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We investigated AFMR in COF2 in the range 0.3-4.3 mm in a field up to 250 kOe directed along 
the C 4 axis, at T =4.2 oK. Experiment revealed a nonlinearity in the <.tl=<.tl (H) dependence; this 
nonlinearity is attributed to a transverse Ozyaloshinskii interaction (01) in the form M. L y + M y L • 
(M=M1 +M2' L =M1-M2). As <.tl-tO, the derivative 8w/8H tends to a finite value (4.3 ± 0.2) X 10 10 

(kOe-sec)-t, in contradiction to spin-wave theory, which predicts 8w/8H (w .... 0) .... 00. A theoretical 
analysis shows that a finite value of 8w/8H (w .... 0) follows in principle from the connection between 
the transverse 01 and the longitudinal DI [(L.M)LxL y and (L'M)M.M y ] at X,,(T-tO°K)~, as is 
observed in experiment. The connection between the longitudinal 01 and the transverse OJ reflects 
the fact that the term of fourth degree in the magnetization in the thermodynamic potential follow 
from a bilinear spin Hamiltonian that determines also the transverse 01, and the contribution of the 
mean values of the products of the components of the fourth-degree spin operator is negligibly small, 
as should be the case for the spin 3/2 of divalent cobalt. The theoretical analysis is based on a total 
potential with allowance for all the possible symmetries of the invariants, without the use of a series 
expansion. As a result of the analysis, a potential of simpler form is proposed, describing fully the 
experiment and containing only six phenomenological parameters. Addition of arbitrary 
symmetry-allowed invariants to the proposed potential changes neither the form of the spectrum nor 
the number of the experimentally determined parameters. 

Antiferromagnetic cobalt fluoride is one of the most 
interesting objects for the investigation of the influence 
of spin-orbit interactions on antiferromagnetic proper­
ties. The incompletely quenched orbit of the magnetic 
ion in COF2 is combined with a relatively large spin, 
equal to 3/2. As a result, a nonzero parallel susceptibil­
ity is observed in COF2 even at the lowest temperatures, 
and the interactions that are biquadratic in the spin com­
ponents are of the same order as the bilinear interac­
tions. Therefore the use of the well-developed theory 
of spin waves for the interpretation of the experimental 
results on COF2 becomes doubtful. The nonzero parallel 
susceptibility exerts an appreciable influence, e.g., on 
the high-frequency properties of antiferromagnets. 

Antiferromagnetic resonance (AFMR) was first ob­
served in CoF2 by Richards [ll in a stationary magnetic 
field up to 50 kOe in the wavelength range 0.2-0.3 mm. 
When an external magnetic field is applied along the 
[001] axis of the crystal the AFMR frequency exhibits a 
magnetic-field dependence typical of easy-axis antiferro­
magnets. It was believed that this linear dependence is 
preserved up to sub lattice-flipping fields. Our investi­
gations of AFMR in COF2 at fields and frequencies 
starting from the lowest ones and ending with fields ex­
ceeding the flipping field have revealed a number of sig­
nificant hitherto unknown singularities. The AFMR in 
COF2 :was investigated at T=4.2"K in magnetic fields up 
to 250 kOe and in the wavelength interval from 300 jJ. to 
4.3 mm. Backward-wave generators were used [2]. A 
flow-through type microwave spectrometer, operating in 
a stationary magnetic field up to 150 kOe, was developed 
for the measurements in the range from 300 jJ. to 1 mm. 
Measurements in fields stronger than 150 kOe were 
performed in pulsed solenoids [31. For the investigations 
in the pulsed magnetic fields, a spectrometer of the 
reflex type was developed for the 1-4.3 mm band, using 
dielectric quartz waveguides to exclude eddy cur-
rents [41. The COF2 samples in the form of plates meas­
uring 1.5X2.5XO.B mm were glued to the end of a quartz 
waveguide placed at the center of the pulsed solenoid. 
The magnetic field was measured by precision integra-
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tion (with accuracy not worse than 0.3%) of a signal from 
a measuring coil placed in the same plane as the inves­
tigated sample, the signal being calibrated by electron 
paramagnetic resonance (EPR) in DPPH located along­
side the sample. This method of measuring the mag­
netic field determined the position of the absorption lines 
in the magnetic field with accuracy not worse than 2%. 

The magnetic field was directed along [001] (the z 
axis). The measurement results are shown in Fig. 1. 
On the short-wave side, our results agree well, within 
the limits of experimental error, with the results of 
Richards [1,5]. In strong magnetic fields, however, a 
nonlinearity was observed in the dependence of w on H. 
Special attention should be called to the slope of the curve 
near zero frequency, where the derivative aw/aH(H -Hc) 
is finite and we have aw/aH(H=Hc)=(4.3±0.2)XlQlO 
(kOe-sec)-l (this does not agree with spin-wave theory). 

The use of the simplest model potential for antiferro­
magnetic COF2 (space group D!h) with a Dzyaloshinski'i 
interaction [6,71, which takes into account only interac­
tions bilinear in the spins of the atoms 

<D='/,BM'+'/,aL,2+e(MxLy+MyLx)+'/,bM,'-MH (1) 

(in the spin-wave approximation M2 + L2 = const (M . L) 
= 0, M =M1 +M2' L =M1- Mz , where M1 and M2 are the 
sublattice magnetizations) actually leads to the nonlinear 
relation [5] 
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w'=y'{[ (H,HE ) '1'±1/ j'-HD'}, (2) 

where the anisotropy field is Ha =-a, the exchange field 
is HE=B+b, and the Dzyaloshinski'i field is HD=e (we 
note that in the model that takes into account the ex­
pansion terms up to second order in the spins there are 
six constants: (Wr)2, (~)2, B, a, e, and b, and these 
must be determined experimentally). 

However, this very Simple model, which describes 
well the high-frequency properties of other antiferro­
magnets [8-lO] (e.g., MnF2), does not describe even 
qualitatively the results of AFMR experiments in CoF2 • 

Thus, e.g., it follows from the theoretical model (1) that 
ow/oH( w - 0) = 00 , which contradicts aforementioned ex­
perimental results (Fig. 1). 

This raises the problem of finding a theoretical model 
that describes adequately the experimental results on 
cobalt fluoride. To construct such a theory we shall use, 
as is customary, the Landau theory of phase transi-
tions [11]. 

The thermodynamic potential of the Landau theory, as 
a function of the vectors M and L, is invariant with re­
spect to the symmetry group D!h of the paramagnetic 
phase, and can consequently depend only on the follow­
ing thirteen invariant combinations of the components 
of the vectors M and L [12]: 

I,=L', I,=M', 1,= (LM)', I.=L.', I,=M,', 

1.= (LM)L,M" 1,=L"M,+L,)f" 1,=(LM)LxL" 
(3) 

1.=LxL,L,M" 1,,=Lx'Li, 1 .. =(LM)MjII" 

The dependence of tI> on the invariants II, h, and Is, 
as seen from their symmetry, is determined by the 
exchange interactions; the dependence on the invariants 
14 , Is, and Is is connected with relativistic interactions 
that determine the uniaxial anisotropy in CoF2 • The re­
maining invariants are peculiar to the given magnetic 
structure, and the dependence on them is due to rela­
tivistic interactions that determine the anisotropy in the 
basal plane (the plane perpendicular to C4). In particular, 
the dependence on h is determined by the bilinear 
Dzyaloshinskil interaction [S,7]. The invariants Is and 
III describe the longitudinal weak Dzyaloshinskil ferro­
magnetism [6,13[, 19 and IlO describe the anisotropic in­
crement to 18 and Ill, while the invariants 110 and 113 

correspond to anisotropy in the basal plane. 

Using these thirteen invariants, we can write down a 
series expansion of the thermodynamic potential up to 
any power in the spin components. For example, accu­
rate to terms of second order, the thermodynamic po­
tential takes the form [S,7[ 

11>='/,AI,+'/,Bl,+'/,aI.+'/,bl,+eI7 • 

The series containing fourth-order terms in the spin 
components, however, contains already 38 terms and 

(la) 

to work with such an expansion is technically difficult. 
In the general treatment we shall therefore simply re­
gard the thermodynamic potential as a function of the 
invariants, tI>=tI>(I 1 , h, ... ,113), and the expansion will be 
spelled out specifically only after separating those in­
teractions that must be taken into account in the model 
in order to describe the experiment fully. 

Thus, the thermodynamic potential in a magnetic field 
takes the form 
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( 1b) 

From this we find that in the state Mil L II H II C4 the 
values of M and L are determined by a system of two 
nonlinear equations 

2M[I1>,+I1>,+M'(I1>,+I1>.) ]=H, 

2L[ 11>,+I1>.+M'(I1>,+I1>.)] =0, 

where tl>k=otl>/oIk. 

( 4) 

From this we can obtain the dependence of M and L 
on the magnetic field (for example, accurate to H3 ): 

M=)(,H { 1-4)(,'H'[ B,'+I,,'C,' + A~;a, (A,'+a,+L,'C,') ]} , 

L=L _ 'N'A,'+a, 
,)(, 2L,B," 

where we have introduced the notation 
(1,,=11>,'+11>.', A, '=2 (11)I2'+<D,,'+I1>,,'+<D,,'). 

B, '=11> .. '+211>" '+11>,,', B2 "=<D,,'+211>52 '+<D,,', 

C, '=<D,,'+I1>,,'+I1>,,"+I1> .. '; 

)(,=[2(<D 2'+<D,'+(1"Lo']-', 11> ... =a' l1>/a/lJI •. 

The index zero (e.g., A~, B~, La, Xo, etc.) signifies that 
this parameter (constant) is taken at H = O. The field 
dependence of the phenomenological parameters 
R={A1 , B1 , B2 , C1 , QI} is determined by the formula 

R=R'+"' 'N' [R '+R' - A,'+a, (R '+R ')] 
;.,.0 2 5 Bt O t 4 , 

where Ri = oR/ali at H = O. 

( 5) 

The symbols QI, AI, B1 , B2 , C 1, and X were introduced 
because none of the results of the theory contain the 
phenomenological parameters tl>i and tl>ik separately, 
but only in the combinations given above. This makes it 
possible to determine which constants should be retained 
in the model expansion of the thermodynamic potential in 
order to describe a particular effect without loss of 
generality. Thus, if a certain effect is proportional to 
C 1 , then to describe this effect it is necessary to take 
into account in the model expansion of the thermodynamic 
potential the terms of not less than the sixth power in 
the spin components, and it suffices to retain in expan­
sion of tI> in powers of the spins any of the four invari­
ants IsI5, hI2 , hI5, and 1612 , 

To describe the dynamic properties of magnets, it is 
important to make the right choice of the equations of 
motion. As a rule, the Landau-Lifshitz equations are 
used [14[, and for antiferromagnets they take the form 

1 [ al1> ] [ al1> ] -M:= MX- + LX- , 
y aM aL 

(6) 

For small deviations from the equilibrium position, the 
equations can be linearized and represented in the form 
dX/ dt = yY or, written out fully, 

mx) (0 gM,' - gMyO 0 gL." - gL.' 
my - gM." 0 gMx' - gL." 0 gLx' 

d m, gMy' - gMx" 0 gL.' - gLx' 0 
dt Ix = 0 gL." - gLy' 0 gM." - gM.' 

1. - gL." 0 gLx' - gM." 0 gMx' 

I, gLy' - gLx' 0 gMv' - gMx' 0 

where X = {mx, ... , lz} are small deviations from the 
equilibrium components of the vectors M and L; 
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Y={Fx , ... , Nz} are the thermodynamic forces Y= aX 
that result from the corresponding deviations from the 
equilibrium position l 11j: 

All second derivatives in the matrix a are taken in 
the equilibrium state. 

The region where the matrix a is positive-definite 

(8) 

as a function of H and T determines completely the 
stability of the equilibrium state of the magnetic sub­
system. Thus, the motion is described by a product of 
two matrices ya, one of which is connected with the form 
of the equations of motion and the other with the equi­
librium condition. However, as noted by the authors 
of 114 1, relations (6) are invariant against arbitrary ro­
tations of the spin system as a unit, and therefore cor­
respond only to the exchange approximation. In this ap­
proach, the anisotropic interactions can be accounted 
for only via the stability matrix a. It is known, however, 
that to explain the experiment in many cases it is nec­
essary to take into account the anisotropy also in the 
matrix y, e.g. with the aid of the anisotropic 
g-factor 18, 15 1. 

The cobalt fluoride investigated by us is different be­
cause the exchange interactions are comparable with 
the anisotropic interactions, so that for a complete analy­
sis of the dynamic properties it is expedient to take 
rigorous account of the anisotropy in y in most complete 
fashion. Allowance for the anisotropy of y by introduc­
ing an anisotropic g-factor is not the most complete way. 
Great promise is offered in this case by nonequilibrium 
thermodynamics 116 1• Indeed, if we write down the sym­
metry-allowed Onsager equations for the magnetic sub­
system of cobalt fluoride, then the antisymmetrical ma­
trix y takes the form 

o y,M,· Y2M.· + y.Lx • A,M," A2L,o ')..aM,· + A.L.· 
o -(Y2Mx·+YaLy·) - A.L,o - AIM," -(A3My· + A.Lx·) 

o -A,Mx"+A.LiJ• A,M.o-A,Lx• 0 
o - PIM,· -(P2M y·+P3LX· 

o P2M,· + PaL.· 
o 

(9) 

This matrix goes over into the matrix y for equations 
that take into account the anisotropy only via the 
anisotropic g factor, if we put 

1,=-A2=-p,=g.L, 1..,=0, l,=A,=-A,=-p,=-gll' 

13=A3=A,=-p3=2gIl T. 

The agreement between gl' gil, and T, and the notation 
introduced by Turov 181 is determined by the relations 

The Landau-Lifshitz equations in the linear approxima­
tion can be obtained by putting ~ = gil = g and T= O. Re­
gardless of which equations of motion are used to de­
termine the resonant frequencies, the following relation 
holds: 

K,=det v"=det 1'd=det l' det~, 
( 10) 

where ~ is the sum of all the possible determinants of 
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the fourth-rank matrices, obtained from v by crossing 
out two lines and two columns that intersect on the 
prinCipal diagonal; K2 is the analogous sum of all the 
possible determinants of the second-rank matrices, 
obtained by crOSSing out from v four columns and four 
lines that intersect on the principal diagonal. 

In the investigated case Mil HII L II z the rows and 
columns corresponding to Mz and Lz in the matrix v 
consist of zeros only, and Eq. (10) for the resonant fre­
quencies takes the form 

(lOa) 

where 01 = det:Y, 02 = det ~, and the matrices :y and ~ 
are obtained from the matrices Y and a by crOSSing 
out the rows and columns corresponding to Mz and Lz . 
We are interested in the behavior of the solution W1 of 
Eq. (lOa) 

w(=K,!2- (K,'/4-6.fj,) "', ( 11) 

which corresponds to the experimental curve given in 
Fig. 1. The vanishing of W1, as seen from (11), can be 
due to the vanishing of either 01 or 02' In the former 
case, as 01 - 0, we see that 

~ I "" (~K2)'I'~. 
{)H .,_, 6, flH . 

Hence 

( 12) 

( 13) 

(14) 

The quantity in the square brackets in (14) is finite 
and consequently, if the vanishing of the frequency W1(H) 
is due to the vanishing of 01, then aW1/ aH( W1 - 0) is a 
finite quantity. If we use the Landau-Lifshitz equations 
with an anisotropiC g-factor, then 

b,=g.L'(L,'-M,')'. (13a) 

Therefore, if the frequency tends to zero like oV2, then 
Mz in the field in which W1 = 0 should coincide with Lz . 
It appears that this does not agree with the results of 
measurements of magnetization in a parallel field 1171. 

It is clear therefore that in a model in which the fact 
that awJaH(w1 -0) >"00 is attributed to the vanishing of 
W1 due to the vanishing of iiI (Le., not to the loss of the 
stability of the state of the subsystem), the equations de­
scribing the motion of the magnetic subsystem of CoF2 
should differ Significantly from the Landau-Lifshitz 
equations. 

If W1 vanishes as a result of 01, then the function 
W1 = W1(H) near W1 = 0 should take the form shown in 
Fig. 2, where 

and the field H2 is determined by the conditions for the 
stability of the state Mil L II H II C4 (Le., by the condition 
that the matrix O! be positive-definite). Since this fact 

FIG. 2. Dependence of the 
AFMR frequency on the magnetic 
field. The vanishing of the fre­
quency is connected with the 
matrix II 'Yik II of the equations of 
motion. 
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is not observed experimentally, let us consider a differ­
ent possibility of the vanishing of WI, connected with 
the vanishing of 1'>2. In this case we have at L II Mil H II z 

OW" _( I!. )"'06 •. -- - -K. -
oH .,~, 6, . aH ' (15) 

6,= {4cD,cD,-cD,'-L'M'[ (2cD.+cD.)'-(cD,+cD.) (cD ll +cD 12 ) l)' 16 
-4L'M'[ cD, (cD ll+cD 12 ) +cD,(<D,+cD,) -<D,(2cD.+cD.) j'=T,'-T,'=UV, ( ) 

where U and V are the sum and difference of the square 
roots of the first and second terms. Let the vanishing 
of 1'>2 be connected with the vanishing of U. Then 

~, ",,(6,VK')'!t au 
aH .,~O U oH 

and in order for awjaH near WI = 0 not go off to in­
finity, it is necessary to have au/aH(Wl --: 0) - U 1/2 , 

Le., at the very point where the state L II Mil H II C4 
loses stability we should have 

u=o, 

iJu/aH=O. 

(17) 
(18) 

We assume, in accordance with the available experi­
mental data 117 ), that M «L near the stability loss, and 
write down accordingly Eqs. (17) and (18) accurate to H2: 

( 1 iJW') faH H-O -2H,(X,,"L'E,) 1I_H,=2(x .. 'L'E,) B_B" 

L'E,= (1/'1.,,'-1/'1.=") '+ 1, H~I~) H'~I'), 
L'E,=H AH;I~) +H EH,~1l +H'J.L (11x .. '-1/'1.="). 

(17a) 

(18a) 

(19) 

Here and below the symbol X~i denotes the susceptibil­
ity along the i axis, when the component of the vector 
L is directed along the k axis; 

2cD,S=-2cD,S=H A, S= (V+M') 'I'*const, 2cD,='1.=·, 

<T>7S == Hd,l is the perpendicular Dzyaloshinski'i field in 
the cobalt fluoride, measured at Lily, H II x; <T>3 
== l/X~z-l/Xy . In addition, we have separated two 

xx 
longitudinal Dzyaloshinski'i fields at L II z: 

H,\t) = (cD.+cD.)L', 

Hdl~) = (11),,+I1>,,)L' 

and take account of the fact that, accurate to H2, 

iJ (l1>,cD,-cD,') .,' = aw,', 
aH H~H, iJH H~O 

We see that Eqs. (17a), (18a), and (19) yield a method 
of determining two effective fields in CoF2' namely H~ll~ 
and H~I:' which cannot be determined from other ex­
periments. The existence of the relations (17a), (18), and 
(19) between <T>a+<T>g, <T>1l+<T>12, and the other properties 
of the theory, determines the fact that aWl/aH (WI = 0) 
'" "" in a field that violates the condition for the stability 
of the state L II Mil C4. It is clear from the form of Ia 
and 19 or III and h2 that the dependence on these quan­
tities (Le., on <T>a + <T>g or <T>ll + <T>d is determined by the 
longitudinal weak Dzyaloshinski'i ferromagnetism. It fol­
lows from this unambiguously that if the vanishing of the 
frequency WI in CoF2 is due to the loss of stability of the 
state L II Mil C4, then the fact that awjaH(Wl = 0) '" "" can 
be attributed only to the simultaneous presence of a non­
zero parallel susceptibility (L . M '" 0) and a longitudinal 
Dzyaloshinski'i interaction [(LM)LxLy '" 0, (LM)MxMy '" 0] 
in the magnetic subsystem of CoF2. If this explanation 
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FIG. 3. Dependence of the 
AFMR frequency on the magnetic 
field. The vanishing of the fre­
quency is connected with the sta­
bility matrix II (Xik II. 

o 

is accepted, then WI = wl(H) near WI = 0 takes the form 
shown in Fig. 3, with awjaH(H - Hc + 0) '" awjaH (H­
Hc-O). 

A comparison of the theoretical analysis with the 
experimental results indicates that the loss of the sta­
bility of the state L II M: II C4 is a more probable cause 
of the vanishing of the frequency in CoF2 than is the 
vanishing of 01. This explanation of the fact that 
awjaH(WI -0) "''''' may seem to be artificially re­
lated to the stability of the state L II Mil C4. Actually 
(17a), (18a), and (19) require a certain connection be­
tween the parameters of the theory, a connection that 
does not follow from the thermodynamic relations. 
Without dwelling on the microscopic premises of such 
a connection, we shall show that the fact awjaH(Wl = 0) 
'" "" cannot take place if no definite relations that follow 
from the thermodynamic equations exist between the 
parameters of the theory. Assume that at WI close to 
zero the state L II Mil C4 goes over into a state in which 
the vectors M=(Mx, My, Mz) and L=(Lx , Ly , Lz) have 
all the components different from zero. This variant 
is admitted when conSidering the transitions that are 
possible in a magnetic field, for ~ = <T>(Il' h, ... , 113) 
- MH, if L 2 + M2 '" const, (LM) '" const. We shall show 
that in this case, too, the result aW1/aH(Wl -0) "''''' 
calls for definite relations between the phenomenological 
parameters of the theory. 

If we consider the general symmetry-allowed equa­
tions of motion, then this statement is obvious, since )16) 

and all the arguments presented above can be repeated 
for two variants: 1) I Yikl = 0 (in analogy with 01) and 
2) I Qlikl = 0 (in analogy with 02)' We then obtain in the 
former case the previously unobserved relation 
w = w(H) (Fig. 2), and in the second variant we obtain 
between the parameters of the theory relations that are 
not required by symmetry. On the other hand, if we as­
sume that the motion of the magnetic moments of the 
sublattices obeys the Landau-Lifshitz equations with 
anisotropic g-factor, then for an analysis of the lower 
branch of the spectrum it is necessary to analyze the 
relations ~ = 0 and a~ aH(K4 - 0) = O. The analysis has 
shown that in this case two relations, which do not follow 
from thermodynamics, are obtained between the parame­
ters of the potential and the phenomenological values of 
the components of the tensor gik. Therefore the simplest 
theory that explains the fact that awjaH(WI -0) "''''', 
without assuming an unusual (Fig. 2) form of the depen­
dence of the frequency on the field, should of necessity 
take into account the longitudinal weak Dzyaloshinski'i 
ferromagnetism. 

Thus, this possibility of vanishing of the frequency 
with aWr/aH(WI -0) "''''' seems to us to agree better 
with experiment. An analysis that starts out from the 
most general form of the potential <T> makes it possible 
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to write for H II Z a very simple form of the potential, 
which describes fully the experiment on COF2 and con­
tains only six experimentally-determined parameters 
(taking into account the relations (17a) and (18a)): 

cD='/ ,AL'+' /,BM'+'/ ,D, (LM) '+'/ ,aL,'+'/,CL' 

+d.L (L,M.+L,M.)+du(!) (LM)L,L.+dl~') (LM)M,M.-M,H" 

i.e., as many parameters as are used in the model de­
scription with the bilinear potential. The presented po­
tential is complete in the sense that addition of any other 
symmetry-allowed invariants does not change either the 
form of the w = w(H) dependence or the number of the 
experimentally determined parameters. 

The foregoing relations between Hd,1, H~l , and H~ll 
can be interpreted in the following manner. A fraction 
of the energy describing the longitudinal Dzyaloshinski'i 
interaction is expressed in terms of the mean values of 
the components of the spin operators and is derived from 
the spin Hamiltonian in two ways. First, this part of 
the energy appears as the mean value of the spin Hamil­
tonian of fourth power in the components of the spin op­
erators and, second, it is derived in third order pertur­
bation theory from the bilinear spin Hamiltonian with 
allowance for the intra-atomic spin-orbit interaction. 
The obtained relations between Hd,1, H~l , and H~ll show 
that the average products of the fourth-degree spin­
operator components are small in comparison with the 
analogous terms obtained from the bilinear Hamiltonian 
in third order perturbation theory, as should be the 
case also for spin 3/2. Thus, the experimentally ob­
served connection between the longitudinal and trans­
verse Dzyaloshinski'i interaction, which becomes mani­
fest in the inequality aw/aH(w-o) "'00, agrees with the 
spin value 3/2 for divalent cobalt. 

It should be noted that the experiment reported above 
and the observation of aw/aH(w - 0) '" 00 can be regarded 
as experimental proof of the existence of longitudinal 
weak ferromagnetism in antiferromagnets. 
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569 SOY. Phys.·JETP. Vol. 39, No.3, September 1974 

S. V. Petrov of the Institute of Physics Problems of the 
USSR Academy of Sciences for growing the CoF2 
crystalS. 

lp. L. Richards, J. Appl. Phys. 35, 850 (1964). 
2M. B. Golant, Z. G. Alekseenko, Z. S. Korotkova, L. 
A. Lunkina, A. A. Negirev, O. P. Petrova, T. B. 
Rebrova, and V. S. Savel'ev, Prib. Tekh. Eksp. No.3, 
231 (1969). 

3K. N. Kocharyan and E. G. Rudashevskfi, Trudy FIAN 
67, 127 (1973). 

4L . V. Velikov, K. N. Kocharyan, and E. G. Rudashevskfi, 
Trudy FIAN 67, 125 (1973). 

5K. N. Kocharyan, E. G. Rudashevskfi, Izv. AN SSSR, 
seriya fiz. 36, 1556 (1972). 

1:. E. Dzyaloshinski'i, J. Phys. Chern. Sol. 4, 241 (1958). 
71. E. Dzyaloshinskfi, Zh. Eksp. Teor. Fiz. 33, 1454 
(1957) [Sov. Phys.-JETP 6,1120 (1958)]. 

BE. A. Turov, Fizicheskie svolstva magnitouporya­
dochennykh kristallov (Physical Properties of Mag­
netically Ordered Crystals), AN SSSR, 1963. 

gA. S. Borovik-Romanov, in: Itogi nauki, Fiz.-mat. nauki, 
Vol. 4, Antiferromagnetizm (Antiferromagnetism), AN 
SSSR (1962). 

lOS. Foner, Magnetism, Vol. 1, ed. by G. T. Rado and H. 
Suhl, Acad. Press, Inc., New York (1963). 

llL. D. Landau and E. M. Lifshitz, Statisticheskaya 
fizika (Statistical Physics), Fizmatgiz (1964) [Addison­
Wesley, 1971)]. 

12yU • M. Gufan, Fiz. Tverd. Tela 13,225 (1971) [Sov. 
Phys.-Solid State 13, 175 (1971)]. 

13A. S. Borovik-Romanov, Zh. Eksp. Tear. Fiz. 38, 1088 
(1960) [Sov. Phys,-JETP 11,786 (1960)]. 

14L. D. Landau and E. M. Lifshitz, Phys. Zs. der Sow. 8, 
153 (1935). 

15A. G. Gurevich, V. A. Sanina, E. J. Golovenchitz;and 
S. Starobinets, J. Appl. Phys. 40, 1512 (1969). 

16yU • M. Gufan, Zh. Eksp. Teor. Fiz. 60, 1537 (1971) 
[Sov. Phys.-JETP 33, 831 (1971)J. 

17V. G. Shapiro, V. I. Ozhogin, and K. G. GurtovoI, Izv. 
AN SSSR, seriya fiz. 36, 1559 (1972). 

Translated by J. G. Adashko 
119 

Yu. M. Gufan et al. 569 


