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The Hamiltonian of the Hubbard model is written down in the representation of many-electron 
operators. General formulas connecting the usual Fermi operators and the many-electron operators 
are proposed. Degenerate d 1 and d -, configurations are specifically investigated. The spectrum 
obtained consists of a number of bands corresponding to the atomic terms, and for even the d n 

configuration the bands arising from 1 L singlet terms may be extremely narrow (localized levels). 
The proposed model enables us to explain qualitatively the relatively low value of the specific heat 
for elements with an even number of d electrons per atom, and also explains the strong temperature 
dependence of their paramagnetic susceptibility. 

Up till now the theory of the transition metals has 
faced substantial difficulties. The reason for this state 
of affairs is the necessity to simultaneously take into 
account the strong interaction between the electrons and 
the periodic lattice potential. Such a calculation can be 
accomplished within the framework of the Hubbard 
model. (1-3] However, its extension to the case of degen
erate electron configurations (of the type dn ) turns out 
to be extremely cumbersome. The application of the 
many-electron operator technique is more effective 
here. One of the possible types of such operators 
(transition operators) was proposed by Hubbard[4] and 
used in(5] to investigate the magnetic properties of a 
system of d-electrons in a crystal in the simplest case. 
The electrical properties of the d-electrons were in
vestigated in article[6] in an analogous situation by ap
plying the second-quantization operators which corre
spond to many-electron wave functions of the atomic 
type. (7] The introduction of these operators enables us 
to determine the connection between the Hubbard opera
tors and the ordinary Single-electron Fermi opera-
tors ,r8] this relation being essential for the construction 
of a general technique. 

In the present article we consider a general scheme 
for obtaining the Hamiltonian of a system of d-electrons 
in a crystal in the representation of many-electron op
erators, including the calculation of the coefficients in 
terms of single-electron matrix elements. The d l and 
d2 configurations will be specifically considered with 
the lowest and first-excited Coulomb terms (2n, 3 F, 
In, 4F ) taken into consideration. The latter is quite 
essential for the transition metals, where the separa
tion between terms is comparable with the magnitude of 
the crystal potential. The spectrum obtained reveals 
certain characteristic features for each configuration, 
and these can be used to elucidate the distinctive fea
tures of the observed properties of the transition 
metals. 

1. THE HAMILTONIAN IN THE REPRESENTATION 
OF MANY-ELECTRON OPERATORS AND THE 
EQUATIONS FOR THE GREEN'S FUNCTIONS 

The case of s-electrons was investigated by the 
author earlier. (8] In the general case the transition 
from the usual second-quantized representation to the 
many-electron operator representation X( rnr~') 
( r = S L J.l M), where Sand L denote the magnitudes of 
the total spin and orbital angular momentum of the In 
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configuration of n electrons and J.l and M are their 
projections, is accomplished by the following formulas 
(see Appendix 1, p = 2 (2l + 1)) 

• 
ay+= I: I: l';Gr~~,C'~;n_,x(rnrn_.). (1) 

Here G~~_l are the Racah parentage coeffiCients, and 
for the case of LS coupling one has (9] 

Relation (1) can be derived by calculating the matrix 
elements of the operators a y in the representation r n , 
where the latter can be written in the form I r n > 
= Arn 10 >, where Arn is the many-electron second-
quantization operator introduced in[7], which is a linear 
combination of produce of the n operators a'y. 

One can easily verify with the aid of (1) that the anti
commutation rules for a yare indeed satisfied if the 
operators X( rn r~') satisfy the Hubbard multiplication 
rules [4] and normalization conditions, 

[a,+,a,-]+=6" I:x(rn) =6,,-. x(rn)",x(rnrn ). (2) 

With the aid of (1) the Hubbard Hamiltonian (the 
Coulomb interaction between nv electrons at site v is 
taken into account) takes the form ({ r n } == rhll q{) ... 
{i} == i l ••• ip) 

;le= .E [nvEv+--~-nv(nv-1)Qv'(rn) ]xv(r n )<D(i .... in-1. .. ip ) 

'Yn{r,,}\i} 

+ 

x xv, (fn,I'n,-,) ~ (. .. i.,-I-1 ... in,-1 ... ) Xv. (r n,-" r n,). 

In contrast to previous work, we obtain here in the 
general case explicit expressions for Qv and 

(3 ) 

B(vr, ... ) in terms of the single-electron matrix ele
ments of the Coulomb interaction and of the lattice po
tential (see Appendix 2). 

In addition, in analogy to(8], in expression (3) are 
conserved the diagonal operator products 

it ip 

oD(i .... ip)=(i,! ... ip!)-· .E IIxv,(I',) .. ·IIx.,(rp ). (4) 
{vtl ... hpJ "\'[=1 'lip 

which take into account, in the representation of second 
quantization, the restrictions imposed in the summation 
over sites by the Pauli correlations (L ... ip denote 
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the number of sites with configurations l' ... lP). 

Expression (3) has an important advantage over the 
usual representation, namely, the Coulomb interaction 
is diagonal. To be sure, if the crystalline potential is 
comparable with the Coulomb interaction, then we must 
also investigate the matrix elements B( ... ) which are 
off-diagonal in r, including the excited states rn. How
ever, this problem is solvable if we limit ourselves to 
the first excited terms. This limitation apparently cor
responds qualitatively to the actual situation in transi
tion metals. As we shall see later on, equations of the 
Slater-Koster type (l0] are obtained in the limiting case 
as Q - 0, these being characteristic of the tight-bind
ing approximation. This implies that the scheme de
scribed in the present article is valid in both limiting 
cases. It is natural to anticipate that for Q "" B we 
shall have some kind of interpolation that describes ap
proximately the actual situation. 

We shall carry out the subsequent calculations by 
USing the Green's function method. We introduce the 
equal time retarded temperature Green's function 

G,,' (f._.f .If :,f :'-.) =«X.(f._.f.) IX., (f :,f:,_.)), 

The equation of motion with the Hamiltonian (3) takes 
the form (N is the number of sites) 

I I 1 , , 
EG,,' (fn-1f.lf.,f.,_,)= --< [X. (f._.f.), X.' (f.,f.,_.) 1 +> 

2n 

H [X.(f.f._.), ~l-IX.' (f:'f~'_,»>, v, v'=1, .. N. 
(5 ) 

Let us substitute f from (3) into (5) and then de
couple the operators belonging to different sites. Since 
the commutators [XII' it>]_ obtained after the substitution 
always contain an off-diagonal operator of the type 
XII (rn-1, rn) with II c;£ 111,112, the corresponding 
Green's functions will vanish provided that 

X.(fS.,) =0, f.""f.,. 

Then instead of Eq. (5) we obtain (N' '" N - 1, 
N - 2) 

Now let us proceed to the discussion of specific 
electron configurations. 

2. THE CONFIGURATION d1 

(6) 

(7) 

First let us consider the simplest case of the d 1 

configuration. To allow for processes involving the 
creation and annihilation of holes and pairs, it is neces
sary to take the neighboring configurations dO and d2 
into consideration. The remaining configurations dn 
(with n > 2) lie higher and do not play an important role. 
Taking only the lowest Hund term 3 F for the d2 con
figuration into account and changing to the Fourier 
transform Gk( rnrn ,), we obtain the follOwing result 
(n'" 1, 2) from Eq. (7): 

[E-8'~N-' (.,. i.-i ... ) +80~N-' ( ... io-1 ... )-I1.(dOOd) lG.(OdldO) 

= X(d)+X(O) + '\1 11.(dOOd')G.(Od'ldO) + '\111.(dd'Of.)G.(dT.ldO)' 
2nN l..J l..J 

d',+d) ,'r, (8) 
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[E-Er'~N-' (. .. i,-1. . . )+e'~N-' ( ... 1.-1. .. )-I1.(f.d df.) lG. (df.1 f,d) 

=lm)+X(d) + '\1 B.(f.d'df.)G.(dT,'lf.d) 
2nN l..J (9) 

+ L,11.(f.Odd')G. (Od'lf,d), 
d' 

where the Fourier components of the transfer matrix 
elements are given by 

11. (f." f :,-,; 1' •• -., f:,) =Lx (f 00-.) +~) }~N'B. (f On f:.- t ; f"-h f~,), 
n,_t (10) 

and we are using the symbols 0, d, and r 2 to denote the 
states dO, d ' (2D), and d2(3 F ). 

We can write down similar equations for the new type 
Green's functions Gk(d'r2i dO) and Gk(O d' I r 2 d) 
which appear on the right sides of Eqs. (8) and (9); 
these new equations differ from (8) and (9) by the ab
sence of the inhomogeneous terms. Then we obtain the 
complete system of equations for Gk. Setting the de
terminant of this system of equations equal to zero cor
responds to the condition for the existence of poles in 
the Green's function, i.e., it yields the equation for the 
determination of the quasiparticle spectrum: 

DetJ (E-Er.+Er._.)B.,-I1.d =0, n=1, 2, (11) 

the subscripts Q' and f3 label the rows and columns of 
the determinant and in our case take the values 0, d, 
and 3F (S '" 1, L '" 1, fl., M). 

One can easily verify that by neglecting creation and 
annihilation processes (which corresponds to going over 
to a single-configuration approximation), we obtain 
from Eq. (11) the well known equations of the Slater
Koster type[10 j (tight-binding approximation) for the d
electrons with allowance for the correlation effects, 
which are manifest in the appearance of the factors 

Since the quantities X( rn) can be expressed in terms 
of the Green's functions, which in turn are expressed in 
terms of X( r n ), one can obtain for the determination of 
X( rn) a closed system of equations, which is supple
mented by the normalization conditions (n denotes the 
average number of electrons per site): 

£X(fn)=1, L,nX(I'n)=n. (12) 
n 

Thus, these equations make it possible for us to cal
culate the spectrum, denSity of states, etc. in a certain 
kind of interpolation scheme between the conventional 
tight-binding approximation (Q '" 0) and the case corre
sponding to the atomic limit (B - 0). We shall not 
carry out here any further calculations for the d 1 con
figuration, which turns out to have a complicated spec
trum of overlapping bands, but instead let us go on to 
investigate the d2 configuration since, as will become 
clear, the possibility of a qualitative comparison of 
these two cases exists (without detailed calculations), 
and such a comparison leads to a number of interesting 
conclusions. 

3. THE CONFIGURATION d2 

In calculating the spectrum of the d2 configuration, 
significant differences show up in comparison with the 
d 1 case. As is well known, the excited terms 'D, 3 P, 
'G, and 'S of the d2 configuration lie rather close to the 
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ground term 3F (for example, E('D) - E(3 F ),,> 1 eV). 
During the formation of bands in a crystal, these terms 
may turn out to be located within the lower 3 F band. We 
must take this fact into account when investigating Eq. 
(7). For the excited d' and d 3 configurations we shall 
accordingly consider only the ground terms 2 D and 4 F. 
Consideration of Eq. (7) again leads to an equation for 
the determination of the energy spectrum, of the type 
(11) with n - 2, 3. Equation (11) breaks up into a series 
of independent equations according to the symmetry of 
the coefficients Bai3 • 

Let us consider Eq. (7) for the states of the singlet 
terms of the type' L (= 'D, 'G, 'S): 

1 --
[E-E('L) <D N -, (i,-1) +e,<DN _, (i,-i) 1 G", (d'Lj'Ld) = 2;;"6,.. [X ('L) 

+X(d) l+[X('L)+X(d) 1 I: {1: B(v'L,v,d"; vd,v,r,") 
"a(:FV) d"r2" (13) 

x <D N -,(i,-1, i'L-1) G., •. (d'T,"j'Ld) + .E B(v'L, v,r,"; vd, v,r,") 

x <DN-,(i,-2)G" •. (r"T,"j'Ld)}. 

Here d = ma, 'L = OLOM" r; = 3F 'L( /J.M2), and r~ 
= 4 F( %,3, /J.:M3). It is clear from Eq. (13) that the 
terms corresponding to the creation or annihilation of 
the excited states d and d 3( 4 F) due to the transfer of 
an electron between sites must, generally speaking, 
satisfy the conditions for conservation of angular mo
mentum-both spin and orbital angular momentum. 
Thus, for example, the transition of two sites from the 
states 'L' L( S = 0) into the states d and d\ 4F ) (S ;c 0) 
is associated with nonconservation of the total spin. The 
situation is somewhat more complicated with regard to 
transitions of the type d2 (' L) + d 2 ( 3 F) _ d '( 2 D) 
+ d\4 F ) (S = 0 + 1- %± '12) since states having S = 1 
also exist among the final states. However, in the first 
place it is necessary to recognize that such transitions 
occur as a result of the interaction of different terms 
('L and 3 F ). In the second place, after taking account 
of the crystalline field in 'L and of the partial lifting of 
the orbital degeneracy, similar prohibitions can also 
arise with respect to the orbital quantum numbers, as 
a more detailed analysis shows. (In particular, such a 
situation occurs for the orbital singlets 1 r, which are 
obtained from the 'L terms, whereas for the 3F and 
4F terms the doublet states turn out to be the lowest.) 

Conversely, no selection rules at aU appear for the 
processes 'L + 3F ~ 3F + 'L. The latter thus specify 
the dispersion part of the 'L-band spectrum, while the 
creation and annihilation processes that are forbidden 
by the selection rules for the 'L states do not play any 
role. Omitting the corresponding terms in Eq. (13), we 
obtain the spectrum of the singlet states in the form 

E=E('L)-e(d)+ .E B.('Ld",dr,"J. (14) 
d",r1"=LL,3F 

At the same time, for the states of the ground term 
d 2 ( 3F ) the creation and annihilation processes satisfy 
the Sand L conservation laws (3 F + 3F = 2D + 4F; S 
= 1 + 1 = Y2 + ~2) and, therefore, these processes must 
be retained in the equations. In this case l) we obtain 
the following set of equations from the general equation 
(7): 
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(15 ) 

where the follOwing abbreviations have been introduced: 
the symbol 0' corresponds to the 'L term, 2 corre
sponds to the 3F term, and 3 to 4F (d 3), so that 

e2=E,-e,+b22 , a,=iX(d) +K(2) 1/2nN, 

b22=[X(d) +X (2)] <D N -, (i,-1, i,)B.(2dd2), (16) 
bo·,=-[X(d)+X(2) l<DN -, (i,-i, i,)B.(2ddO'), 

b".=- [X(O',)+X(d) 1 <D N _, (io.-1, i,)B.(O'dd2) 

and so forth. 

An estimate of the average values of <I> (see Appen
dix 3) enables us to classify all the matrix elements 
bai3 according to the parameter X( d). Sin~e in .our . 
model X(d) (=X(3)) is the number of quaslparticles III 
the state due to the increase of the Coulomb energy, one 
should expect X( d) « 1. Then, by keeping only the 
largest terms (with respect to this parameter) in Eqs. 
(15) we obtain the spectrum for the 3F band in the form 

E(k) =l/2[E('F) -e,1±'/,{[2E(,F) 

-e,-E('F)l'+IB.(,F, 'F; d, 'F) l'r". (17) 

We see that the processes of creation and annihila
tion, which determine the width of the 3F band in second 
order, play the principal role in the dispersion part 
'B(k) of (17). 

The physical meaning of this result is that for a 
small number of d and d 3 configurations the transfer of 
d 2 states over these configurations is impeded because 
of their low probability (~X(d)). Therefore, second
order processes give the major contribution I 13k I 
~ X(d)l/2, and such processes require the presence of 
singly occupied sites only in the final state (including 
the presence of the X( d)-state, the wave function is 
~X(d)'/2). To the contrary, for the 'L band, where the 
creation and annihilation processes are forbidden, the 
width depends only on low-probability first-order 
processes ~X( d). 

Rough estimates of X( d ) can be obtained by calculat
ing the average number of excited states according to 
the usual formula 

X(d)~(exp (!1E/kT) +1)-', 

where tlE is the difference, somewhat reduced by the 
crystalline potential, of the Coulomb energies between 
the d and d 3 configurations and two d 2 configurations. 
Assuming, for example, tlE "" 10- '3 erg we obtain X(d) 
"" 10-3 (for T = lOOK). A more rigorous estimate of 
X( d) must be obtained from the self-consistent equations 
for the spectral intensity with the Green's functions de
termined by solving the system (15). The calculations 
show that in this case the obtained values of X( d) are 
of the same order as the usual values of the parameters 
for the initial band spectrum. However, the tempera
ture dependence of X( d) turns out to be much weaker 
than for ordinary thermal excitations, owing to the pos
sible existence of a minimum in the energy of the entire 
system (including the 3 F band of the d 2 configuration, 
whose width is ~X(d)'/2) at definite values X(d);c O. 

Now assuming that the initial width of the band is 
'::;B(k) "> 3 eV (a typical value obtained in single-elec
tron calculations) and using formulas (10), (3.4), and 
(3.5), we obtain for the width of the band, tlk = E(kmax ) 
- E(kmin), a value ""0.5 eV for the 3F band (from Eq. 
(17)) and a value between 10-3 and 10-2 eV for the 'L 
band (from Eq. (14)). Thus, the presence of the factor 
X( d) in the probability for transfer processes and the 
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prohibition of creation and annihilation processes 
strongly narrows the lL band, which leads to the ap
pearance of a sharp maximum in the density of states 
N(E). 

Nevertheless, the cited numerical estimates are only 
for purposes of illustration. A rigorous calculation can 
be performed only on the basis of exact wave functions. 
This can hardly be done for the 3d-metals at the present 
time, and the same is true for the near future. 

Taking into account the atomic-spectroscopy data on 
the energy positions of the 3F and lL terms (E ( 'D) 
- E( 3F ) "" 0.8 eV in Ti), one can estimate that the ID 

term will fall in the 3F-band in the crystal and, by 
possessing sufficient capacity, its position will in fact 
determine the value of the Fermi energy. 

This case corresponds to very curious physical 
properties of a system of d-electrons and can be real
ized for all even dn configurations. The experimental 
data[ll,lZ] point precisely to the existence of regular 
differences between elements with even and odd ground 
configurations (see the accompanying figure). Below we 
shall investigate the electronic specific heat and para
magnetic susceptibility. 

4. CALCULATION OF THE ELECTRONIC SPECIFIC 
HEAT AND PARAMAGNETIC SUSCEPTIBILITY 

As is well known, the electronic specific heat Cv and 
the paramagnetic susceptibility X of transition metals 
are appreciably higher than those of nontransition 
metals; this can be explained by the contribution of the 
collective d-electrons, which form relatively narrow 
bands. However, the existing theory does not explain 
the sharply-expressed alternation in the values of Cv 
and X for elements containing even and odd numbers of 
d-electrons[ll] (see the figure), and it also does not ex
plain the strong, almost linear temperature dependence 
of x( T) for elements with a d Z configurationYZ] The 
latter cannot be explained by the small term (kT/EF)z, 
which is available for the Pauli paramagnetism. Below 
we shall calculate Cv and X in the proposed model un
der certain simplifying assumptions. 

The spectrum which is obtained for odd configura
tions does not differ qualitatively from the usual single
electron calculations except for the fact that the effec
tive width of the band turns out to be narrower, which 
enables us to explain the enhanced values of Cv and X 
which are observed in d 1 (Sc, Y, La) and d 3 (V, Nb, Ta) 
configurations. [11] 

In our model the situation is substantially different 
for even configurations and can be described by two 
bands, the width 0 of one of these bands (the lL-type 
band) being very small. We consider next the limiting 
case kT» 0, when the quantity 0 can be neglected, 
that is, 

E.=8.+~, cos ak, E.'=E,'('L). (18 ) 

Calculating the averages Xz and X2', we have to
gether with the normalization condition (iJ. denotes the 
chemical potential) 

X.=_1_arccos3 Jl-8, -, [ (E,'-Jl») 1]-' 
Bn' ~, ' x, = exp ----;;r + , 

X,+X,'=1. 
(19) 

Here (32 is to be understood as the effective width of the 
band, and Xn were determined in terms of the Green's 
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function according to the usual formulas 
1 X._,+X. 

G.(n-l,n!n,n-1)= 2n E-E.(k) 

From Eqs. (19) we find 

E ' X, Jl= ,-kTln--_-. 
i-X, 

(20) 

(21) 

Since X2 is a function of iJ., Eq. (21) can be regarded 
as an iterative equation with respect to iJ. (including X2 

"" 0 and 1). Since kT/ E2 , « 1, we find iJ. = E 2 , in the 
first approximation, and in the next approximation iJ. is 
linear in T. The physical meaning of (21) is that at for 
X 2 > Yz (the band is more than half filled) iJ. < E~ and 
decreases linearly with increaSing T (the electrons 
pass from the band into the level E~). To the contrary, 
if E~ lies in the lower half, then X~ < Yz, but iJ. > E~ 
and increases linearly with T (the electrons pass from 
the level into the band). 

Now let us calculate the specific heat of the electron 
system. The energy of the electrons in the band and in 
the level is given by 

U=Uz+U/ =Ua+ NX 2' E/, (22) 

hence, by calculating U2 and X; to terms of second 
order in kT /E~ we obtain 

c,=(n3' +o;')N(E,')k'T={T, 0;=-1n X~. (23) 
i-X, 

Expression (23) differs from the usual expression by 
the presence of the term ~cl and by the fact that the 
density of states N( E) is evaluated at E = E~, where 
the Fermi level is now located. The term with ci is 
due to the linear dependence of the chemical potential 
iJ. on T, as indicated by Eq. (21). If E~ does not lie too 
far from the bottom of the band Ez( k = 0), it is then 
easy to see that (23) gives a lower value for the specific 
heat than would be observed in the absence of a local 
level. 

The quantitative results are strongly dependent on 
the form of the function N( E). For N( E) = aEt we ob
tain X2 ~ Et + 1, whence N( E) ~ Et ~ XVt + 1; since X2 

= 1 if no local level is present, the ratio y '/Y (where Y 
corresponds to the specifiC heat of the system without 
the local level) is given by 

r 
50 It Cr Mn 

I~ y ~ ~ ~ k h ~ N ~ 

Nh ~ ~ fu W b lli ~ ~ ~ 

Experimental dependence of the paramagnetic susceptibility of 
transition-metal alloys on the number of electrons according to the 
review article [11). The different types of circular symbols correspond 
to different alloy systems. The quantity r, denoting the number of 
(d + s)-electrons per atom, is plotted along the axis of abscissas. 
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,( _ (1+ 3a' ) -'1'+1 -- -- X, . 
Y n' 

(24) 

Then for t = 2, for example, we obtain y'jr "" 0.5 at 
X2 = 0.1 and y'/y"" 0.3 at X2 = 0.01. As is well known 
from experiment,[l1) the ratio of the specific heat (y') 
for elements with an even number of electrons (d2: Ti, 
Zr, Hf and d4 : Cr, Mo, W) to the specific heat (y) for 
elements with an odd number of d-electrons (d 1: Sc Y 

3 ' , 
La and d : V, Nb, Ta) remains constant over the peri-
odic table, ranging from 0.3 to 0.4, in agreement with 
our estimates. The latter, of course, are only illustra
ti ve in nature; however, the very fact that the elements 
can be divided into two groups receives a rather clear 
physical explanation. Elements with an even configura
tion have singlet levels in the spectrum, giving localized 
levels against a background of the bands formed by the 
other d-states. These levels determine the position of 
the Fermi energy and contain an appreciable fraction 
of the electrons, which give a contribution to the spe
cific heat only in the case of transitions into the band 
(the term with 0.2 in Eq. (23 )). In this connection a 
substantially smaller number of electrons remains in 
the normal band, and their denSity of states at the 
Fermi leve I becomes lower, which also leads to a 
smaller value of cv. The lower values of Cv in the 
configurations d2 and d 4 were previously attributed to 
the location of the Fermi level at the minimum of the 
density of states; however, in contrast to the model 
proposed here, the very fact of the formation of low 
values of N( E F) just for the even configurations was 
purely accidental. 

Now let us go on to investigate the paramagnetic 
susceptibility X( T). In the transition metals for all 
three periods in the configurations d 1_d 4 , this quantity 
obeys the following well expressed relationships :[11,12] 
1) the value of X for even configurations is roughly 
half as large as for odd configurations; 2) dX/ dT > 0 
and is appreciably larger in the even configurations 
(especially for d2), while dX/dT ~ 0 and is small in odd 
configurations; 3) the X( T) dependence for even con
figurations is linear over a wide temperature range 
(including low temperatures T < 75°K). 

The explanation of the indicated properties entails 
serious difficulties from the viewpoint of conventional 
ideas. The strong temperature dependence of X for Ti, 
Zr, and Hf obviously cannot be understood within the 
framework of the Pauli theory of paramagnetism, where 
there is only a very small contribution ~ (kT / JJ. )2. 

In the present model we have (NA is Avogadro's 
number and X is calculated per mole) 

x(T)=NAI!B'N(I!(T»=NAI!B'N(E,') (1-t k~ In X~ ). 
E, 1-X, 

Here again, just as in Eq. (24), we assume 

N(E)=aE' !!!..=t N(E) 
, dE E' 

E,' - J a '1+1 X,= N(E)dE=--E, 
t+i ' 

o 

(25 ) 

from which, at the same estimates as for the specific 
heat, namely, t = 2, X2 = 0.01, E~ = 2-2/ 3 {325G/ 3 

"" ( )15) {32 "" 10-12 erg, we obtain 

1 dx ( X,) k ----=-t In-- _""10-' 
x(O) dT 1-X, E,' , 

(26) 

which agrees in order of magnitude with the experimen
tal values for Ti. [l2) 

The phYSical reason for such a Significant increase 
of X ( T) is that when the band is slightly filled, as the 
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temperature increases the electrons pass from the 
Singlet level 1L into the band, thus increasing the spin 
part of x. Here there is also an orbital contribution 
from the electrons in the localized levels 1L. Estimates 
according to the formula Xorb >::; NA JJ. B /3kT give a 
value >::;10-2, which is too high. However, upon taking 
account of the splitting of the 1L levels in the crystal 
field, the situation essentially depends on the degree of 
degeneracy of the lowest level which has been split. As 
the more detailed investigation shows, quenching of the 
1L levels for the d2 configuration (the lowest level turns 
out to be the singlet 1r1 ) may occur when the influence 
of the conduction electrons is taken into account. Then 
only the substantially smaller contribution of the Van 
Vleck type is left, XV-V >::; NAJJ.BX~/6 "" 10-\ where 
6 "" 10- 12 is the magnitude of the splitting. Since this 
contribution to X is due to the orbital angular momenta, 
X should be strongly anisotropic, as is actually ob
served experimentally. (12) The indicated mechanism 
for anisotropy in X may playa role side by side with 
the temperature-independent orbital paramagnetism of 
Kubo and Obata. (13) 

Thus, the existence in our model of a very narrow 
band (or localized levels) in the spectrum of the d
electrons in a crystal, coupled with the presence of 
low-lying singlet (with respect to spin) terms for even 
dn configurations, enables us to qualitatively explain 
the behavior of the electronic specific heat and the 
susceptibility of the transition metals. 

At the same time the theoretical investigation within 
the framework of the Hubbard model provides a certain 
amount of justification for the initial concepts, and it 
may subsequently serve as the basis for a more detailed 
quantitati ve theory. Such a theory may appreciably im
prove the results of the single-electron calculations, 
which frequently do not agree among themselves, since 
it corresponds to a many-configuration approximation, 
which is extremely important in connection with the in
vestigation of unfilled shells in the transition metals. 

APPENDIX 1 

Although the transition operators X( rn r~') were 
described and used for calculations in r4 ,5,8], it is useful 
to explain the phYSical meaning of these operators and 
their connection with the second-quantized single
electron operators. X( rnr~') are the operators which 
transfer the system of electrons from the state r~' 
into the state rn. If n' = n - 1 then such a transition is 
due to an increase of the number of electrons by unity, 
i.e., in the single -electron representation it should cor
respond to the operator ay (y = sima, where S(=)l2), l, 
m, and a are the single-electron quantum numbers, 
respectively, of the spin, orbital angular momentum, 
and their projections). Conversely, if we have a com
plete set of states r n , the action of the operator ay in 
the space r n is equivalent to all possible transitions 
r n-l ~ r n , i.e., it must be described by a linear com
bination of the operators X( r n r n-l)Y) 

In contrast to previous articles, in the present arti
cle the explicit form of the coefficients in the relation
ship between ay and X( r nr n-l) is given for the gen
eral case, which allows us to perform concrete calcula
tions for arbitrary states rn. 

It is especially easy to visualize the case of s
electrons, for which (according to Eq. (1)) we have 
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a.+=(-1)"'-·X(2, -cr)+X(cr, 0), (1.1) 

where the states with n = 0 (hole) and n = 2 (pair in the 
S2 configuration) are denoted by 0 and 2. Thus, for a 
system of s-electrons (if we confine our attention to 
only s-states and normalize the sum of their occupation 
numbers to unity) the action of a~ is equivalent to the 
action of the transition operators which transform the 
system from the state 0 into a and from -a into 2. 

One can easily verify that the coefficients in Eq. (1.1) 
(in the same way as in formula (1) in the general case) 
are chosen so as to guarantee all commutation relations 
and normalization conditions, provided the commutation 
rules for the X-operators proposed by Hubbard[4) are 
satisfied. 

APPENDIX 2 

The coefficients of the Hamiltonian (3) have the form 

8.(1\)= SIRrJr)I't:: +V.(r) },.'dr, (2.1) 

Q}(rn)= L, [ll'(·ZXI)'F:(I'n)(lLn_dI L ;,_;])';" (2.2) 
, 0 0 0 

the N sites are degenerate in the zero-order approxi
mation for the Hubbard model, we may introduce the 
functions 

CN (i.i, ... ) = [Nlli.li,l ... (N-i,-i,- .. . ) I pc,." ... (n.n, . .. ), (3.1) 

where the factorial multiplier takes the degeneracy of 
the given c lass of functions into account. 

Then, in calculating the matrix elements of diagonal 
operators one can obviously use the functions 
CN(iti2 ... ) instead of Cilh ... (nln2 ... ), by introduc
ing the additional factor i1 lh! ... ( N-it-b- .•. ) I/NI 
into the result. 

For example, let us evaluate the following matrix 
element: 

i.e., we actually obtain the correct result. [8J 

f'n-1f'n_.Ln_1' Upon decoupling the Green's functions with separa-
xGf'n Gf'n , d'n-lGcn-1Ln-1(_ ,)K+Ln+Ln_.{Ln-l Ln I, } {x L;H Ln-1} tion of one or two particles, the space of the wave func-

f' n-1 S I f' n-. f' n-2 ' I"' L LIZ ' 
n-l'n-1 ~ n-l n-' tions cN decomposes as follows: 

F:(r.) =e'f IRr (r.) 1'lRr (r,) I' r <K r,'r,'dr.dr" (2.3) CN (i.i, .. . ) =cN_. (i.-1, i, ... ) c. (1), 
n n r+t (3.3) :> 

~(V'1"V'1')= f Ijl.~,,(r) V(r) Ijl.,,, (r) dr, (2.4) 

where Rrn(r) are the radial functions representing the 
solution of the Hartree-Fock equation for an atom with 
configuration tn in the state r n , CPl = r nl, and CP2 
= r n2. The quantities 

( Z x I) {X L' L} 
o 0 0 ' L, Z z! I 

are the 3j and 6j symbols, K = 0 .. . 2l. 

We also present here certain useful relationships 

.E a,+a,= .EnX(r.), .E a,a,+= .E (2[1]-n)X(r.), (2.5) 
v nr ll nI'Ii 

([S.] [L.))-' \"1 (GS."L.,,),[S ] [L ]= 2[l)-n 
~ S"L,.. 11.+1 n+l n+J' 

'."L •• , (2.7) 
[al~2a+1, 

were used in the derivation of Eqs. (2) and (2.5); the 
validity of formulas (2.6) and (2.7) can be verified 
directly in each specific case. 

APPENDIX 3 

The average values (introduced in the main text of 
this article) of the functions of diagonal operators 
~(X( rn)) can be calculated in the following manner. To 
begin with let us write down the normalized second
quantization functions for a system of Nil electrons, 
forming it, i 2 ... single-particle states, pairs, etc. 
Assuming that all of the second-quantized functions with 
given numbers i 1, i2 ... and differing distributions over 
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and the appropriate factorial multiplier for the function 

cN_.(i,-1, ... ) is [(i.-1) Ii,! .. .. (N-i,-i,- ... )!)/(N-1)! 

Taking this into account, we have the follOwing 
expression for the operator a. in the term correspond
ing to pair transfer in Eq. (13): 

. . (N-i,-i,)! 
!l>N-,(,,-1 l,)=-~~..,.--

, (N-i)! 

f!-t 'h x.E (CN-. (i,-1, i,) I II X, .• (r 2 ) IT X,,(r.) ICN-' (i.-1. i,) 

,.,.,., .,.,. i.+i, ,,,,,., .. ') (3.4) 

(N-i,-i,) I .. N-i,-i, i, _--
=-(''V-1)! (N-2) ... (N-l'-l')=~= .'\'-1 ". i,=X(d). 

Similarly for the transfer of a triplet, and for the an
nihilation and creation of pairs we obtain 

.. (N-i.-i,)! 
(jJN-,(l2-1.l,-1)= (N-2)! . 

x )' (cN -2(i,-1, i,-1) I ITx .. (r2 ) 
J.....! 

(3.5 ) 
i'-l 

X IT X,,(r,) IcN-' {i2-1. i,-1) )=1; 

These results have a simple physical meaning. The 
probability for the transfer of a pair to singly occupied 
sites is proportional to the number of such sites; the 
same is true with regard to the probability for the an
nihilation of a triplet (i.e., the creation of a pair). In 
the probability for the transfer of a triplet to doubly 
occupied sites and the creation of a triplet, the quanti
ties ~ give a factor equal to unity, that is, these proces
ses do not vary. Such an asymmetry is associated with 
the choice of the ground state. In our case only two 
(pairs and triplets) of the three types of states are as
sumed to be independent quasiparticles, and the third 
(single- particle) is selected as the ground state. This 
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is the reas9n why only X( r 2) and X( r 3) operators 
appear in <P while the operators X( r 1) are absent. The 
terms XVI (r3 r 2 ) Xv; (r2 r 3) which transfer a triplet 
can simultaneously be considered as pair-transfer 
terms. The probability (associated with the factor \{;) 
for such processes is close to unity even for complete 
occupation of N-l sites by pairs (the triplet is moving 
over doubly occupied sites) and also by triplets (the 
pair is mOving over triply occupied sites). Such a situ
ation would also occur for the transfer of pairs 
XVI (r2 rdx~1 (r1 r 2) if the Xv (r1) were independent 
quasiparticles and if they appeared in 4>. 

For a different choice of the ground state one can 
obtain <PN-2(b-1, i3-l) '" <PN-2(b-2, i3) '" i2; how
ever, in our case this does not change the results since 
we are considering 12 '" 1 and L '" 11 « 1. 

The whole picture is to some extent analogous to 
Einstein transitions between levels where, as is well 
known, the probabilities for such transitions depend on 
the populations of the levels. 

J)In actual fact Eqs. (15) constitute only a block-scheme without taking 
the spin and orbital projections into account; however, this will be ade
quate for our considerations. 
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