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A formula in terms of retarded potentials is derived for the gravitational field of an extended wave 
packet of light produced at a finite instant of time. Limiting cases of this formula are compared 
with the results of other papers, as well as with the result of a direct integration of the retarded 
potentials for a point particle, carried out by means of distribution-theory methods. 

1. The problem of gravitational fields of massless 
particles has been discussed by several authors Ll-3 ]. 

Aichelburg and Sexl[l] and Andreev[2] have considered 
the field of point particles created at infinity. According 
to relativistic quantum mechanics a zero-mass particle 
(in the sequel we shall call it a photon, for the sake of 
brevity) cannot be localized with an accuracy exceeding 
i\.l4] (x is the wavelength divided by 211), therefore the 
concept of point-photon is an approximate way of describ
ing a wave packet of finite dimensions c... Bonnor[3] has 
found an exact solution for the gravitational field of a 
wave packet of arbitrary shape, also produced at infinity. 
However, the very concept of photon existing at t = - 0() 

is an idealization; in reality one should consider a pho
ton produced at a finite instant of time, -T. In the 
present paper we determine in the linear approximation 
the gravitational field of a light packet of finite size c.. 
produced at the time -T. The solution of the linearized 
Einstein equation was taken in the form of retarded po
tentials. As T - 0() the equations obtained here, after 
a gauge transformation, go over into the corresponding 
expressions of Bonnor's paperL3]. Letting c.. go to zero 
we then obtain a formula which coincides with the re
sults of[l,2j. 

In the recent paper by Andreev[2] it is asserted that 
for sources moving with the speed of light the solution 
in the form of retarded potentials is invalid, in view of 
the lack of E(2)-invariance!). We note however, that 
for an extended packet as well as for a point photon 
produced at a finite distance this condition should not 
be true, since the sources do not exhibit this invariance. 
This condition is valid only for a point photon produced 
at infinity. In integrating the retarded potentials in the 
latter case one runs into definite computational difficul
ties which can be overcome by making use of distribu
tion theory. The retarded solution obtained in this man
ner exhibits E(2)-invariance. 

We note that in the case of infinite T the retarded 
solution contains Singular terms which, however, can be 
transformed away by a gauge transformation. 

2. We write the equations of the weak gravitational 
field in the standard gauge[6j 

D1jJ,.=16nkT", 81jJN8x'=O, (1) 

where I/!ik = hik - 721)ikh and Tik is the energy-mo
mentum tensor of the source. The solution of the equa
tions (1) in the form of retarded potentials is 

where Xi 
lently 

1jJ,,= -8k J d'x'll[ (x-x')'18(t-t')T .. (x'), (2) 

(t, r) is the event of the observer; equiva-

1jJ =-4kJd3 ' T .. (r',t-Ir-T'I) 
" r IT-T'I . 

(3 ) 

We consider a wave packet of length c.. uniformly 
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spread along the z axis with linear denSity 1/ c... Let 
the coordinates of its endpoints be z,(t) = t and zz(t) 
= t - A. Then 

PiP' 1 
r"=-e-6(p)A[8(t-z)-8(t-z-M 1. (4) 

where Pi = (E, 0, 0, -E) is the photon four-momentum, 
E is its energy and p = (x, y). In order to make the 
problem more definite we shall consider that the packet 
appears at the point - L. At the instant t = -T = - L the 
anterior front appears and at t = -L + c.. the posterior 
front appears, so that the formation of the packet is 
completed. In the sequel the packet propagates accord
ing to Eq. (4). Formally the introduction of a finite 
point of formation of the packet leads to the appearance 
of the factor ®( z + L) in Tik (4). But this violates the 
conservation law 

T~ .• =O, (5) 

which follows from (1). One may, however, consider a 
more general problem in which the total energy-mo
mentum tensor is conserved and within the framework 
of which there appears the question of finding the gravi
tational field of a wave packet produced at a finite dis
tance. One of the possible versions of such a problem 
is treated in Appendix A. 

Let us now calculate the field of the wave packet. 
Substituting the expression (4) into (3) we have I/!ik 
= hik and 

where 

or 

QJ=O for -L+1(z+L)'+p'>t, 

1 
QJ = A[ln(t-z)-ln(1 (z+L)'+p'-z-L) 1 

for -L+1 (z+L)'+P'<t<-L+Ll+1 (z+L)'+p', 

1 
$ = /i"""[ln(t-z) -In(t-z-Ll) 1 

for -L+Ll+l'(z+L)'+p'<t 

1 
$ =-[In(t-z)-In(l' (z+L)'+p'-z-L) 1 [8(t+L-1 (z+L)'+p') 

Ll 
1 

-8 (t+L-Ll-1 (z+L) '+p') 1 + A[ln (I-z) 

-In (I-z- Ll) 18 (1+ L-Ll-1 (z+L) '+p'). 

(6) 

Let us explain this result. For a given observer with 
coordinates (t, p, z) we call initial point of radiation 
ze the site on the trajectory from which comes the ex
citation from the anterior front of the wave packet (we 
note that here we do not deal with real radiation). The 
coordinate Ze is determined by 

t2_Z2_pZ 
z, = 2(t-z) , z,<t. 
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FIG. I 

For p ;c 0 the point ze tends to - 00 for t - z, how
ever, for Z < -L the packet did never exist, so ze 
~ -L. From here and from the natural condition 
t ~ -L it follows that the signal appears at a given point 
of observation at time t = _ L + (( Z + L)2 + P 2 )1/2. The 
other cases are considered similarly. The solution <Pik 
determined this way is finite and everywhere continu
ous, with the exception of the Z axis. 

As will be shown in Appendix A, for z + L » I::> and 
p « Z + L one may neglect the influence of concrete 
processes accompanying the production of the packet. 
Under these conditions the solution (6) will have the 
form 

cD =~ [In(t-z)-In-P-'-] [8 (t-z--P-'-) -8(t-z-1';. 
I';. 2(z+L) 2(z+L) '(7) 

p' )] 1 (P' ) ---- +-[In(t-z)-ln(t-z-I';.)]8 t-z-I';.---- . 
2(z+L) I';. 2(z+L) 

We describe the behavior of (7) at an arbitrary ob
servation point (p, z), p ;c 0 as a function of time (cf. 
Fig. 1). The signal appears at a given point at the in
stant t = z + p2/2(z + L) and further increases from 
zero, attaining a maximum for t = z + I::> + p 212 (z + L). 
At that point (7) takes on the value In[l + 21::>(z + L)lp2. 
For t> z + I::> + p2/2( z + L) the field (7) starts decreas
ing and for t» z + I::> + p2/2 (z + L) it tends to zero as 
1/(t-z). 

3. We now consider different limiting cases of the 
expression (7). For finite I::> and L - "" we obtain 

cD = ~[8(t-z) -8 (t-z-I';.) ] [In(t-z) -lim In p'/2L] I';. ~_ 

1 
+ -[In(t-z)-In(t-z-I';.) ]8 (t-z-I';.). 

I';. 

(8 ) 

This equation contains singular terms, but they depend 
only on (t - z) and therefore can be removed by means 
of a gauge transformation. Indeed, the part of <Pik 
which depends only on t - z, or for arbitrary direction 
of Pi 

(9 ) 

does not contribute to the Riemann tensor calculated in 
the approximation linear in hik. This means that the 
field (9) is not physical and can be transformed away by 
means of a gauge transformation 

1 ).:jpf 

~i=-2P' S F(y)dy. 

After the gauge transformation, (8) takes the form 

cD'=- ! [8(t-z)-8(t-z-I';.)]lnp'. (8') 

This equation coincides with the exact solution deter
mined in[3]. Letting I::> go to zero we obtain a solution 
corresponding to a point particle(l-3]: 
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III =-6 (t-z)ln p'. 

lf at the point z = L one installs an absorbing wall 
and lets the length I::> of the packet go to infinity, leaving 
its linear density finite and constant, then after the 
anterior front passes we are in the situation which was 
previously considered by Tolman, Ehrenfest, and 
Podolsky[7], who have computed the gravitational field 
of a stationary beam of light emitted at the point 
z = - L and absorbed at the point z = L of the z axis. 

4. We now consider a point photon moving along the 
z axis: x = 0, y = 0, z = t; then 

PiP. 
T"=-e- 6{t-z)6(p). (10) 

Substituting (10) into (2) and carrying out the transfor
mations we obtain 

4k -
1jJ ... =--;;;-p,p, S d'l'6[(t-z}-t-p'] 

-(t-tl 

(11) 
4k 'L 

= - - pip,lim S d'l' 6[ {t-z)'l'-p']. 
e L_"" -(t-z) 

We have introduced the limiting process in order to 
achieve a junction with the solution obtained in Sec. 2. 
The generally accepted rules of operation with delta 
functions do not allow us to determine the field <Pik in 
the z = t plane: we find that <Pik = 0 for z ~ t, <Pik 
~ II (t - z) for t > z and <Pik is undetermined for 
z = t. 

However, the integral (11) can be calculated for 
p - 0 if one uses the generalized function methods de
veloped by Gel 'fand and Shilov[8]. Without dwelling on 
the derivation (cf. Appendix B) we give here the formula 
for 6(xy - c): 

6(xy-c)=-21nc6(x,y)+ 6(X
1
) + 11

1
(11

1
) +o{c), (12) 

Iy R x R 

where 1/1xlR and 1/1ylR are regularizations 2) of the 
functions 1/1 x I and III y I and o( c) are the remaining 
terms which vanish for c - O. A regularization of the 
function 111 x I is the function defined by the following 
linear functional: 

+S·~ ( )=S· <p(x)+<p(-x)-2<p(O)8(1-x) d 
1 1 <p x x. 

_00 X R 0 X 
(13 ) 

Here cp(x) is a test function. We note that the one in
side the ®-function is essential. If cp(x) is such that 
cp (0) = 0 (13) coincides with the integral for the usual 
function III x I. Therefore everywhere except at the 
origin II I x I R coincides with II I x I. In the expression 
for 6(xy - c) obtained in[a] the leading term of the 
expansion with respect to c coincides with (12), the 
terms which do not depend on c being erroneous. 

Making use of (12) we obtain an expression for the 
integral (11) in the following form: 

00 1 00 2L dr: 

-21nc6(t-z) S d'l'6('l')+-, _, S d'l'6('l')H(t-z) lim S -'-1-' 
t Z R L_oo 't R 

-(t-z) -(l-z) -(t-z) 

In the first term the presence of 6(t - z) allows us to 
change the lower limit to zero. We further note that 

Sd'l'6('l') =1/, 
o 

(this is obtained most simply by conSidering o( T) as a 
weak limit of a smeared sequence near the origin). In 
the second term for t < z the domain of integration 
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does not comprise the point T '" 0, therefore it vanishes. 
For t> z 

~ 

S dT6(T)=1, 
_(t_~) 

In the third term we retain the upper limit, since for 
L ",.>0 the integral diverges, which is related to the fact 
that formally integrals over generalized functions have 
to be taken with an integrable weight rp(x). For finite 
L this integral equals 

2L d 

S IT~R = -IIn(t-z) l+ln2L 
-(l-z) 

Thus, we have obtained <J!ik '" -4kE:-lpiPk4>, 

8(t-z) (14) 1ll=-6(t-z)Inp' +~+ 6(t-z)lim(-lln(t-z) I+ln 2£). 

In the third term the coefficient in front of Ii( t - z) is 
undetermined since In (t - z) - - 00 for t - z. This 
indeterminacy is removed as 

a' 
lim (In-+ln2L)=lna' 
L~~ 2L ' 

where a is an arbitrary constant. Formally (14) coin
cides with the limit of 4> in((8) as L - 00 and t. - 0. 

In conclusion we note that in[lJ the field of a point 
photon was obtained from the exact expression for the 
field of a point particle with mass by means of a 
Lorentz transformation and the limiting procedure 
v - 1 and m - O. However, the field of a particle with 
mass m "" 0 does not go over into the retarded solution 
for m '" 0, since it does not vanish for t < z. We note 
that a similar situation occurs for the electromagnetic 
field of a massless particle[9 J. 

The authors express their gratitude to M. I. Graev 
for a useful discussion. 

APPENDIX A 

We consider the decay of a point massive particle 
at rest at the origin into two packets moving along the 
z-axis in opposite directions. The tensor Tik for this 
problem is 

T,.= P:. b(r){ [1-8(t)]~~[8(t)-8(t-d)](t-d)} 

pi,PtA 1 ( 
+-e-6(p)8(z)~[e(t-z)-e t-z-d)] (1A) 

p"p" 1 +-e-O(p) [1-8(z) ]~[8(t+z)-8(t+Z-d)], 

where Pi '" (2 l/2 E:, 0, 0, 0), Pli '" (E:, 0, 0, -E:), P2i 
'" (E:, 0, 0, E:). It is easy to verify that (1A) satisfies the 
condition (5). The first term in (1A) describes a body 
of variable mass at rest at the origin. The second and 
third terms are wave packets moving in opposite direc
tions away from z '" 0. By a shift t - t + Land z - z 
+ L the second term becomes Eq. (4). Integrating (3) 
with Tik from (1A), we obtain the following expression 
for the field <J!ik: 

1jJ,.= - PiP. ~{[1-8(t-r) ]-~[8(t-r)-8(t-r-d)] (t-r-d)} 
e r .1. 

577 

Pup" 4k 
--e-T{[In(t-z)-ln(r-z)] [8(t-r)-8(t-r-d)] 

+[In(t-z)- In (t-Z-d) ]8(t-r-d)}- (2A) 

pz;p" 4k 
----{[In(t+z)-ln(r+z)] [8(t-r)-8(t-r-d)] 

e .1. 

+ [In (t+z) -In (t+Z-d) ]8 (t-r-d)}. 
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FIG. 2 

At z » t. and p « Z the first and third terms are small 
compared with the second and therefore in that region 
it makes sense to talk about the gravitational field of a 
wave packet produced at a finite distance. 

APPENDIX B 

Equations (12) and (13) can be obtained either 
directly by means of the methods of[8J or by the method 
described below. We consider the integral 

S 6(xy-c)/(x,y)dxdy, c>O, 

where f( x, y) is an arbitrary test function. Integrating 
with respect to y, we obtain 

+s~ I(x, clx) 
_~ dx-I-x-I -' (1B) 

We introduce an auxiliary function fE;( x, y) of the form 

f ( )= {/(O,O) for lxi, Iyl~e. 
, X,y I(x,y) for lxi, Iyl>e' 

with E: chosen such that c < E: 2 (cf. Fig. 2). For c - 0, 
E: - c l/2 the function fE: converges to f(x, y). There
fore, by this method we obtain in the expansion of 
I)(xy - c) only the Singular term and the terms which 
do not depend on c. The integral over the region I x I, 
I y I ~ E can be calculated explicitly 

S I, (x, y) 0 (xy-c) dx dy= 2f(0, 0) (21n e-ln c). (2B) 
,xl,lyl"";e 

The part of the integral (1B) corresponding to inte
gration over the second region decomposes into four 
terms 

S~ f(x, clx) 's" I(x, clx) -S' I(x, c/x) SO I(x, elx) ) 
--x-- dx + --x- dx + --!x-I- dx + -I-x-I -dx. (3B 
EO-cIt 

In the first term x > E:; since c < E: 2 we obtain from 
here that clx < E:. For c - ° the value of E can be 
chosen sufficiently small so that f(x, c/x) can be ex
panded in a power series. As a result we obtain 

j I(X~ 0) dx. 

The next term of the expansion is of order of c. We 
make the change of variable clx = y in the second 
term. The result is 

1'1(x,CIX) dx= I f(c/y,y) dy=j f(O,y) dy+o(c). 

o x p. Y f. Y 

The other terms are treated similarly. If in (2B) we 
replace In E: by 

t 

- S :x, 
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we obtain, adding (2B) and (3B) 

-21n c/(O; 0) + j I(x, 0) +1( -x, 0) -21(0, 0) dx + Sm I(x, O)+/( -x, 0) dx 
x x 

• I 

+ j /(O,y)+/(O,-y)-2/(O,O) dy+jI(O,y)+/(O,-y) dy. 

• y I Y 

Finally, we replace the integration limit € by zero, so 
that the error is of order 

S• I(x, 0) +/(-x, 0) -2/(0, 0) 
-'-'---'-'----'--'--'---'-...:....:.--'-=- dx - B'-C 

X • 
and vanishes for c, € - O. Taking this into account 
(4B) is equivalent to Eqs. (12), (13). 

(4B) 

1)E(2) is the subgroup of the Lorentz group ("little group") which leaves 
an isotropic vector invariant. 

2)We use the terminology introduced in [8]. 
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