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Radiation from an atom located in an external electromagnetic field in the case when the field 
amplitude and the level widths are arbitrarily related is considered in the resonance approximation 
only. The emission spectrum is determined from a system of kinetic equations for the atom-density 
and correlation matrices. The case of a monochromatic external field is considered in detail. The 
spectrum is split into coherent and noncoherent parts. The transition to the case of rapidly decaying 
levels, when the one-photon approximation is valid, as well as to the case of a stationary lower level 
(resonance fluorescence), is considered. 

1. INTRODUCTION 

In the present paper we investigate the emission 
spectrum of an atom located in an external electro
magnetic field. We consider, using only the resonance 
approximation, the general case of an arbitrary re
lation between the field strength and the upper- and 
lower-level widths Ya and Yb. This problem has been 
investigated before in a number of papers (1-7]. In these 
investigations, however, either the one-photon approx
imation was used, or the strong-field limit was con
sidered without allowance for the level widths. The one
photon approximation turns out to be valid in the case 
when one of the states of the atom decays sufficiently 
rapidly (see [3)), i.e., when 

(1) 

The probability of emission of a resonance photon is 
then given by Y/(r~ + Yb) « 1. Here it is assumed that 
the width Ya of the upper level is the sum of the width 
Y of the resonance transition and the width y~ of the 
transition to the other nonresonance states. The lower 
level broadens only because of the nonresonance 
transitions. 

Below it is assumed that the relation between y, y~, 
and Yb can have any form and that the number of 
emitted resonance photons is arbitrary. If, in par
ticular, the lower level is the ground state and Yb = 0, 
then we have resonance fluorescence to deal with. The 
spectral properties of the radiation are determined 
from a system of kinetic equations for the atom-density 
and correlation matrices. With the aid of these equa
tions, we consider in detail the radiation emitted by an 
atom located in a monochromatic field. 

2. THE BASIC EQUATION 

In deriving the kinetic equations, we shall, for sim
plicity, omit the relaxation constants Y~ and Yb; they 
can easily be taken into account in the final equations. 
The external electromagnetic field has the form 

E(t)e-iwo'+c.c., (2) 

where W 0 is the transition frequency and E (t) is a slowly 
varying amplitude. The field E (t) is assumed to be 
sufficiently strong and will be treated below as a 
classical field. We shall measure the field frequencies 
relati ve to the transition frequency. 

The basic Hamiltonian in the resonance approxima
tion has the form (h = 1) 
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ll=H,+H,+Ho,; 

H,=d(o+E(t)+o_E'(t)), ll,= ~ (wk-wO)ak+ak, (3) 

H,,= L:,gk(o+ak+o-ak+). 

• 
Here ak and ak are the photon creation and annihilation 
operators, which obey the usual commutation rule 

The quantities (Jx, (Jy, and az denote the Pauli spin 
matrices, which obey the well-known product rule 

where Eijk is the antisymmetric unit tensor. In the 
usually employed representation az is the excess
population operator, while 

o_='j,(o,-ioy) , 

(4) 

(5) 

(6) 

are the radiation-current operators with positive and 
negative frequencies. The transition dipole moment in 
(3) is denoted by d. The explicit form of the field-atom 
coupling constant gk need not be written out, since below 
it will enter only into the relaxation frequency y. 

Usually, in solving the quantum problem of spon
taneous emission by an atom, we expand the wave func
tion of the field in terms of states with a fixed number 
of photons. In the present case such an approach is in
convenient, since the number of emitted photons can be 
large. For example, in the case when the lower atomic 
level is the ground level, the number of emitted photons 
is proportional to the time. To find the spectral prop
erties of the radiation, it is sufficient to know the mean 
radiation current (a!l (t) and the current-current cor
relator «(J!i(tJa!i(t2 )1. The index H indicates that the 
operator is a Heisenberg operator and the angle 
brackets denote averaging over the initial quantum state 
of the field and the atom. It is assumed that there are 
no photons in the initial state (except the photons of the 
external field E(t)). 

Let us define the following mean quantities and 
correlators: 

Fi(t) =(OiH(t) >, F-",,(t,t,) =o"H(t,)o"H(t,) >. (7) 

Let us recall that Fz is the difference between the pop
ulations of the leve Is a and b, while F x and F y are the 
real and imaginary components of the radiation current. 
Let us denote by F 0 the total population of the levels a 
and b. The set of quantities Fb F 0 is equivalent to an 
atom-density matrix. For the correlator Fi,i 2 we have, 
in accordance with (5), the following boundary condition: 
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F",,(t.t.) =F.(t.) 6""+iB,,,,;F;(t.). (8) 

The functions Fi and Fi1i2 obey a simple system of 

kinetic equations. Knowing these functions, we can 
easily determine the spectral properties of the rad
iation. 

Let us further introduce the matrices ai (t); their 
variation with time is determined by the Hamiltonian 
Ha (t): 

oa, (t)/ot=2dB';1<E;(t) a.(t) ; 

E.=ReE(t), E,=-ImE(t), E.=O. (9) 

Let us go over to the interaction representation and 
define the S matrix corresponding to the Hamiltonian 
Hae(t): 

iOSlot=H •• (t) S; 

H •• (t) =a+(t)/(t) +a-(t)t+ (t), /(t)= I>kakexp[ -i(w.-w.)t]. (10) 
• 

Since we are interested only in the resonance fre
quencies IWk - wol « wo' the commutator [f, n can be 
replaced by a time delta function: 

[f(t,),/+(t')]=16 (t.-t,), 1= 1: Ig.I'. (11) 

Such a replacement corresponds to the Wigner
Weisskopf approximation, which is usually used in the 
theory of the spontaneous radiation emission by a free 
atom. Thus, the Hamiltonian (10) describes the be
havior of an atom in the quantized field f(t), which can 
be regarded as "white" noise. This circumstance 
significantly Simplifies the calculations. 

Let us write Fi (t) in terms of the operators in the 
interaction representation: 

F,(t) =<S+ (t, 0) a, (t)S (t, 0», (12) 

and let us find the small change in Fi due to the change 
.It in t: 

F;(t+M) =F,(t) +2dB';1<E,(t)F.(t) Ilt 

+<S+(t, 0) (S+ (t+.1t, t) -1)a,(t) (S (t+M, t) -1)S (t, 0». 

On account of the condition (11), the photon operators 
entering into S(t, 0) and S(t + .It, t) can be averaged 
independentlyl). As a result, taking the limit as 
.It - 0, we obtain 

oFJot=2dBi"E;F.- (IF) i-2ylii,F.; 

(YF).= {YF" i=x, y. 
2yF" i=z 

This equation coincides with the Bloch equation (see, 
for example, [9)). The equation for Fi1i2 can easily be 

(13) 

(14) 

obtained in a similar manner. Thus, for tl > t2 we have 

oFi.i• (t.t,) /ot.=2dBi;1<E,(t.)F .. ,(t.t,) - (:YF)"i.-2ylii"F,.(t,). (15) 

For t2> t" the equation for Fi 1i2 has the same form 
as Eq. (15), except that the variables are t2 and the 
index i2. As the initial condition for the solution of Eq. 
(15), the relation (8) should be used. 

Thus, Eqs. (14), (15), and (8) constitute a closed 
system of quantum-kinetic equations, from which the 
correlation properties of the radiation current can be 
determined. Notice that an equation of the type (15) was 
obtained in (5) for the correlation density matrix, the 
only difference being that Y~ and Yb serve in accord
ance with the condition (1), as the relaxation constants 
in this equation. 

Let us represent the correlation function in the form 

F"i, (t.t,) =F" (t.)Fi,(t,) +lIli,i, (t.t,) . (16) 
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The first term in this expression depends on the phase 
of the external field and describes the coherent part 
of the radiation, while the second term does not depend 
on the phase and corresponds to the incoherent part. 
In the case when the lower level is the ground level and 
the norm of the working levels is conserved (F 0 = 1) , 
the equation for ~ili2 has the same form as Eq. (15), 
except that it is a homogeneous equation. The solution 
of this equation can be found with the aid of the re
tarded Green function Gi1i2 (t1 t2) of the homogeneous 
Bloch equation: 

1Il",,(t.t.) =G", (t.t,) [6",-Fi (t,)F,,(t,) +iB",.F.(t,) ), t,>t,. (17) 

The correlation function ~ili2 can be expressed as a 
bilinear form in terms of the atom-density matrix. In 
the following section we shall discuss the physical 
reason for such a nonlinear relation . 

3. THE EMISSION SPECTRUM OF THE ATOM 

Let us consider with the aid of the obtained system 
of kinetic equations the emission spectrum of an atom 
located in an external field. The emission spectrum 
can be determined from the correlator 

(18) 

where EH(t) is Heisenberg operator for the electro
magnetic field at some observation point. If we dis
regard the free-field operator, which makes no con
tribution to (18), then in the wave zone EH (t) coincides 
up to a constant factor with a!l(t - ric), where r is the 
distance to the observation point. Therefore, to find the 
emission spectrum, it is necessary to compute the 
correlator F +jt1t2). Notice that this correlator satis
fies the condition 

F +_·(t.t,) =F +_ (t,t.), (19) 

which allows us to represent the emission spectrum 
I (w) in the following for m: 

2 ~ ~ 

I(w)=-if- Re S dt,S dt.exp[-iw(t.-t,)]F+_(t.t,j. (20) . " 
Since the angular dependence has the standard form, 

we consider only the total radiation intensity integrated 
over the angle. The normalization constant has been 
chosen such that the total radiated energy 

+~ 

1= S dwI(w) 

is measured in units of the photon energy WOo There
fore, J is the average number of resonance photons 
emitted. In particular, when the condition (1) is ful
filled, J is small and determines the probability of 
emission of a photon of frequency WOo 

(21) 

The spectral function I (w) can be split into its co
herent Ic (w) and incoherent linc (w) radiation com
ponents, which are determined by the mean value of, and 
the fluctuations in, the radiation current. Using the re
lation (16), we have: 

I(w) =Ic{w) +Iinc(w); 

Ic= : I [dt e-'·'F + (t) I' ' (22) 

Iin~61) = 2Y" Re Sdt Sd1:e- i.'IIl+_ (t+'t', t). . . 
Let us note some general properties of the inte

grated intensities of the coherent and incoherent com-
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ponents of the radiation J c and Jinc' With the aid of the 
formula (8), we find 

S- , S- ('Fo(t)+F,(t) I') 
lc= dtIF+(t) I • lin? dt 2 ,-IF+(t) . (23) 

o 0 

These relations have a simple physical meaning. The 
quantity t (Fo + F z) is the population of the upper work
ing level. The total radiated energy can be expressed 
as a time integral of this quantity. The distribution of 
the radiated energy between the coherent and incoherent 
components is determined by IF+(t)l", the square of the 
modulus of the mean current. 

Neverthe less, it is possible to distinguish experi
mentally between the coherent and incoherent parts of 
the radiation only in certain cases. Thus, in laser rad
iation we deal with radiation emitted by atoms in a 
selected mode of a resonator, i.e., in the case of a 
traveling wave, with forward radiation scattering. The 
mean strength of the electromagnetic field of the mode 
is then expressible in terms of the mean radiation 
current F. from the atom, while the fluctuations in the 
intensity of the mode are expressible in terms of the 
quantity Jinc' The correction to Jinc = J - J c due to 
the subtraction of J c was noted earlier ('0] in connection 
with the quantum theory of the laser. 

The quantity Jc/J can be regarded as the stimulated
emission probability, Jinc/J as the spontaneous
emission probability. As a function of the external-field 
intensity, J c has a maximum in the vicinity of the sat
urating field. J c is small in weak and in strong fields 
(because of the saturation effect). Therefore, the 
spontaneous-emission probability has in the vicinity of 
the saturating field a dip of relative depth ~ 25%[10]. If 
we consider the radiation emitted at some angle to the 
incident field, then the coherent component can be dis
tinguished by its spectrum in the case of a metastable 
or stable lower level. In this case at low external-field 
energies J ~ J c , while at high field energies J ~ Jinc. 

We shall carry out the subsequent concrete com
putations for the case of a monochromatic external field. 

4. RADIATION IN A MONOCHROMATIC FIELD 

Let us consider the case of the monochromatic field: 

(24) 

where A is the field-frequency detuning relative to the 
transition frequency. We can get rid of the time de
pendence of the field by going over into a rotating co
ordinate system. In this coordinate system, there ap
pears in the expression for F.- an additional factor 
exp[iA(t, - t2 )]. 

In order to somewhat Simplify the computations, let 
us assume that 
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Plots of the function 101/1 (w) 
for the case when 1'0 = 1'. As the 
unit of frequency, we have used 
1'. The curve I corresponds to 
the value A = 6, the curve 2 to 
A = 8, and the curve 3 to A 
= 10. 
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The emission spectrum can be expressed in terms of 
the Laplace transform of the function F.-(t,t2), which 
transform we denote by§'.-(pq): 

2"( . 
[(00) = --Be fF+- ("(o+,(w-Ll), "(0), 

n 

• ro 

PF +- (pq) = J dt S d,;e-··-q'F +- (t+1:, t). (26) 

The solution of the Bloch equation in the monochro
matic field in the general form has a fairly unwieldy 
form. Therefore, we shall consider the following char
acteristic limiting cases. 

Weak fields. Let us set F = 21dEI. Then in a weak 
external field 

V<f="(+"(o (27) 

we have the following emission spectrum: 

1(00) ="( V'I\'( (0) /2n"(,(f'+A'). 

( )-R { 1 [- ,(,(iLl-r) + f+i~ ]} 
I\' 00 - e ("(+ILl) (f+'() (f+lw) '(0+1«.,-,1)' 

(28) 

Here it is assl,).med that the atom is in the lower state 
at the initial moment of time. The emission spectrum 
is a superposition of two dispersion contours with com
plex weights. The first term in the square brackets in 
(28) corresponds to spontaneous emission: the line 
width is r = Yo + y and the peak is located in the vicinity 
of the line center. The second term corresponds to 
stimulated emission: the line width is Yo and the peak 
is located near the field frequency w ~ A. As an ex
ample, we show in the figure plots of the function 1/J(w) 
for several values of A. It can be seen from the figure 
that the peak corresponding to the spontaneous emission 
becomes pronounced only at fairly large A. At A» r, 
the contours do not overlap, and we have independent 
contributions from the spontaneous and stimulated 
emissions: 

"( V' ['Yo 1 1] 100 =--Re ,-'----+---.- . 
() 2n,(,t.' (r+l) (r+lw) '(o+l(w-t.) (29) 

The relative weight of the spontaneous emission is 
Yo/(r + y), so that at small values of Yo the intensity of 
the spontaneous emission is low, while at Yo » y the 
spontaneous and stimulated emissions have the same 
intensity. 

At A = 0 the dispersion contours in (28), generally 
speaking, overlap, and the contributions from the 
spontaneous and stimulated emissions cannot be con
sidered to be independent: 

lV' 
I( w ) - -::--:-'-:-:c-,...-:-

2nl'(r+y) (w'+yo') (w'+r') . (30) 

It can be seen from (30) that the emission spectrum 
differs somewhat from the Lorentz spectrum, and that 
the larger the ratio Yoly, the greater this difference. 
At small Yo we have the Lorentz contour, which corre
sponds to stimulated emission. 

Strong field. In a strong external field for which 

v+It.I::H (31) 

the emission spectrum assumes the following form: 
I(w)= '(v' Re{ (Q-t.) (Q+et.) + (Q+t.) (Q-et.) 

4nYoQ'(Q'+eLl') "(.+i(w-t.-Q) "(.+i(w-Ll+Q) (32) 

+_2_[V'(Q'-et.') + 2(1+e)t.'Q']}. 
Q'+A' "(,+i(w-t.) "(o+i(w-t.) , 

Q'=v'+t.', y.=r+'Yv'jQ', "(,=,(.-'(, e='(/r. 

Because of the Stark splitting of the levels in the ex-
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ternal field, th.e emission spectrum has three peaks at 
the frequencies W = ~ ± n and w =~. The first three 
terms in the curly brackets in (32) correspond to spon
taneous emission, the last term to stimulated emission. 
Notice that the statistical weights of the individual com
ponents depend not only on the field and the detuning, but 
on the ratio y/r as well. At ~ = 0 we have 

I(61)=~ReJ 1 +1 +_2_]. 
"'10 L'1+r+i(61+Q) i(61-Q)+1+r r+i61 (33) 

The component corresponding to the stimulated 
emission then vanishes. For Yo» y~ (33) goes over into 
a formula obtained by other authors[ ,4l. For large de
tunings ~ » Y we return to the case of perturbation 
theory, to which corresponds the formula (29). 

5. RESONANCE FLUORESCENCE 

When the lower level is a stable level, we must 
drop the common factor y ~1 ~ t - 00 in the above 
formulas, and consider the radiation intensity per unit 
time. Let us give the expressions for the integrated 
intensities of the coherent and incoherent emissions per 
unit time jc and jinc for arbitrary values of Y and ~: 

• 2 lA 2V' 
lc=2lIF+1 = (HA)" A= d'+1" (34) 

. lA' 
!inc=1(1+F.)= (HA)' 

In a weak field the dominant role is played by the co
herent emission, the intensity of the incoherent radia
tion being of the order of y4. On the contrary, in a 
strong field the radiation is primarily incoherent, the 
coherent component being of the order of y-2. This 
agrees with results obtained by other authors [6,l1J• 

In conclusion, let us note that we do not pause to 
compare the theory with experiment[12,13l, since to do 
this would require the consideration of a three-level 
scheme of atomic levels and allowance for the Doppler 
broadening. Here, however, we considered only the 
homogeneous broadening. The generalization of the 
kinetic equation for the correlation density matrix to 
the case of several levels presents no difficulty; it has 
the same form as the equation for the density matrix, 
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and the boundary conditions are determined by re
lations of the type (5). 

Note added in proof (February 25, 1974). Resonance fluorescence 
in a strong magnetic field was recently investigated by E. V. Baklanov 
(Zh. Eksp. Tear. Fiz. 65, 2203 (1973) [Sov. Phys.-JETP 38, No.6 
(1974))). 

l)Notice that in the diagrammatic description there are in this case no 
diagrams with intersecting interaction lines [B). 
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