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The depolarizing effect of a colliding beam on the polarization of particles in storage rings. due to the 
stochastic mixing of the particle trajectories in an external field (owing, for example, to quantum 
fluctuations in the synchrotron radiation), is studied. In particular, a limitation on the maximum 
number of colliding-beam particles that do not destroy the radiative polarization of the forward beam 
is obtained for an electron (positron) beam. 

1. As is well known, electrons (positrons) get polar­
ized under the action of the synchrotron radiation when 
they move for long periods in storage rings [1-6]. The 
direction n of the equilibrium polarization (Le., the 
direction of the axis of preceSSion of the spin of a par­
ticle moving in the storage ring along a closed equili­
brium trajectory) in a nonuniform field varies along the 
particle orbit, repeating itself every other revolution 1)[7]. 

The degree of equilibrium polarization and the time re­
quired for its establishment depend on the proximity to 
spin resonances. The role of the depolarizing effects 
becomes more and more important as we approach 
resonances. It is usually possible in storage rings to 
choose the particle energy such that the "dangerous" 
resonances are sufficiently far away. The electrons will 
then undergo self-polarization to a degree of polariza­
tion close to unity. 

The situation changes in storage rings with colliding 
beams. Because of the strong nonlinearity of the collec­
tive field of the colliding bunches, the spin resonances 
decrease sufficiently slowly in strength as their number 
increases. The frequencies of the orbital motion become 
dependent on the amplitudes of the betatron and synchro­
tron oscillations of the particle. It is evident that reson­
ant harmonics always exist under these conditions, and 
the depolarizing influence of the quantum fluctuations in 
the synchrotron radiation should be investigated in grea­
ter detail. In order for a region of stability of the radia­
tive polarization to exist, the resonance density, which 
is proportional to the number of colliding-beam parti­
cles' should not be too high. It follows from the results 
of the investigation that we can, by properly choosing the 
parameters of the motion of the beams, obtain polar­
ized electrons with a number of colliding-beam particles 
corresponding to the maximum radiant emittance of the 
storage device. 

In a preceding paper [6] we have, by solving the equa­
tion for the polarization density, obtained formulas 
allowing the determination of the establishment time for, 
and the degree of, the equilibrium polarization under 
steady-state conditions for the motion of a beam in a 
storage ring with an arbitrary field without restrictions 
on the proximity of the spin resonances. In particular, 
the strength of the depolarizing action of the resonant 
harmonics that is connected with the quantum jumps in 
the momentum during the radiation emission is charac­
terized by the inverse time T-d: 

(1) 

where v is the frequency of spin precession about the 
direction of the precession axis n, v,k = ko + kaVa is an 
integral combination of the frequenCIes of the orbital 
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motion2), the va's are the frequencies of the betatron 
and synchrotron oscillations (ko and the ka's are whole 
numbers), the wk's are the resonating harmonics' 
powers due to the deviation of the particle from the 
equilibrium orbit in the inhomogeneous field, the angle 
brackets denote averaging over the distribution and 
equilibrium motion of the particles in the beam, and 
<5 (v - Ilk) is a delta function, The quantities wk' v, and 
vk are functions of the amplitudes (the action variables) 
of the synchrotron and betatron oscillations, 

The degree I; of equilibrium polarization depends on 
the relation between the strengths of the depolarizing 
and polarizing mechanisms of the action of the synchro­
tron radiation. If T P and !; 0 are the time and degree of 
equilibrium polarization for wk = 0, then there gets es­
tablished during the time TpTd7(Tp + Td) an equilibrium 
polarization of degree3 ) 

~~i;oTi (-tp··h:,). 

The formula (1) is the starting point in the present 
paper, and it can be obtained on the basis of simple 
arguments, which clarify the physical meaning. The 
quantum fluctuations in the particle momentum during 
the emission of radiation give rise to a stochastic stray­
ing of the detuning tk == v - Ilk as a result of the mixing 
of the particle trajectories in the inhomogeneous field. 
It then becomes possible for the resonances to be trans­
mitted with velocity Ek equal to 

I e. 1-< E.2) '/'/T " 

where T r is the radiative trajectory-mixing time (T"/ is 
of the order of the decrement of the radiative damping: 
T ~1 ~ y3e2m -11~1, y = (1 - v2r1/2 is the relativistic factor, 
and e, m, and V are the electron charge, mass, and ac­
celeration respectively). Under conditions of rapidity of 
transmission (lwkl2 « IEki), the change in the component 
of the particle-spin vector s along the direction n is 
equal to [8,9] 

fl.sD ~ (S2-SD 2) 'I. (2" I w. 1'/1 f. I )'/' cos (cD. +,,/4). 

where wk, Ek, and ~ are the values of the power, the 
transmission velocity, and the phase of the spin preces­
sion at the instant when tk = O. 

Let f(Ia) be the stationary distribution function of the 
particles over the action variables Ia of the orbital mo­
tion. The number of passages of a resonance per unit 
time is equal to I Eklf <5 (v - Ilk)d r. Then we obtain for the 
mean rate i of change of !; the expression 

~=;D= f dlof(Io)le.lc5(v-v.)....!. a (fl.SD)2~_,,<lw.12c5(v-v.»~. 
2 aS D 

which, after summing over the resonances, agrees with 
(1), Notice that since in deriving (1) we did not use the 
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radiative character of the particle-trajectory mixing, 
formula (1) describes the depolarizing influence in the 
resonance of any agency that randomizes the orbital mo­
tion. 

2. Let us consider the simplest case when the motion 
is such that the direction n of the equilibrium polariza­
tion is almost constantly along the orbit and deviates 
little from the direction of the driving magnetic field. 
In the linear approximation in the deviations from the 
equilibrium plane orbit, the expression for wk can be 
reduced to the form [10J 

(2) 

where R is the radius of the storage ring (the length of 
the equilibrium orbit divided by 27T), z is the vertical 
deviation from the equilibrium plane orbit for which 
n = ez = const, wk is an integral c.ombination of the 
phases zJ!0I of the orbital motion (wk = vk)' the symbol 
< .•• > I denotes averaging over the phases of the motion, 
and a(e) is a periodic function of the generalized azi­
muth e of the particle motion: 

dK • 
a=- [v'K'+i(V'-l)d(j' ]exp [-iV I (K-l)d8]. 

Here K(e) is the curvature of the orbit in units of 
27T 

R-1 (j KdB = 27T) and v = yG, G being the ratio of the 
o 

anomalous magnetic moment of the electron to the 
normal moment. In an azimuthally symmetric storage 
ring we have a = - v3 = const. 

As is well known, the beam's truly vertical dimen­
sion, which is due to the quantum fluctuations in the 
radiation, is determined by the relation between the ver­
tical oscillations and the radial and phase oscillations. 
Therefore, in describing the perturbing influence of a 
colliding bunch on the vertical deviations, it is, gener­
ally speaking, necessary to take into account, besides 
the direct action of the z component F z of the force of 
the colliding bunches, that action of the radial component 
Fx that is due to the z-x coupling. We shall neglect the 
action of the force Fx' assuming that the steady-state 
amplitudes of the z-oscillations are given: allowance for 
Fx is not essential to the elucidation of the basic char­
acteristics of the effect of the colliding bunches on the 
polarization and greatly complicates all the formulas, 
The equation describing the vertical deviation then has 
the form 

d'z/d8'+g,z=FJz, x, 8). (3) 

Let us consider the case of a head-on encounter be­
tween electrons and positrons, when the equilibrium 
orbits of the bunches in the interaction region coincide. 
Then the effective potential V can be written in the 
form [llJ 

Nr. 
V=-2R-u(x,z)g(28), 

1 

u(x, z) =- S dx' dz' a(x', z') In! (x-x') '+ (z-z') '], 
(4) 

where N is the total number of particles of the colliding 
beam and re is the classical electron radius. The func­
tions a and g describe the density distribution of the 
counterbunches about the equilibrium orbit, and are 
normalized in the following fashion: 

,. 
S adxdz=l, Sg(8)d(8)=1. , 

Let us choose the distributions of a and g in the form 
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1 (" x' Z') a=--exp --2 --2 ' 

ttXoZo Xo Zo 

2 p/2_, 4 
g(8)=-.E () (8-~k), 

p .~O P 

(5) 

where 2xo and 2zo are the radial and vertical dimensions 
of the colliding bunches at the places of encounter 
(xo ?: zo) and p/2 is the number of bunches (p is the 
number of places of encounter in the storage ring). Let 
us assume that the magnetic system of the storage ring 
has a period of B 0 = 27T/p. 

Let us begin with the study of one-dimensional reson­
ances due to the colliding beam: 

v""k,p+k,v, (lk,I*O,1). 

The maximum number k~ax starting from which the 
harmonics Ikz I > k~ax can be neglected is found from 
the equation4) 

( ,,1'3 'Ar, ) -, 
('d)m',,= 'P= -8- 1' R.' ' 

where 11. is the, Compton wavelength, RM = Iv I~ax is the 
radius of curvature of the trajectory at the sections with 
magnetic fields, and (T d)min is the minimum value of T d' 
The harmonic wk and the particle vertical-oscillation 
frequency shift D. Vz due to the colliding beam determine 
through the formula (1) the quantity T d' 

For a Gaussian distribution over the amplitudes az of 
the vertical oscillations: 

f(a,') =(a,2)-1 exp (-a,'(a,')-I) 

(2<a~>1/2 and az are respectively the vertical dimension 
of the beam and the amplitude at the places of encoun­
ter); the time T d is a minimum when 

(a,')z, 
a,'=lk,1 (zo'+2(a/>)," (lk,l;}>l). 

Then5 ) (see the Appendix) 

__ 1_=i..~IAI'~[.. (a,'> ] 1'.1 

(',)min n 1R Ik,1 (a,'>+zo'+z,(z,'+2(a,'»'/' 
(6) 

Here 
1 1 -

A = -{ S al e- i " d8 
2i 1-exp[-2ni(v-vJ], ' 

1 ,. 
- --;---;--:::--: Sat 'e-'" d8}· 

1-exp[-2ni(v+v,)],' , 

fz(e) is the Floquet solution to the equations describing 
the beam's vertical oscillations, the solution being de­
fined in such a way that its phase is equal to zero when 
B = 0 (fz(O) = IfzIO); 

when 

B = (....::....)'" z, «a,')/z,')'/' (1+2(a,')/zo') 'I. 

Ik,1 x, 1 +(a,')/zo' 

when" zo'«a,'«xo'. 

In an azimuthally symmetric storage device with 
weak focusing fz = exp(ivzB)vzl~, the quantity 
A = V3/(V2 - v~). The equation for the maximum number 
k~ax has the form 

__ ,p_=~~ NRM ' IAI'~. 
("td) min 51'3 n 1''AR k';'" 
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(a,2) ~."..~ x[ ,] = 1. 
(a,'>+zo'+Z, (zo'+2(a,'» I. 

(7) 

When conditions are sufficiently close to the resonances 
with Ikzl < k~ax, the beam is depolarized. The 
"dangerous" frequency interval All occupied by the 
resonance II ~ kop + kZIlZ is a function of the number kz : 

Id'\>I"';lk,ld'\>,m~; 

here AII~ax is the maximum shift introduced into the 
frequency liZ by the colliding bunch (see the Appendix): 

_ 2Nr,Rlf,lo" 
d'\>, = . 

nlz, (x,+z,) 

In order for II-value regions free from "dangerous" 
intervals to exist, it is clearly sufficient that 

k~X 

~ I d'\> I ~ (k~ax)2 dv~ax < p. 

kz.=- k~ax 

(8) 

The condition (8), together with Eq. (7), imposes limi­
tations on the maximum possible number Nmax of par­
ticles in the colliding beam that does not destroy the 
polarization, limitations which are roughly the same as 
the limitations necessary for a stable realization of the 
beam encounters (the nonlinear resonances liZ ~ pn/m 
are dangerous in the orbital motion). The conditions 
limiting the maximum possible number N of particles 
(the radiant emittance) for which the encounters are 
still stable can be written down on the basis of the well­
developed theory of motion near nonlinear resonan­
ces[1l-13J. Such coincidence is not accidental, and is ex­
plained by the following: the decrement T r/ of the radia­
tive polarization is (y2~/Rrl times smaller than the 
decrement T~lof the orbital motion (Tphr ~ (y2;'(/Rfl). 
But jWkl2, the square of the power of the spin resonan­
ces, is smaller than the corresponding square of the 
power of the orbital resonances by the same factor. 

As is evident from (7) and (8), Nmax strongly depends 
on the ratio <a~>/z~, increasing as this ratio decreases. 
A decrease in the modulus of the Floquet solutions 
(which are (3 functions) at the places of encounter leads, 
as is well known, to a gain in the radiant emittance of 
the storage device (owing to increases in the beam den­
sities at the places of encounter). To increase the radi­
ant emittance of a storage device with polarized beams, 
it is also advantageous to decrease Ifzlo ~ Ifxlo (the de­
gree of equilibrium polarization is less sensitive to 
changes in IfzlO ~ IfxlO; to wit, Tph d ~ NIAn. In fact, 
notwithstanding the increase in the force ~ Ifzlol of action 
of the colliding bunch, the betatron-frequency shift and 
the harmonics of the vertical deviation, which determine 
the power IWkl of the spin resonances, are less sensitive 
to changes in the (3 functions at the places of encounter. 

The inclusion of resonances with radial and synchro­
tron particle oscillations leads to an increase in the 
number of "operating" resonances. The condition (8) is 
then replaced by (usually, AII~ax ~ A~ax »AII~ax) 
the condition6 ) 

(9) 

which imposes a stronger limitation on Nmax (~ax and 
k~ax are the maximum numbers of the "operating" 
resonances with radial and synchrotron oscillations). 
The equations for k~ax and k~ax can be obtained in 
similar fashion. In allowing for the slow synchrotron 
oscillations, we must, generally speaking, take into con­
sideration, besides the modulation of the betatron har-
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monics wk k k of the perturbation propagating per­
Z' x' 0 

pendicularly to n, the synchrotron modulation of w . n 
and the betatron frequencies IIX and liZ' 

The formula (1) of course allows us to carry out a 
more detailed investigation with allowance for all the 
real factors determining the properties of the orbital 
motion. However, because of the above-noted complex 
dependence of wk and Ek on the amplitudes of the os­
cillations, it is more expedient to carry out such inves­
tigations for specific storage devices. The main results, 
however, remain valid independent of the structure of 
the electromagnetic field acting on the colliding beams 
inside the storage ring. 

The author is grateful to Ya. S. Derbenev and A. N. 
Skrinskir for numerous useful pieces of advice and for 
numerous discussions in the course of the work. 

APPENDIX 

The expression for the vertical component F z(z, 8) 
of the force exerted by the colliding bunches at x = 0 is 
obtained from (4) (a is given in the form (5)): 

F 4Nr.R Sl zexp(-z't!z,') 
,=--- dt--:....:...---=­

p., [z,'(1-t)+xo'tl"" 

The frequency shift A liZ induced by the colliding beam 
is computed from the formula [11-13J : 

If, I,' 1 ,. 2. 

d'\>'=--a-, - (2n)' f d8 f d.p,cos .p.F,(a.cos .p., 8) 

2Nr.R , { 1!a{ a.>xo 
=--If,l, 21l'nx,a" z,~a.~x,. 

nl 11z,(x,+z,) , a.=O 

The expression for wk can be reduced with the aid of 
(2) and (3) to the form 

Nr. 1 S'" i}u 
wk=---AI/.I,- -exp(-ik.I/J.)dI/J •. n, 2n , i}z 

For even kz' wk = 0, while for odd kz 
uZ2/2z02 

I Nr./. (0) S 2z,e-' 1 
Iwkl= ---A dt [ '+2(' ')t]'I.[I(k'-'ll,(t)-I(k,+!)/,(t)] , 

Jt1zo 0 at Xo -Zo 

(A.l) 

where Im(t) is the Bessel function of imaginary argu­
ment. The asymptotic form of the functions 1m (t) for 
m » 1 is known[14J: 

exp[(m'+t,)'I,] [( m')';' m]m 
1m (t) = 1+- -- . 

1'2n (m'+t') 'I. t' t 

The dominant contribution in the integral over tin (A.l) 
lies, for Ikzl »1, in the vicinity of t = a~/2z~. Thus, 
the final expression for IWkl has the form 

Iw.l= 4Nr.I/,I, IAI~ [( 1+ k,'~,')';, +1 r 
n1'2n lX, Zo a. 

xexp{+ [( k,'+ ::: f -:::]) 
x(k.'+~)-'''[ Ik,lzo' +(1+ k.'z,')",]-I • .I/' 

zo" az2 a/' 

For a Gaussian amplitude (az) distribution, we obtain 
the following expression for T -;i: 

_I IWkl'exp(-a.'l<a.'» 
Td =1t 

I k.1 <a.'> I i}~,\>.!i}a.'1 
(A.2) 

(here az is the value of the amplitude for which Ek = 0). 
Investigation of (A.2) for its extremal values shows that 
the minimum value of T d is determined by the formula 
(6). 
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illn motion across a unidirectional magnetic field, n is obviously directed 
along the field, and does not depend on the azimuth of the particle 
motion. 

2)We measure all the frequencies in units of the equilibrium frequency of 
revolution of the particles of the storage element. 

3)The formulas for Tp and ~o are given in [5]. 
4)The formula for T p can be found in [1-6]. 
S)Since Fz is an odd function of z, only resonances with odd numbers kz 

are possible. Resonances of even parity arise when the coupling between 
the vertical and radial oscillations is taken into account. 

6)The condition (9) alters if the frequency of the synchrotron oscillations 
is small compared to the spread L'I€k of the frequencies of the motion. 
Then instead of one distinct resonance in the band L'I€k, there appears 
a series of synchrotron resonances of roughly the same power, over 
which the appropriate expressions must clearly be summed. 
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