by the binomial distribution: the prob­
ability of detecting m photoelectrons during the emission 
of n photons is 

B(m;n)= n! (q')m(l_q')n-m, m':;;n, 
m!(n-m)! (2.8) 

B(m;n)=O m>n 

It is known that, under the transformation defined by 
(2.8), the. Poisson process remains a Poisson process, 
but the intensity is multiplied by q', i.e., the effective 
quantum yield of the photodetector. It follows that the 
discussion used in the derivation of (6) is valid with the 
obvious modifications which lead to (9). 

1) An example of this kind of qualitative discrepancy is provided by the 
recent paper by Clauser. [10] 

2)In particular, the use of the discrete detector to observe the decay of a 
single atom cannot resolve the dilemma formulated in the introduction. 
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3)See the discussion of Eq. (7), q& ~ I. 
4)See Appendix 2. 
S)We emphasize that "excitation intensity" is to be understood as the 

intensity of the corresponding Poisson process for the distribution of 
the excitation events in time. 

6)Equations (1.6) and (1.7) are valid for any interval T and an arbitrary 
distribution of the excitation times within this interval. In the limiting 
transition T -+ 00, it is assum~d that the excitation is time-independent 
and the rate of excitation is finite, i.e., 

(N) 
lim->O. 

T_Cl:I T 

7)p(T) is also the distribution density for the lifetime of the atom in the 
excited state. 

lE. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 
(1963). 

2C. R. Stroud, Jr. and E. T. Jaynes, Phys. Rev. AI, 106 
(1970). 

3E • T. Jaynes, Phys. Rev. A2, 260 (1970). 
~. D. Crisp and E. T. Jaynes, Phys. Rev. 179, 1253 
(1969); 185,2046 (1969). 

sG. W. Series, Proc. Intern. Conf. on Optical Pumping 
and Atomic Line Shape, Vol. 25, Warsaw, 1969. 

sp. A. Franken, Proc. First Intern. Conf. On Atomic 
Phys. (ed. by V. Hughes, B. Bederson, V. W. Cohen, 
and F. M. J. Pichanick), New York, 1968, p. 377. 

626 Sov. Phys . ..JETP, Vol. 39, No.4, October 1974 

7M. O. Scully and M. Sargent, Physics Today 25, 38 
(1972). 

SW. E. Lamb and M. O. Scully, Polarisation Matiere et 
Rayonnement, Paris, 1969, p. 363. 

90 . Ya. Savchenko, (Preprint No. 58, Institute of Nuclear 
Physics, Siberian Branch, Academy of Sciences of the 
USSR, Novosibirsk, 1966. 

lOJ. F. Clauser, Phys. Rev. A6, 49 (1972). 
llL. Mandel, Prog. Opt. 2, 181 (1963); L. Mandel and E. 

Wolf, Rev. Mod. Phys. 37, 231 (1965); 88,347 (1966) 
[SOy. Phys.-Usp. 89, 619 (1966)]. 

l2D. L. Snyder, IEEE Trans. JT-18, 91 (1972); D. L. 
Snyder and I. B. Rodes, IEEE Trans. Commun. 20, 
1139 (1972). 

l3 E . B. Aleksandrov, Usp. Fiz. Nauk 107,595 (1972) 
[SOy. Phys.-Usp 15,436 (1973)]. 

l4A. Kharkevich, Spektry i analiz (Spectra and Analysis), 
Fizmatgiz, 1962. 

lSp. Pringsheim, Fluorescence and Phosphorescence, 
1949 (Russ. Transl., IlL, M. 1951). 

lSE. B. Aleksandrov, O. V. Konstantinov, V. N. Kulyasov, 
A. B. Mamyrin, and V. I. Perel', Zh. Eksp. Teor. Fiz. 
61,2259 (1971) [SOy. Phys.-JETP 34,1210 (1972)]. 

Translated by S. Chomet 
130 

E. B. Aleksandrov et aJ. 626 


