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An expression is derived for the conductivity of a superconductor near the critical field H ., for
arbitrary concentrations of paramagnetic impurities. The limiting case of a short mean free path and
also the case of low temperatures with a long mean free path are investigated.

1. INTRODUCTION

In investigating the conductivity of superconductors
in the mixed state, the treatment is usually confined to
superconductors with a rather high concentration of im-
purities, when the electron mean free path / is much
smaller than the pair size £.%’? This is associated with
the fact that the majority of type-II superconductors are
alloys with relatively short mean free paths. It is also
significant that the problem of calculating the conduc-
tivity is complicated even for very dirty superconduc-
tors, which are described with the aid of differential
equations. For an arbitrary mean free path the super-
conductor is described by a system of integral equations,
and the problem of calculating the conductivity becomes
even more complicated. Nevertheless, the study of the
properties of superconductors for arbitrary mean free
paths is of considerable interest. In addition to very
dirty superconducting alloys, type-II superconductors
also exist with very long mean free paths of the elec-
trons. The study of type-II superconductors with arbi-
trary mean free paths may help us to better understand
the phenomena which occur in superconductors and, in
particular, it may help to establish the domain in which
the approximation of a short mean free path is valid.

Below we shall determine the conductivity of type-II
superconductors in the mixed state near the critical
field Hi9 for arbitrary mean free path and arbitrary
temperature.

2. THE CONDUCTIVITY NEAR THE CRITICAL
FIELD H,

It was shown in the article by Larkin and the author !
that the transverse conductivity tensor & is expressed
in terms of the matrix elements of the operator K by
the formula

¢=B-*1,K1,, 1)

where B is the magnetic induction, Ty is the Pauli
matrix,

e2d_A
P Rapef) = {(eV0,4", €"0.0, (He™) K (6‘2’5+A‘)> C@r
(He)

e and e® are unit vectors in the plane perpendicular
to the magnetic field, and 3, = 3/3r + 2ieA (a vector
operator). The operator K is found by linearizing the
system consisting of Gor’kov’s equations for the order
parameter and Maxwell’s equations for the vector
potential with respect to small, slowly varying correc-
tions to the order parameter A and to the vector
potential A:
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(13+i<%)( :i:) =0. 3)

A

The operator L in formula (3) is equal to the second
variational derivative of the free energy with respect to
A and A,

The system of equations for the linear response 6]
has the form ™

G ~ ~ - A -
0; t ot 1.G— 06 1.t [ —ievAT,—iA, G ] Fin Zpp(0,) Gy

v

~in(§, Fpp (@) + (—ievA‘rlfiA“’ﬁ ieqptin AE,(,:,) ) G (w) (4)
G (w,) (—ievA,1,— iAW +ieptinS ) =0,
G(0,)GHG.G(w) =0,

where [..., ...] denotes the commutator, w. =@ +w , ¢
and A are the amplitudes of the scalar and vector
potentials of the variable field, G is the Green’s function
in the absence of the variable field, and G, is the cor-
rection to the Green’s function which arises in the pres-
ence of the variable field.

The function G(w) satisfies the following system of
equations:'*®

%6 1 6G-Ga=0
V—-(F OG—Go=U, (5)
SpG=0, G'=t;
5 jevAT,—iA+inS,,(0), A (0 A)
=@1,—levAt,—iAtin , = »
0=0 T pp(© —A° 0 (6)
- iv S i a9 -
Zpp'=YXpp' — ’Z de,,, Yop:Gpi Zpip — Zz—r— Tz _Zn:— Gy,

v = mp/27° is the density of states at the Fermi sur-
face, 74 is the time of flight with spin flip, n is the
impurity concentration, and the quantity xpy’ is related
to the scattering amplitude fppf by the equation

2n ip
- e Fopr="Yppr + E JXpmfnn’ dQy. (7)

The correction = to the self-energy part is given
by

A N LT
= =] T (06 S (@) dRy —

i dQ% ~an
7 ——‘1,8 Fd; (0)r.. (8)

2nt

The current density j, and the order parameter aw
are expressed in terms of the function G“ according to
the formulas

Ji=— ie:: TZ‘.( 4% (Péi) 11y

&“>=( 05 A‘);

4n —Az; 0
daQ daQ ©
=ihbval Y (G0 a=—ilbival Y [ 26
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The system of Egs. (4)—(6) and (8) can be solved
near the critical field H.9 by making an expansion in
powers of the order parameter A. Writing down the
zero-order Green’s function G in the form

5 ap(0); —ifs (@)
¢ — P
©@= (5 (or: —aniw ) (10)
we obtain from the system of Egs. (5) and (6) the follow-
ing expressions for the functions ap(w) and Bp(w):

ap () =sign 0[1—"/2B,(0) B (@) 1,

) _ R (11)
Bo(w)=2sign 0L, (0)8, Pp(w)=2sign oM, (@)4",
where the operators ﬁp(w) and 1\7Ip(w) are given by
L, (0)=sign m{sign ovd_t2lol+t!+7,7!
S 9%

fnvde,‘ Opp T E—}’ (12)

- dQ,,
M,(0)=sign o {—sign wvdiH2leltt -t —ne J. dQy,0pp, 1.7 ——}

47
where v is the velocity at the Fermi surface, 0, is the

scattering cross section, and 7 = (nvo)™" is the electron

time of free flight.

Let us represent the Green’s function él in the form

A g h

Giz(__fz; gz)' (13)
The equations for the functions g, , and f  substantially
depend on the frequency ranges in wh1ch these functions
are considered. In the frequency region sign w = sign
w+ it turns out to be convenient to write down the equa-
tions for the functions f, , and the functions g, , are
found from the normahzatlon condition (4). In ’the region
sign w =— sign w, the functions f, , are expressed in
terms of the functions g, ., and the latter are deter-
mined by using the system of Egs. (4). First let us
consider the frequency range in which

sign w==sign w,.

(14)
In the frequency range (14) we obtain the following re-
sult from the system of Eqs. (4):
fi= (0t Ly (@)~ [evAi (B, (@) 485 (04) ) ~2i sign 044,
fo= (003, (0)) ' [evA (B (©) +By (0,) ) —2i sign 0A.],
gi=—"121 signo (By( m+)fz+f3l3 () f1).

(15)

In order to construct the operator ﬁ it is also neces-
sary to find expressions for the functions f, 2 and g, 2
in the frequency range

—sign @=sign 0, sign ©.>0. (16)

In the zero-order approximation with respect to A, we
obtain the following results for the functions g, ,:

gi=—2ieN,"'VA,, g =2ie0,"'VA,, 17
- a dQ
Np=v ar + oottt 4:: —nv I dQy, Oppiy
(18)

~ a dQ,

0,=—v—07 + mo+1:"+1.~‘—1:."j T - 'wj dQp,0pp.
From the normalization condition (4) and formulas (11)
and (17) we find the following expressions for the func-

tions f, ,:

fr=—2e[ (L, (0+) A) 0=+ (L, (0) A) Ny~ ' VA,

- . 19
fo=—2e[ (My=* (04) A") Ny~ + (M, (0) A*) O, ] VA,. %)
By using formulas (17) and (19) one can obtain, as

a result of simple but rather lengthy calculations, from

539 Sov. Phys.-JETP, Vol. 39, No. 3, September 1974

the system of Egs. (4) an expression for the function g,
correct to terms of second order in A, This expression
is essential in order to construct the K,, element of the
operator K. Expressions (15) and (19) are sufficient for
the construction of all remaining elements:

K,,_——de,TZ__L -1 (@), K“——-—j dQ,TZ——M,, @),

>0

K,=K; =0,
K== Y = (40, (1, (0) (Ey~* () )9+ (L7 (@) 2)0,7'p),
@>0 ) ) (20)
Ko 2ur 3 2 f 40,0 Uy~ (0) A7) L (0) 40,7 Uiy ()89,
K=o o7 Z ~ [ 40, 1M, (@) (M, () A pr+ (™ (0) A Ny,
Km0 (0,5l (2,7 (@) )y () +7,7 B @) )1

>0

The element K,, is rather unwieldy for the case of
arbitrary scattering by impurities; we shall not ex-
plicitly write it down, but at once present the expression
for the conductivity associated with isotropic scattering
by impurities. For triangular and square lattices the
conductivity does not depend on the direction in the
plane perpendicular tg the magnetic field. In our approx-
imation the operator K is Hermitian and the Hall angle
is equal to zero. Taking this into account, we find the
following expression for the conductivity tensor:

Oap=0030;

e'p’v 4nve a
= - AT
3t (v 1Y) H ! Z Jo

8e’p <IAI* 7 8e’p <IA1® d
5 - —_ ERAAE Sy o ___OW
TZ' ——5i(0) —— T3 =—0" (@)

@>0

n(t~'+1Y)

>0

{(s ()5, (04))-

ie*p <|AI» ‘j‘? de
4r*mT (v~ 1Y) _cos *(w/2T)

(1)

— = [ 0i0) D) (S:(0) i)
Ts

- % anvp® (f*Ss(@y) +7°Ss(0) ) HaneHnv (S (o) +S(w4))

X (S (@) 178 (04)) —ellt (Su(0) +Se(04))* — —3‘3:—(& (©)+Ss(04))
2ip° . 8e*v CIAI® 7
D ) ) ]} +—n—T; —Si(0).

Here and later on the angular brackets ¢...) denote
averages over a cell, f is the amplitude for impurity
scattering, and the arguments w. and w denote contin-
uation with w > 0 and w < 0, respectively. The quan-
tities S; and Dj are defined in the following manner:

aQy - a9 7, -
j = Ly (0)A=D,(0)A j[m Ly (0)0-A=Di(0)3-A,

j B i, (0) A =80 (0) 9.4 j@lpip“(m)Ar———S‘(m)é‘_A,

4n

1 dQ, 1

Ss(0)= <A 3 <(M“(m)A)(L”(m)A)>=——2—-—D(w),

ab 5. (0) = (lmj T (BGap) ORI, )8, (g9

ab S (0)= <(ap) (bp) ({1, (@) A%) Ly (0) A)>,

<|Al> Tan

ab S (0) = ® (ap) {(M,™* (0) A) £, (@) (pb) L, (@) A

2<|Al > J. 4y
+(E, (0) A) M, (@) (pb) M, (@) A7),

§ 2 £t (0) (B (0) A p=Q (@) 3-8,
4n

Yu. N. Ovchinnikov 539



where a and b are vectors in the plane, which is per-
pendicular to the magnetic field.

In connection with the derivation of formulas (22) it
is essential that near the critical field H.g the order
parameter A is an eigenfunction of the operator 32:[

—0_*A=2eH.,A. (23)

The second term in formula (21) is related to the ele-
ments K, and K,,; the third and fourth terms arise
from the elements K., K, K;y, and K,,. All of the re-
maining terms in formula (21) are associated with the
element K;,.

3. CALCULATION OF THE QUANTITIES S; AND D;

Let us demonstrate the method, which can be used to
find all of the quantities Dj and Sj, by calculating D, as
an example. The first formula in (22) follows from
formula (23) and from the form of the operator Lp

This relation is fulfilled for any function A which sat-
isfies Eq. (23). Let us choose it in the form

A—exp(—eHz?). (24)
Here and below we are using the gauge in which the
vector potential is given by
A=Hz(0, 1, 0). (25)
Let us introduce the function zpp, which satisfies the
equation
Ly e1gn aPp=exp (—eHz?). (26)

Using the definition (22) of the function D (w) and the
explicit form (12) of the operator Lp(w), we reduce Eq.
(26) to the form

d
[ Pege —2ieHxv,,+a] Pp=sign o[1+sign o (17'—1,7") D, (w) lexp(—eHz*),

27
a=2|o|+t-+1,N

The solution of Eq. (27) has the form
Pp=sign o[ 1+sign o (v~'—1,7*) D, (0) ] 5 dz, K, (z, z,) exp(—eHz,?), (28)

—c

where the kernel is given by

HKp(z,z1)
I e(z—r.)v;‘exp[_ B el v:>0,
- Ux Hl)g ; (29)
\ 0(zy—z) lv. - ’exp[ e +le oy (@—2,") , v:<<0.
2% Ux

The function D,(w) can be expressed in terms of the
kernel %, (x x,) according to the formula

D,(w)=[sign o+ (1'—1,7") D, (0) ]
- (30)
X j‘i—i’ j Ky (z,z,)exp[—eH (z.2—2*) | dz,.

In calculating the function D (w) it is sufficient to con-
sider the asymptotic behavior in Eq. (30) as x — «. In
this connection it turns out to be necessary to evaluate
the quantity

only for large values of both the sum and the difference
of the arguments

j 4% Hp(z, z,) >

i 1
——exp(—eHl|z*—z*)
( 2311\ |z2—z 2| p( '

)b

o T—Z
x {1_(]) (( 2eHv* | x+z,
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(31)

540

where &(x) denotes the probability integral.

Using formulas (30) and (31), we obtain the following
expression for the function D, (w):
J(w)

D,(0)=sign mm,

(32)

J(0)=

rotg (_”(_z‘fﬂ) e, (33)

v(2eH) '/-[ g
From formulas (22), (32), (33) and the equation for
A we find
_ |Almp dQ,
A= TR @

and we obtam the followmg expression for the critical
field ch

(34)

ln% = 2nTZ [0='—2D, () ]. (35)

Formula (35) goes over into the expression derived by
Gor’kov'® in the limit 7 — « and 7g — .

For superconductors containing a rather high con-
centration of impurities, when the condition ! << ¢ is
satisfied, it follows from formulas (32) and (33) that

Dy(0)="/:sign o[ |o|+t,7'+eH..D]~", D=vl,/3. (36)
By substituting the value of D, into formula (35) we
obtain the well known expressmn“"“ for the critical
field
T, _ L 1T, teH ,wl,/3 1
o *w(z R )_‘P(?) (37)

where ¥(x) is the psi-function.

The method used to calculate the function D,(w) also
enables us to determine all remaining functmns D,(w),
Sij(), and Q" (w). Omitting the intermediate steps, we
immed1ately present the answer:

")
(El( —z)¢e%) /[1+———2 Y

D;(w)=-—sign o

El(—z)e]

Si(w)=—— o [1 —[1+sign o (77'—7,7") D (0) I*[1—al (0) ],

S, (0) =———sign o[1+sign o (1~'—1,7!) D;(0) ]

op
“heHv*

ot+eHv* 1 . R
x{ - J(m)—[1+7E1(—z)e]},
» (38)
Si(0)= m[ﬁsign o(t'=1,7)D(0) [ [1-al(0) ],

Ss(0) = sign "’(70;71}7[ (1+sign o (v'—7,") D, ()
2eH eHv?

o (-n e ) ][

e )+—E1( —z) ][1 (=1, ()]

00 =01+ o —nEi(-0)e'|
v 1 _. .
J()+—Ei(-2)e ]

Q=————[1+signo(t~'—1,

ZHZ 2
z=q*/2eHv*.

Formulas (21), (22), and (38) determine the conductivity

of a superconductor near the critical field H¢9 for

arbitrary mean free path and arbitrary temperature.

It is necessary to relate the quantity {/A[*) in formula
(21) for the conductivity to an experimentally meas-
urable quantity—namely, the value of the magnetic
moment. Using formulas (10) and (11) we obtain the
following expression for the current:

z‘ePTZj——pslgnmw (@) (i @)8). (39)
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Using the method described above, we find the following
result for the right hand side of Eq. (39):

dQD . r v ~
[} —Im—pslgn o(Ly (@) 8) (M, (0) A') = %(A0, A'—=A"0_D), (40)

>.z1

4e’H’ -[1+sign o (v~'—1,7) D, (0) ] {—-J(m)

1 . o?
oy (_ ZeHv") exp
Substituting expression (40) into formula (39), we obtain

2wp[A0+A —A% A]TZ i(@).

(5:;17)} - ) ()] (41)

(42)

Using expression (42) for the current, we find that the
magnetic moment is given by

4nM=—8ep<|A|’>TZ)~g(m). (43)

4. LIMITING CASES

Let us investigate the general expression (21) for the
conductivity in two special cases.

A. Low temperature T << T, and long mean free
path Z >> £, In this limiting case the major contribution
to the correction to the conductivity arises from the
third and fifth terms in formula (21). The expressions
for the functions S; and Dj are determined from

formulas (22), (32) and (38) and are given by
at (2eHv*/y)"
Di(0)= — . D)= P il P
(0)=sign o 2(2eHu’)"" D;(0)=sign o T In -
pZ . pln’/z
Si(e)=——:  S(0)= S
(o) AT (o) =sign © 82l
S, (0)= 1 N (eHv*/2y)" Su(0)= (44)
: lol+(+nn72" " 2emy
. pint a*pv
S = R ht— D —
s(0)=sign o F Qe QM=Q 3 (2eHr)
|o|2<e v

Substituting the values of the functions §; and Dj into
formula (21), we obtain

3<1A1H 2,1 1
+ 2ot — (= + =)
eHU (- F o) [ T\

o(5) ()

(1 (e () ()]

where 0} = 47|f|? is the total scattering cross section.

- e‘p*v
- 3n’(t“+t,“)l{

(2yeHv)"
x (m% + (45)

The last term in formula (45) appears only in an
exact calculation of the amplitude for electron scatter-
ing by.impurities. This term contains an extra factor
0yp°/27 in comparison with the second term inside the
square brackets. The latter term is small in the Born
approximation, when op®/27 << 1.

We also present expressions for the magnetic moment
and critical field in the same limiting case; these ex-
pressions follow from formulas (43) and (35):

eH 0= (2.718aT.)*/2y, 4nM=—p*C|A|*>/nHv. (46)
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B. Superconductors with a short mean free path
(I KL £). From formulas (22), (32), and (38) we find the
following expressions for the coefficients Dj and S; in
the limiting case I <K £ o

sign
2(lol+t,74A)

_ p*Di(@)
Sz(ﬁl)——g-,

sign 5i( )_pzD"(‘D)
2(lol+t,-+an)’ N YT T3
=D (o) sign opviDi (@)
1 i 3 1
Fe) 4D
6[lol+T,~+32]"

Dy(w)= Dy(w)=

Si(w)

pvtD, (@)
3[lol+1,~'+31]"
A=eH vl /3.
Substituting these values of the coefficients into
formula (21), we find

<A ,( 1

1:.“+7»,)
4T 2 2nT

So)=

Q" (0)=-signo Ss(0)=

<Al 1

1
4T La+e,~t M ( 2
-1 + -1
n AtT, )+ 1IJ"(1 i At )]}
2nT 2nT 2nT
As Tg — < formula (48) goes over into the correspond-
ing express1on given in Thompson’s article. 2

ezp2l s
3m*

o=

(48)

It follows from formula (45) that the correction to
the conductivity intrinsically depends on the length of
the mean free path. For long mean free paths, the major
contribution to the conductivity comes from the anom-
alous terms. At low temperatures an additional loga-
rithmic divergence appearsin the conductivity. The
exact calculation of the amplitude for impurity scatter-
ing leads to the appearance of non-Born terms in the
conductivity when the mean free paths are long. The
non-Born terms vanish in the limit of high impurity
concentrations, and the well known expression‘®” is ob-
tained for the conductivity in the limit 7y -~ ., Com-
parison of formulas (45) and (48) shows that at low
temperatures this situation occurs only for I < §,/3.

In conclusion I express my gratitude to A. I. Larkin

for helpful discussions and valuable comments.
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