
Changes in Cerenkov radiation caused by an external field 
V. V. Mysakhanyan and A. I. Nikishov 

Lebedev Institute of Physics, USSR Academy of Sciences 
(Submitted September 27, 1973) 

Zh. Eksp. Teor. Fiz. 66, 1258-1268 (April 1974) 

In a number of earlier papers it has been asserted that it is possible for the Cerenkov radiation 
spectrum to be changed by moderate external fields. Both from general considerations and from two 
examples (helical motion of an electron in a medium and motion in the field of a plane 
electromagnetic wave) discussed in this paper, it can be seen that \) the effect of a field on the 
Cerenkov radiation spectrum decreases as the energy of the particle increases and 2) even for 
nonultrarelativistic particles extremely strong fields must be applied for any considerable effect to be 
produced on the radiated spectrum if the intensity of the Cerenkov radiation is not excessively small. 

1. INTRODUCTION 

The intensity of the radiation of a classical particle 
moving in a constant magnetic field is described by a 
remarkably simple formula. The spectral and angular 
distributions which it gives have been thoroughly 
studied.[1-6) 1) It is interesting to generalize these 
formulas to include the case of motion of an electron 
in a medium by introducing the index of refraction n(w). 
For the case of motion in a circle this has been done 
in [9-11). The case of helical motion is considered 
in [12,13). 

In the present paper we consider in detail the case 
of motion of an electron along a helix. The correspond
ing formula for the intensity of the radiation is studied 
for various ratios between the parameters of the prob
lem, and the spectral distribution in each case is com
pared with that for Cerenkov radiation. This problem 
is interesting both in itself and also from a methodologi
cal point of view, as the simplest example of undulatory 
radiation, i.e., radiation of a particle with a vibratory 
motion superposed on its translatory motion. The study 
of radiation from various undulatory motions was ini
tiated in papers by Ginzburg. [14) Closely related to the 
class of undulatory radiations is the radiation from a 
particle passing through a medium with a periodically 
varying index of refraction. Extensive studies in this 
field are well expounded in a monograph by Ter
Mikaelyan. [15) 

In cases when the speed of motion of a particle in a 
medium exceeds that of light, vn( w) > 1, the question 
arises as to the change of the Cerenkov radiation under 
the influence of the oscillatory motion (the accelera
tion). Frequently the OSCillatory motions caused by the 
external field are small. Accordingly there is little 
change of the velocity of translational motion of the 
particle and we can expect only small changes of the 
Cerenkov radiation. If, however, we are interested in 
fine details of the radi"ation, for example details of its 
angular distribution, they may easily turn out to be 
changed. The single cone of radiation now splits up 
into a system of cones, and it is quite possible that the 
radiation in each of the cones close to the central one 
is of the same order as that in the central cone. Unfor
tunately, only the radiation in the central cone is called 
Cerenkov radiation in the literature (cf., e.g., [13,16-18)). 
With this definition this radiation is indeed easily 
changed by external fields of moderate intensity. How
ever, summation over the cones (integration over angles) 
as a rule reestablishes the Tamm-Frank formula.2) 

From the experimental point of view it is precisely 
the rough characteristics of the radiation that it is 
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convenient to deal with, because, for example, a smear
ing out of the cone of radiation can be caused by many 
other things (spread of momenta of the particles in the 
beam, multiple scattering, finite path length of the ra
diating particle, etc.). On the other hand, it is clear that 
when the intensity of the Cerenkov radiation is suffici
ently small, i.e., when vn(w)-1« 1, even a moderate 
acceleration can cause a change of the radiation. 

The condition for a field to affect the Cerenkov radi
ation can be obtained from Simple qualitative considera
tions. In the idealized case the path of the radiating 
particle is straight and infinite, and the radiation at a 
gi.ven frequency goes out only at the Cerenkov angle So, 
WIth cosSo= l/vn(w). If, on the other hand, the path of 
the particle is finite, the diffraction spreading of the 
cone of radiation with frequency w is (see Chap. 3, 
Sec. B in [ 21))3) : 

( 1) 

For IlS« So the situation is close to the idealized case 
L = 00. For IlS - So we must expect decided changes in 
the characteristics of the radiation, in particular to the 
spectrum. Accordingly, the minimum necessary length 
for the formation of Cerenkov radiation is 

Lm=1/Ul sin'l'to• (2) 

Owing to this it will be everywhere understood that the 
path of the radiating particle is much larger than Lm. 

Suppose there is an external field causing oscillations 
of the particle with frequency n. We define a length 
LF in which the field deflects the particle by an angle 
-So, namely: 

I'1p FJLF . 
-=--=sml'to, F=e(E+[vXH]). 
p p (3) 

Here F 1 is the component of the force perpendicular to 
the motion and p is the momentum of the particle. It is 
clear that the field does not change the Cerenkov radia
tion much if 

Lm=1/w sin'l'to«.LF=p sin I't,lF.L, QLF "';1. (4) 
Also in the case 

QLF=Qpsinl'toIF.L>1 (5) 

the angular deflections of the particle in its periodic 
oscillations are always small in comparison with the 
angle so. Then the change of the Cerenkov radiation is 
small Simply because the amplitude of the oscillations 
is small. 

We have so far tacitly assumed that the change of v2 
in a length Lm can be neglected in comparison with 
v2n2( w) - 1. This condition is satisfied if 

(6) 

Copyright © 1975 American Institute of Physics 615 



(1-v')FII/Pow sin' tlo<l, QLm <1, 

v=p/Po, FII=eE Ii • 

For nLm» 1 fields that cause considerable change of 
the Cerenkov radiation are so large that it is scarcely 
worth while discussing this case. 

In a magnetic field the velocity of the particle does 
not change in magnitude and we can expect departure 

(7) 

of the spectrum from the Cerenkov form if the condition 
(4) is violated. For po/m-l, sinJo-l, and wlm-lO- s 
this requires fields H ~ 108 G. 

The radiation of an electron moving in the field of 
a plane monochromatic wave in a medium is briefly 
discussed in Sec. 6. 

2. THE INTENSITY OF THE RADIATION 

The energy spectrum of the radiation is given by 
the expression 

dE.=. nle'-j(k)I'd'k , 
n(w) [n(w) +w dn(w)/dw] 

[ dn(w) ] d'k=k'dffJdt n(w)+wa;,;- dOl, t=cos tI, 

k=lkl=n(w)w; 

j.(k) = (2n~' m L ds n.(s)exp[ik·x(s)]. 

(8) 

Here kf..l. and e~ are the four-momentum and polariza
tion of the photon; 1T f..I.(s) = dxf..l.(s)1 ds is the kinetic mo
mentum of the particle, s being the proper time; the dot 
indicates products of four-vectors. 

For a constant field the expression for j f..I. (k) can be 
found in [8). Assuming that there is a magnetic field 
only, directed along the 3 axis, and summing over the 
polarization e', we get 

~ le'-j(k) I,=_e_' _ ~ {(.!!1..-1'~+ n'1')') l'(p) 
~ (2n)' n~oo m' k' k.L' n 

+K,n"(p) }scS(a+n1') , 
m' 

kllPIl-wpo 
a= 

m 
(9) 

1=polm, 1')=eHlm, p=k.LP.L/1')m, k.L'=k,'+k,', 

k"=k,, 2ncS(O) =S. 

Here Pf..l. = 1Tf..I.(O) is the four-momentum of the electron 
for s = 0 (actually there are components independent of 
s). The intensity spectrum is determined from Eqs. (8) 
and (9) as dl,' kiT, where T = yS is the total time of mo
tion of the particle. The integration over the azimuthal 
angle in Eq. (8) gives 21T, and the integration over the 
polar angle J reduces to removing the Ii function in 
Eq. (9); after this the summation over n [see Eq. (11) 
below 1 amounts to a summation over allowed values of 
J. Using the well known relation (cf., e.g., page 269 
in [4)) 

In''(p) = [~(~~+~) + (1-~)1'n'(P)' (10) 
2 p dp dp' p' 

we have finally 
dE. ;, v (noj 1 V.L' 1 d d' , 
-=-v-~{( 1--) +-(--+-)}l. (p)OldOl,(l1) 

T 4n VII ~ V' 2V' p dp dp' 

V=vn(Ol), n±=~(1±VII)' k.Lp.L Ol V . 
P =--=- .c S1ntl, 

Olo 1')m Wo 

1 [ nOlO] Olo=1')/1=eHlpo, t=cos tI = - 1--- . 
VII Ol 

(12) 

Here [n-l ([n+ l) is the next integer above (below) n_ (n+), 
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and Wo is the frequency of gyration of the electron in 
the magnetic field. Since the electron's velocity v is as 
a rule multiplied by n(w), it is convenient to denote the 
product by V, keeping in mind that V depends on w. 

If the field is so large that wi Wo - 1, then there are 
only a few value s of n included in Eq. (11). We can 
then get all the information directly from this formula. 
At present, however, the most interesting case is 
wlwo» 1, and we shall deal mainly with it. Then the 
important values of n in Eq. (11) can be those "in the 
neighborhood of zero" and also large positive values. 
These cases will be considered separately. We shall 
find that under the restrictions corresponding to Eqs. 
(4) and (5) the Tamm-Frank (hereafter written TF) 
formula follows from Eq. (11). 4) 

3. THE CASE OF SMALL Vi 

By definition we regard V 1 as small if 

V.L'<V'-1=VII'-1+V.L'''''VII'-1. (13) 
Applying Eq. (5) for the case of a magnetic field, we see 
that it reduces to Eq. (13), since n=wo, p"'po, Fl 
=eHV1IV. Accordingly, Eq. (11) should reduce to the 
TF formula. This is rather natural, since small Vl 
corresponds to weak interaction of the electron with 
the field (small Lorentz force). According to Eqs. 
(11) and (13) we have 

(14) 

Since V2-1 >0 (so that there can be Cerenkov radia
tion), -n_ >0, i.e., the sum over n in Eq. (11) contains 
a term with n=O. According to Eq. (12), 

. '-"-1 1 + 2nOlo (nOlO)' sm U'- -- --- --

VII' VII'Ol VIiOl 
(15) 

The effective values of n in Eq. (11) are determined 
by the effective values of p, i.e., the effective value of 
sinJ, and neff-Peff. With the condition (13) it is 
natural to expect that 

sin'tleff,""V'-l, Peff "" ~ V.L (V'-1) 'I •. 
Olo 

Then 

and substitution of neff in Eq. (15) shows that for the 
summation over such values of n the assumption (16) 
is justified. Then we have (cf. [19,20)) 

Ca.] .. 

I: l.'(p)"" I: 1.'(p)=1. 
(fI,~) 

We can neglect the term with V2 in the curly bracket 

(16) 

(17) 

(18) 

in Eq. (11), and moreover it vanishes when we differen
tiate (18) with respect to p. The result is that we get the 
TF formula [according to Eq. (13) VII "'vl. 

It should now be noted that the quantity peff in Eq. 
(16) is allowed to be of the order of unity (or larger) 
if -n_ »1. Therefore, if we define Cerenkov radiation 
as the term with n=O in Eq. (11), we can say that it is 
essentially suppressed. However, it is precisely for 
-n_ »1 that it is hard to distinguish channels with dif
ferent n, because sin2J, according to Eq. (15), does not 
change in the summation over the effective values of n. 

4. THE CASE OF MODERATE V 

Here by hypothesis 
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Then woLF - 1, according to Eq. (4). The answer to the 
question of the effect of the field is given by the value 
of the quantity 

oopsin'-&o ~_Cil_(YZ_l)¥' ~~ V.L" 
eHV.L CilOV.L Wo 

According to (4), for vi wi Wo ~ 1 the field does affect 
the radiation and for vi wi Wo »1 it does not. Let us 
examine these two cases. 

(20) 

1. vlwlwo.:sl. Then vi::'wolw«1 and VII'" 1, since 
1- Vfl = Vl-(V2-1). It can be seen from Eq. (14) that 
In_I':: 1. For n -1 we have 

(21) 

This means that neff, peff - 1. In fact, for n» 1 the 
function In(p) falls off exponentially with increasing n, 
which can be verified easily br means of the formula 
[cf. Eq. (30) of Sec. 7.13 in [23 ]: 

In(p)= :n (~)'" fll(y)exp[n(tha-a++th'a)), 

1 - x' 
oIl (y) =---= J dxexp[i(Xy +-)), 

21'n 3 

p' 
th'a=f---;,z' 

) 'I. Y = (; th'a, (22) 

Here il>(y) is the Airy function. The extremum of the 
function sin2 ,J/n2 , which determines the dependence of 
p2/n2 on n, lies at 

nm =~(l-Vu')=(1+VII)n-, 
w. 

so that p2/n2 « 1 for n» 1 both for VII < 1 and for VII > 1. 
Accordingly, by Eq. (11), the field does have an effect. 

In working with Eq. (11) it is convenient to use the 
representation (see p. 269 in [4l) 

E- (2n+2s) I p.(n+.) 
l'()= (-1)' (23) 

n p .~, s!2'(n+.) (2n+s)![ (n+s) !]' . 

Now even for vlwlwo« 1 it is not permissible to neg
lect the term with vi in the curly bracket in Eq. (11). 
In fact, here Vfl-1 = (V2-1)- vi can be either larger 
or smaller than zero, but in any case 

In_I =~ IVII'-11 ,.;~ V.L'<t:1. 
w, VII+1 Wo 

For VII >1 the terms with n=O and n= 1 survive: 

Since a large number of terms contributes to the sum 
over n in Eq. (11), we can change from the sum over n 
to an integral over t'" cos,J or a variable u related 
linearly to t: 

w w ( V.L' ) n=-(1-Vllt)=- -,-- VIIU _ 
Wo w. V (27) 

In terms of u we have 

V'(U,'-U') 
w'= U'.L'/V'-Vllu)" 

_ V.L (V'-1)'" uo-VZ . (28) 

It will be seen from what follows that the values of u 
important for the integral are I u I':: Uo. According to Eq. 
(19), in the effective range of u the quantity w2 is not 
small compared with unity. Then the arguments of the 
functions J l /3 and Yl/3 are lar.ge and a further simplifi
cation is possible: 

In(p)''' ~ (-~--)''' _1_, sin[ n(w-arGtg w)+~] , 
In n (-y) t. 4 (29) 

( n ) 'I. 
-y="2 w', -y»1. 

Then 

i"i In'(p)''' CilVIl ~J·'dU(~) '/'_1_, =2. 
~ w. n n 2(-Y)" V (30) 

"_ -Uo 

In Eq. (30) the square of the sine has been replaced with 
its mean value. In a narrow region near the chosen 
limits of integration the approximation (29) is violated, 
but the contribution of these regions to the integral is 
small. Similarly it is easily verified that the term in 
Eq. (11) with derivatives with respect to P gives no 
contribution in the present approximation. The result 
is that the TF formula is obtained. The integration 
over u with the limits [-Uo, Uo] corresponds to inte
gration over t = coS,J from tl to t2, where 

tl,2=COS ({},±it,), 
1 

cosito=v' 
VII 

cos it, =y' 

Le., the angle of the radiation is a combination of the 
angle ,Jl at which the particle moves and the Cerenkov 
angle Jo. This was to be expected, if on each element of 
the trajectory (of length several times Lm) the radia
tion is Cerenkov radiation. 

5. THE CASE OF LARGE Vi 

By large values of vi we mean those for which 

V.L'»V'-l, I-VII'",V.L', V",1. (31) 

(24) Furthermore, 

For VII < 1 there remains only the term with n = 1: 

dlJ. e' V.L' V.L'>v'-1. _=_v--Cildw, 
T 4n 2 

(25) 

If indeed VII '" 1, Le., vi = V2-1, then Eqs. (24) and (25) 
are identical. (V is replaced by unity wherever this is 
possible.) 

2. Now let viwlwo» 1. Then at n-l the quantity p2 
is already large [cf. Eq. (21)]. This means that Peff, 
neff» 1. For n» 1 we can use the asymptotic form of 
the Bessel function J n(P) [see Eq. (28) of Sec. 7.13 
in [23l] 

617 

w [ ( nw' ) ( nw' ) ] In(P)=T3 J'I. -3- cosb-Y'I. -3- sinb +O(n-'), 

[ w' ] it b=n w- 3 -arctg w +6' p' 
w'=-;;;:-f, p>n. 
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(26) 

(V'-i) 'I. 
wLF~---<t:l n_"'~V.L" 

v~ , Wo 
(32) 

If vlwlwo'::l,then 

(33) 

According to Eq. (4), the field affects the radiation, and 
it is described by Eq. (11), with the main contributions 
from n-1. 

If, on the other hand, V1w I Wo » 1, then the effect of 
the field is determined by the value of the parameter (; 
in ECI,. (33); for small (; the effect is small. For 
vi w / Wo »1 we have n_ »1, so that the approximation 
(26) holds for all the terms of the sum (11). For the 
important values of n, indeed, or for ueff-Uo, we have 
w2« 1 under the condition (31). Then the term with VII 
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in Eqs. (27) and (28) can be neglected. Assuming also 
that I nw5 1« 1, we get 

In(p)''''y~(:)'''Ill(Y), -Y=(;)'/'w'; (34) 

<I>(y) is defined in Eq. (22). With this approximation we 
find 

n. 25h (J) lIs V CIO 1 
~ l.'(p)""_ (-) -" J dulll'(u)=-=- VIIIll,(-b), 
~ "CIl, V.I.'!' y" 

L , (35) 

b= (_CIl_) '(V'-1)=~-'''. Ill,(x) = S dzlll(z). 
CIloVJ. 

Analogously, 

no 1 d d' 2'! 'I V - d 
~(--+-)ln'(P)""-' (~) '-~ Jdu-[Ill'(y)l1l(y)] 
~ p dp dp' "CIl V.I.!' dy 

n_ _00 (35') 

= _ 4~u _1_ V'-l lll '(_b). 

1'" V.I.' b 

In E~S. (35) and (35') we have used the equation 
(see 24]) 

S- dz y~, 
-:=-Ill' (z+x) = -Ill, (2/' x) 
l'z 2 

o 

and the expression obtained by differentiating it twice 
with respect to x. We finally get 

~. =~_l_(l-~){Ill,(-b)-~Ill'(-b) }CIldCll. 
T 4,,'/' n(CIl) V' b 

for b» 1 we again get the TF formula, since 

tP,(-b)- ! tP'(-b)=l'~[ 1+ cOS('~./~~:"/4) + ... 1. 

(36) 

We now note that the change from summation over n 
to integration over t (or u) in Eqs. (30), (35), and (35') 
presupposed that n+- n_ »1. If VII is too small, this 
condition may be violated. This is due to the fact that 
for VII - 0 the spectrum is discrete: w - nwo. The re
placement of the sum with the integral smooths out this 
discreteness, and in this sense Eq. (36) admits passage 
to the limit VII = O. The result agrees with [9,10] and 
corresponds to Eq. (74,13) in [I] for n(w} = 1. The in
equality (4) begins to be violated when the intensity of 
the Cerenkov radiation becomes comparable with that 
of the bremsstrahlung, whose spectrum has its maximum 
in the region of the Cerenkov radiation. 

6. ELECTRON IN THE FIELD OF A PLANE WAVE 
Let us now consider the case when the external field 

is a plane monochromatic wave. Let it not be intense 
enough to deflect the particle by an angle -Jo during a 
half-period of the wave. In such a wave there should 
not be much change in the characteristics of the Ceren
kov radiation. Still, because of increasing interest 
among experimenters, it seems useful to consider this 
case at least qualitatively, to estimate the feasibility 
of the experiment and its difficulty. For simplicity and 
brevity we confine ourselves to the case of a circularly 
polarized wave, described by the vector potential 

A.=a,. sin <p+a,. cos <p, <p=k' 'x=k' 'X-CIl't, 

a12=aa2=a2, at,a2=at.k'=az .k'=O, k'2=k/2 _ro'Z>O. 
(37) 

The solution of the classical equations of motion is the 
following expression for the momentum: 

k' .,,=±[ (k'· p) '-e'a'k"+2k"e(a,. p sin <p+a,. p cos <p) ]"", 

m :: =k'·,,""M1-x'sin'Ijlj"'. 

We note that if 

k" ea,·p <t: 1 . 1 2 
(k'·p)' ' !=" 

(39) 

(40) 

then Eq. (38) is of the same form as in the case of a 
plane wave with k,2=k'2_ W ,2=0; the ultrarelativistic 
particle "sees" the wave as a wave in a vacuum. On 
this basis we can in a number of cases reduce the 
calculation of the undulatory radiation to that of radia
tion in the field of a plane wave (cf. [25]). 

The external field (37) possesses axial symmetry 
with respect to an axis along the vector k' (to within 
an unimportant initial phase). Therefore without loss 
of generality we can set a1' p = 0, which makes the 
formalism more compact. We then get 

2",=<p, x'=4~-'k"ea,. p, 
~=±[ (k' ·p)'+2k"ea,·p-e'a'/c"j"". (41) 

The sign of the square root in the definition of {3 corre
sponds to the sign of 1T1I in the system in which the field 
is purely magnetic (for definiteness we assume that 
K2 < 1). According to Eqs. (40) and (41), the phase cp is 
connected with the proper time s by the relation 

<p/2=¢=am T, T=~s/2m. (42) 

Corresponding to this, there are expressions for 1TIJ. as 
functions of T in terms of elliptic functions 

~ dx. k:, A+k/ dn --=" .. =p .. --(k ·p)-e. -~ T, 
2 dT " " k" k" 

2 d d 
sin<p=2snTcnT=-~ dT dnT, dnT=d;amT. 

(43) 

cos <p=1-2 sn' T. 

By means of Eq. (43) we find jIJ.(k) [see Eq. (8)]. For 
this purpose we represent the 7-dependent part of the 
function k· x( 7), obtained from Eq. (43), in the form 
7' const + f( 7), where f( 7) is a periodic function. Its 
Fourier expansion is known, since the expansions of the 
elliptic functions are known. The expansion 

(44) 

defines functions An, which play the role of the I n in 
Eq. (11); K=K(K) is the complete elliptic integral. In
stead of the parameter p there are now the parameters 

x', ea,k/~, i=1, 2, (45) 

on which the functions An depend. 

Multiplying Eq. (44) by the complex conjugate equa
tion and integrating over a period, we get 

}2 IAnl'=1. (46) 

Since I (31 '" I k' . pi == Pow' €, for sufficiently small € we 
can have K2 - 1. But if €« 1, ea« p, then according to 
Eq. (43), in the coefficient of the exponential in the 
definition of e' ·j(k) [see Eq. (8)] we can replace e"1T 
bye' . p. This means that the polarization of the radia
tion is still that of Cerenkov radiation. In the coordi
nate system with polar axis along the vector p we get 

dC!k_ e' }2 le'·pl' IA I' d d 
----- n CIl CIl <po 

T 8,,' n ppo (47) 

The summation over the two polarizations e' reduces 
(38) to replacing Ie' . p 12 with I pl2 sin2 J. Inspection shows 
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that wand cos J. = cos(Pk) are approximately connected 
by the relation 

nw'en/2K 
w""-----, 

1-vn(w)cos{) , 

IT/2K - 1, if K2 is not too close to unity. The fact that 
for E« 1 the effective frequency of the undulator is 

(48) 

EW', and not w', can be seen already from Eqs. (42) and 
(43), since 1j3I"'PoW'E; in the system with a stationary 
magnetic wave PII is very small, Le., the particle is in
cident at a small glancing angle on a magnetic grating. 
It follows from Eq. (48) that the summation over the 
effective values n - 1 leaves cos J. almost unchanged if 
vn(w)-l is not too small. Consequently Eq. (47) re
duces to the TF formula in virtue of Eq. (46). The spec
trum of the emitted photons is quasicontinuous in the 
scale of w' for E« 1. The effect of neglected factors 
such as ionization losses of the particle becomes much 
more important, since the effective period of the undu
lator and the formation length for the process are in
creased by a factor E- l . 

In conclusion we thank V. I. RHus for important com
ments, and also B. M. Bolotovskil and M. N. Yakimenko 
for helpful discussions. 
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