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An expression is derived for the conductivity of a superconductor near the critical field H c2 for 
arbitrary concentrations of paramagnetic impurities. The limiting case of a short mean free path and 
also the case of low temperatures with a long mean free path are investigated. 

1. INTRODUCTION 

In investigating the conductivity of superconductors 
in the mixed state, the treatment is usually confined to 
superconductors with a rather high concentration of im
purities, when the electron mean free path l is much 
smaller than the pair size ~y,21 This is associated with 
the fact that the majority of type-II superconductors are 
alloys with relatively short mean free paths. It is also 
Significant that the problem of calculating the conduc
tivity is complicated even for very dirty superconduc
tors, which are described with the aid of differential 
equations. For an arbitrary mean free path the super
conductor is described by a system of integral equations, 
and the problem of calculating the conductivity becomes 
even more complicated. Nevertheless, the study of the 
properties of superconductors for arbitrary mean free 
paths is of considerable interest. In addition to very 
dirty super conducting alloys, type -II superconductors 
also exist with very long mean free paths of the elec
trons. The study of type-II superconductors with arbi
trary mean free paths may help us to better understand 
the phenomena which occur in superconductors and, in 
particular, it may help to establish the domain in which 
the approximation of a short mean free path is valid. 

Below we shall determine the conductivity of type-II 
superconductors in the mixed state near the critical 
field Hc2 for arbitrary mean free path and arbitrary 
te mperature. 

2. THE CONDUCTIVITY NEAR THE CRITICAL 
FIELD HC2 

It was shown in the article by Larkin and the author [3] 

that the transverse conductivity tensor fi is expressed 
in terms of the matrix elements of the operator K by 
the formula 

where B is the magnetic induction, T y is the Pauli 
matrix, 

(1) 

(2)* 

e {I' and e {2' are unit vectors in the plane perpendicular 
to the magnetic field, and~a! = a/or + 2ieA (a vector 
operator). The operator K is found by linearizing the 
system consisting of Gor'kov's equations for the order 
parameter and Maxwell's equations for the vector 
potential with respect to small, slowly varying correc
tions to the order parameter 3. and to the vector 
potential A: 
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( O~,) (i+is.!...-) M, =0. 
iJt OA (3) 

The operator £, in formula (3) is equal to the second 
variational derivative of the free energy with respect to 
t. and A. 

The system of equations for the linear response G, 
has the form (4] 

.... " .... (t) '" 

-inC, 2;pp (u,) + (-ievA,T,-i~ '''+ie<p+in 2;pp ) C (w) (4) 

-G (w+) (-ievA,T,--i; (I)+ie<p+in~~~') =0, 

~C(WI) G,+G,G(w) =0. 

where [ ... , ... J denotes the commutator, w+ = W + wo' cp 
and Al are the amplitudes of the scalar and vector 
potentials of the variable field, G is the Green's function 
in the absence of the variable field, and 61 is the cor
rection to the Green's function which arises in the pres
ence of the' variable field. 

The function G(w) satisfies the following system of 
equations: [5 ,6J 

iJC ~ A ~ ~ v;;;- + wC- CUJ=O, 

Sp'C=O, 'C'=1; 

w=wT,-ievAT,-i~+in~pp(UJ), ~ = (,_~. ~), 

(5) 

(6) 

v = mp/27T2 is the density of states at the Fermi sur
face, T s is the time of flight with spin flip, n is the 
impurity concentration, and the quantity Xpp' is related 
to the scattering amplitude fpp' by the equation 

2n ip J 
- -;;: jpp'=xpp' + 4n xP • .t.,.' dQ.,. (7) 

The correction £: (I) to the self-energy part is given 
by 

~" iv J A A", -. i ~ dQ. A-.\I' 
E •• =--4 2; •• ,(UJ+)(;..,2;.,p(UJ)dQ.,---T, --tip (UJ)T,. (8) 

2nT. 4n 

The current density jI and the order parameter A {1, 

are expressed in terms of the function G (1' according to 
the formulas 

. iep LS dQ. ~ J,=---T --(pC')'h 
n 4n 

tl("=( 0; ~'); 
-~,; 0 
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(9) 
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The system of Eqs. (4)-(6) and (8) can be solved 
near the critical field Hc2 by making an expansion in 
powers of the order parameter ~. Writing down the 
zero-order Green's function 6 in the form 

G(W)=(IX,(W); -iMw»), (10) 
,B,(w); -IX,(W) 

we obtain from the system of Eqs. (5) and (6) the follow
ing expressions for the functions O:p(w) and (3p(w): 

IX, (w) =sign w [1-1/2~' (w)~, (w) ], 

where the operators Lp(w) and Mp(W) are given by 

L,(w) =sign w{ sign wv(L +Zlwl+c-1+,;.-1 

J + -, S dQ,} -nv dQp , (JPPt 't. ~' 

(11) 

(12) 

~ { S J dQ.,} M.(w) =sign w -sign wva+ +Zlwl+,;-'+,;.-'-nv dQ"o",+,;.-'. ~ , 

where v is the velocity at the Fermi s~rface, app ' is the 
scattering cross section, and T = (nva) I is the electron 
time of free flight. 

Let us represent the Green's function 61 in the form 

(13) 

The equations for the functions gl,2 and fl ,2 substantially 
depend on the frequency ranges in which these functions 
are considered. In the frequency region sign W = sign 
w+ it turns out to be convenient to write down the equa
tions for the functions fl 2 and the functions gl 2 are 
found from the normalization condition (4). In'the region 
sign W = - sign W+ the functions fl 2 are expressed in 
terms of the functions gl,2> and the latter are deter
mined by using the system of Eqs. (4). First let us 
consider the frequency range in which 

sign w=sign Ul+. (14) 

In the frequency range (14) we obtain the following re
sult from the system of Eqs. (4): 

/,= (wo+L, (w» -, [evA, (~p( w) +~p (6)+» -Zi sign 6)~,], 
/,= (6)o+M, (w)) -, [evA, (~,( Ul) +B, (6)+» -2i sign w~,], (15) 

g, =-'M signUl (~. (6)+) t,+~. (w) ttl. 

In order to construct the operator K it is also neces
sary to find expressions for the functions fl 2 and gl 2 

in the frequency range " 

(16) 

In the zero-order approximation with respect to ~, we 
obtain the following results for the functions gl ,2: 

(17) 

(18) 

From the normalization condition (4) and formulas (11) 
and (17) we find the follOwing expressions for the func
tions fl ,2: 

/,=-2e[ (i. -'(w+)~) O,-'+(L,-'(w) ~)N, -'lvA" 

1o=-2e[ (M,-' (w+) ~ ')N,-'+ (M, -, (w) ~ ')0, -'lvA,. 
(19) 

By using formulas (17) and (19) one can obtain, as 
a result of simple but rather lengthy calculations, from 
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the system of Eqs. (4) an expression for the function gl 
correct to terms of second order in ~. This expression 
is essenti~l in order to construct the K33 element of the 
operator K. Expressions (15) and (19) are sufficient for 
the construction of all remaining elements: 

Ku=-.2.SdQ,T ~ ~£'-'(w), K22=-~S dQpT ~ ~M,-,(w), 
2 ~ ow 2 ~aw 

111:>0 111>0 

K12=K21 =O, 

K,,=- .!:!...vT ~ ~ SdQ,[L,-' (00) (i,-' (w) ~)p+ (Lp -'(w)~)O,-'p], 
m ~aw 

. .>0 (20) 

K" =-~vT ~ ~ J dQ.p[ (M,-' (w) ~')i, -, «~) +0,-' (M,-' (w)~·)], 
m ~aw 

.>0 

ie 1: a S ~ - A ~ K,,=--vT - dQ,[M.-' (00) (M,-'(w)~·)p+(M.-'(w)~')Np-'p], 
m aw 

.>0 

ie 1: a S A A ~ ~ K,,=- -vT - dQ. p[ (L,-' (w)~)M, -, (6) +N,-' (Lp-' (6)~) 1. 
m aw 

.>0 

The element ~3 is rather unwieldy for the case of 
arbitrary scattering by impurities; we shall not ex
plicitly write it down, but at once present the expression 
for the conductivity associated with isotropic scattering 
by impurities. For triangular and square lattices the 
conductivity does not depend on the direction in the 
plane perpendicular t9. the magnetic field. In our approx
imation the operator K is Hermitian and the Hall angle 
is equal to zero. Taking this into account, we find the 
following expression for the conductivity tensor: 

i(£~=6a~cr; 

e'p'v 4nve '1: iJ 
0= ---<I~I)T -D,(w) 

3n'(-c'+T,-') I1 ow 
.>0 

+. C'!T.-, [ (';-'-T.-') (D, (w) +D, (w+» (S,(w) +S,(w+» 

-·f nnup'(j'S,(w+) +j"S,(w» +4neHnv(S.(w) +S.(w+» 

(21) 

x (!,S.(w) +j"S, (w+» -ell,;. -, (S.(w) +S.(w+»' - L(S, (6) +S,(w+» 
3,;, 

2ip', . 8e'v<I~12) a 
+-.-(fD,'(w+)-j'D,'(w» ]}+ T~ -S,(w). 

::h n ~ i)w 
_>0 

Here and later on the angular brackets <..) denote 
averages over a cell, f is the amplitude for impurity 
scattering, and the arguments w+ and W denote contin
uation with W > 0 and W < 0, respectively. The quan
tities Si and Di are defined in the following manner: 

abS,(w)=-li-I-J dQ, <~(ap) (bp)M,-'(6)~'), 
( ~ ') 4n (22) 

ab S, (6) = _11_1_ S dQ, «ap) (bp) (M,-' (w) ~') (L.-'(w)~», 
< ~ ') 4n 

1 S dQ p - - A 

ab S, (6) = 2( I~I') ~ «ap){ (M,-' (w) ~')L,-' (w) (pb)L.-'(w) ~ 
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where a and b are vectors in the plane, which is per
pendicular to the magnetic field. 

In connection with the derivation of formulas (22) it 
is essential that near the critical field Hc2 the order 
parameter A is an eigenfunction of the operator a~:[7] 

(23) 

The second term in formula (21) is related to the ele
ments K11 and K22 ; the third and fourth terms arise 
from the elements K13 , K31 , K23 , and K32 . All of the re
maining terms in formula (21) are associated with the 
element K33 . 

3. CALCULATION OF THE QUANTITIES Sj AND OJ 

Let us demonstrate the method, which can be used to 
find all of the quantities Di and Si, by calculating DI as 
an example. The first formula in (22) follows from 
formula (23) and from the form of the operator Lpl. 
This relation is fulfilled for any function A which sat
isfies Eq. (23). Let us choose it in the form 

!1-+exp(-eHx'). (24) 

Here and below we are USing the gauge in which the 
vector potential is given by 

A~Hx(O, 1,0). (25) 

Let us introduce the function I/Jp' which satisfies the 
equation 

Lp "gn w1jJp~exp(-eHx'). (26) 

USing the definition (22) of the fun£tion DI(W) and the 
explicit form (12) of the operator Lp(w), we reduce Eq. 
(26) to the form 

[v. 0: -2ieHxv.+a] 1jJp~sign w[ 1 +sign wCc'-1',-')D, (w) ]exp (-eHx'), 

(27) 

The solution of Eq. (27) has the form 

1jJp~sign w[ 1+sign W(1'-'-1',-')D, (w)] S dx,Xp(x, x,)exp(-eHx,') , (28) 

where the kernel is given by 

Xp(x, x,) 

J O( ) -, [ a(x-x,) + ieHVy(x'-x,')] 
u X-Xi Vx exp - --- , 

v% V,; 

= l O( ) 1 1-' [a(x-x,) ieHV.(x'-X")] v XI-X Vx exp ----+ , 
V= Va: 

V.>O, 

V.<O. 

(29) 

The function DI(w) can be expressed in terms of the 
kernel Xp(x, Xl) according to the formula 

D, (w) = [sign w+ (1'-'-1',-')D, (w) ] 

dQ -
x S 4: S Xp(x, x,)exp[ -eH(x,'-x')jdx,. 

(30) 

In calculating the function D I (w) it is sufficient to con
sider the asymptotic behavior in Eq. (30) as x - "". In 
this connection it turns out to be necessary to evaluate 
the quantity 

f dQ. 
-Xp(x, x,) 

4n 
only for large values of both the sum and the difference 
of the arguments 

.dQ 1(n)'" 1 " J +nXp(x,x,)-+ 2v 2eH Ix'-x,'I'/' exp(-eHix -x, I) 

x {1-<D (( 2~V' I :~:: I)"')}, 
(31) 
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where ~(x) denotes the probability integral. 

Using formulas (30) and (31), we obtain the following 
expression for the function DI(W): 

D _. J(w) 
,(w)-slgnw l-(1'-'-1',-')J(w) ' (32) 

1 S-dY (V(2eHY)"') 
l(w)=--)-" -'I arctg e-·. 

v(2eH, Y' a 
(33) 

o 

From formulas (22), (32), (33) and the equation for 
A we find 

(34) 

and we obtain the following expression for the critical 
fie ld Hc2: [7] 

(35) 

Formula (35) goes over into the expression derived by 
Gor'kov[s] in the limit T - 00 and T s - 00. 

For superconductors containing a rather high con
centration of impurities, when the condition I « .; is 
satisfied, it follows from formulas (32) and (33) that 

D,(w) ='/, sign w[ I w I +1',-'+eH"D]-', D=vl,,/3. (36) 

By substituting the value of DI into formula (35) we 
obtain the well known expression r9-11] for the critical 
field 

In T, ~ (~+ 1', -'+eH"vl,,/3) _ (.!..,,) 
T 1jJ 2 ~T 1jJ 2 ' 

where I/J(x) is the psi-function. 

(37) 

The method used to calculate the function Dl (w) also 
enables us to determine all remaining functions: D3 (w), 
Si(w), and Q(J)(w). Omitting the intermediate steps, we 
immediately present the answer: 

D,(w) ~-sign w·_a_(Ei(_z)e') 1.[1 + a(1'-'-1',-') Ei(-z)e'] , 
2eHv' 2eliv' 

S,(w)= ~[1+sign w(·c'-1'.-')D,(w) ]'[1-aJ(w)], 
2eliv' 

S2(W)~ ~sign w[ 1+sign W(1'-'-1'.-')D,(w)] 
4eHv' 

{ a'+elIv2 . [1 ]} x --a-1(w)- 1 +-zEi(-z)e' , 

S,(w)= -p_[ Hsign W(1'-'-1',-')D, (w)] [1-al(w)], 
2elIv 

S,(w)~ Signw~[ (1+sign W(1'-'-1',-')D,(w» 
(2elIv') , 

(38) 

+ 2:lI(r'_-r'-')QI') (w) ] [ e:vl(w) + -;-Ei (-z)e'] [1- (1'-'-1',-')I(w) ]-', 

Q,~~ = Q[ 1 +_a_(1'-'-1'.-')Ei(-Z)e']-' , 
2eHv' 

am [eHV' 1 ] Q=---[l+signw(-r-'-1',-')D,(w)] --J(w)+-Ei(-z)e' 
2e'lI'v' a 2 

z~a.'/2eIIv'. 

Formulas (21), (22), and (38) determine the conductivity 
of a superconductor near the critical field Hc2 for 
arbitrary mean free path and arbitrary temperature. 

It is necessary to relate the quantity <IAI2) in formula 
(21) for the conductivity to an experimentally meas
urable quantity-namely, the value of the magnetic 
moment. Using formulas (10) and (11) we obtain the 
following expression for the current: 

j=2iep T~SdQp psign w(Lp- ' (w)!1) (Mp-' (w)!1·). 
n .l...l 4n (39) 
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Using the method described above, we find the following 
result for the right hand side of Eq. (39): 

S dQ. psign 00(£.-' (oo)~) (M.-' (00) ~') ~ x(M+ ~'-~'IL~), (40) 
4n 

_ ap {eHV' 
x~-4' ,J1+signoo(.-'-,,-')D,(oo)] -/(00) 

e H V" a 

+~-Ei(-~)exp(~)} [1-(-r-'-,,-')/(oo)]-'. (41) 
2 2eHv' 2eHv' 

Substituting expression (40) into formula (39), we obtain 

. 2iep •• '\1 -
J ~7[M+~ -~ iL~]T """ x(oo)· (42) 

Using expression (42) for the current, we find that the 
magnetic moment is given by 

4nM~ -8ep<I~I'>T 1:%(00). (43) 

4. LIMITING CASES 

Let us investigate the general expression (21) for the 
conductivity in two special cases. 

A. Low temperature T« Tc and long mean free 
path l» ~. In this limiting case the major contribution 
to the correction to the conductivity arises from the 
third and fifth terms in formula (21). The expressions 
for the functions Si and Di are determined from 
formulas (22), (32), and (38) and are given by 

D ,,' ~ s,' n ,,' n'l, . a (2eHv'I,"() 'I. 
,(~) g ~ 2(2eHv'),I.' D,(oo)~signoo eHv' In a ' 

p' '. p'n'l, 
S,(oo)~--; S,(oo)~s,gnoo----

2eHv' 8(2eHv') 'I, ' 

1 (eHv'I2'"() 'I, p 
S,(oo)~--In S.(oo)~--, 

eHv' 1001+(,-'+,,-')/2' 2eHv 

Substituting the values of the functions Si and Di into 
formula (21), we obtain 

o~ e'p'v [1+ 3<1~I') [2'.-,+~(~+~) 
3n'(, '+" ')it eHv'(,-'+" ') 3", 

( (2FHv') 'I, ( 1 ) (1 ,-'+..:,-' )) x In +1jl - -1jl -+---
nT 2 2 4nT 

(44) 

(45) 

OIP' ( n 3 2 (2FHV')'I, ( 1) (1 ,-'+,.-' )))]} +- 1+--- In +1jl - -1jl -+---
2n..: 12 3 nT 2 2 4nT ' 

where O't = 41TlfJ 2 is the total scattering cross section. 

The last term in formula (45) appears only in an 
exact calculation of the amplitude for electron scatter
ing by. impurities. This term contains an extra factor 
O'tp2/21T in comparison with the second term inside the 
square brackets. The latter term is small in the Born 
approximation, when O'tp2/21T « 1. 

We also present expressions for the magnetic moment 
and critical field in the same limiting case; these ex
pressions follow from formulas (43) and (35): 

B. Superconductors with a short mean free path 
(l « ~o). From formulas (22), (32), and (38) we find the 
following expressions for the coefficients Di and Si in 
the limiting case l « ~o: 

D sign 00 D sign 00 p'D,'(oo) 
,(oo)~ 2(loolh,-'+I.)' ,(oo)~ 2(1001+..:,-'+31.)' Sl(OO)~--3-

p'D, (oo) z 
S'(OO)~--3-' S,(oo)~D, (oo), S,(oo}~ signoop',..:D,(oo} 

3 ' 
, D () (47) 

Q("()' pv..:D,(oo) 
00 ~-s,gnOO3[lool+":'_'+31.]' 

S p..: ,00 
,(oo)~ 6[1001+..:. '+31.]' 

l.~eH"vll,/3, 

Substituting these values of the coefficients into 
formula (21), we find 

e'p'l, <I~I'> (1 ..:,-,+1.) <I~I') [1 '( 1 
0=-- 1+--.p' -+-- +-- --.p -

3n' 4nTl. 2 2nT 4nT 1.+..:,-' 2 

+ 1.+,,:,-')+_1 1jl"(~+ I.+":'-')]}. 
2nT 2nT 2 2nT 

(48) 

As T S - 00 formula (48) goes over into the correspond
ing expression given in Thompson's article. (2] 

It follows from formula (45) that the correction to 
the conductivity intrinsically depends on the length of 
the mean free path. For long mean free paths, the major 
contribution to the conductivity comes from the anom
alous terms. At low temperatures an additional loga
rithmic divergence appears in the conductivity. The 
exact calculation of the amplitude for impurity scatter
ing leads to the appearance of non-Born terms in the 
conductivity when the mean free paths are long. The 
non-Born terms vanish in the limit of high impurity 
concentrations, and the well known expression (2J is ob
tained for the conductivity in the limit T s - 00. Com
parison of formulas (45) and (48) shows that at low 
temperatures this situation occurs only for l < ~oI3. 

In conclusion I express my gratitude to A. 1. Larkin 
for helpful discussions and valuable comments. 
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