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The nonlinear phase of the decay of Langmuir waves is investigated under conditions when the 
decay-instability increment exceeds the sound frequency. The possibility of appreciable transformation of 
energy into the low-frequency mode is demonstrated for decay in a system of three waves, as well as in the 
case of the modulation instability of a plasmon gas. A self-similar s01ution is obtained which describes the 
nonlinear dynamics of the modulation instability. The various plasmon-dissipation mechanisms 
connected with such an instability are discussed. 

1. The elucidation of the mechanisms underlying the 
absorption of a plasma condensate is one of the basic 
questions in the problem of the initiation of a pulsed 
thermonuclear reaction in a D-T target [lJ. Such an 
absorption may be connected with the decay instability 
of Langmuir waves, which was discovered by Oraevskii:' 
and Sagdeev[2), and which leads to the excitation of ion 
sound. So far, however, the investigation of the nonlinear 
dynamics of this instability has been limited essentially 
to the limiting case of low Langmuir-wave amplitudes 
w < ws/wL (w = W/noTe' where W = E~/47T is the 
Langmuir-oscillation energy, Ws is the sound frequency, 
and wL is the plasma frequency), when the decay only 
decreases the wave vectors of the plasmons, practically 
not changing their total energy. As a result, the plas­
mons are concentrated in the long-wave section of the 
spectrum, where the Landau-damping-induced absorp­
tion of the plasmon energy by the particles is negligibly 
weak. Under these conditions the primary mechanism 
responsible for the dissipation of the plasmons is the 
phenomenon of collapse-a distinctive phenomenon con­
nected with the self-focusing of the Langmuir waves and 
leading to the formation in the plasma of regions of field 
localization, regions which collapse in a finite time to 
sizes at which the electron trajectories intersectPJ . 

For Langmuir waves of large amplitude w > ws/wv 
there obtains the so-called modified decay[3, 4J -the 
increment of the instability at such amplitudes exceeds 
the sound frequency, and the dispersion properties of the 
low-frequency perturbations excited during the decay 
are determined by the spectral characteristics of the 
Langmuir waves. The first thoroughly investigated 
example of such a decay is the modulation instability of 
the plasmon gas [5). Another important example is the 
aperiodic instability of the Langmuir waves[6J ; below 
(in Sec. 2) we shall show that this instability develops 
into the modulation instability at long wavelengths of the 
low-frequency perturbation. 

The primary aim of the present paper is to investi­
gate the nonlinear phase of the instabilities arising dur­
ing the modified decay. The pertinent investigation is 
carried out in Secs. 3 and 4_ In Sec. 3 we solve a model 
probleI]l-the decay of a monochromatic Langmuir wave 
into a Langmuir satellite and a low-frequency perturba­
tion of the acoustic type. Such a problem in the case of 
ordinary decay has been considered by Bloembergen [7J • 
The solution obtained inPJ describes the transfer of the 
energy of the wave motions between the high-frequency 
modes, the energy in the low-frequency mode being 
smaller by a. factor of Ws /wL' For the modified decay, 
of greatest interest is the case of short-wave satellite 
excitation, when the instability is aperiodic. In this case, 

459 SOy. Phys.·JETP, Vol. 39, No.3, September 1974 

after the phase of exponential growth of the amplitude, 
the instability goes over into an asymptotic regime in 
which the amplitudes of the Langmuir waves remain ap­
proximately constant, while the amplitude S of the low­
frequency perturbation grows with the time as e. The 
instability stabilizes as a result of the fact that the 
effective increment y ~ S-ldS/dt becomes less than Ws 
at large t. At the maximum, the energy of the low­
frequency mode constitutes an appreciable (~w) fraction 
of the Langmuir-wave energy. 

In Sec. 4 we show that the distinctive features of the 
nonlinear dynamics of the modified decay that were 
previously investigated for a system of three waves 
remain unchanged for a plasmon gas. In this section we 
obtain a self-similar solution in which the plasma-den­
sity modulation due to the low-frequency oscillations 
grows in proportion to e and in which a spectral trans­
fer of the plasmons to the short-wave section of the 
spectrum (k ~ t) occurs. The latter is connected with 
the fact that the depth of the potential wells in which the 
plasmons are trapped and the maximum plasmon kinetic 
energy (k2 AD ~ on/n) increase with increasing modula­
tion of the plasma density. As ill Sec. 3, the maximum 
value of the energy of the low-frequency oscillations is 
of the order of W3/noTe, the wave vectors of the plas­
mons increasing then to the value kmax N W 1/2/AD' 
where 

According to Rosenbluth and Sagdeev r8 J, under these 
conditions two nonlinear mechanisms limiting the growth 
of the plasmon energy become important in the problem 
of laser heating. One of these mechanisms is connected 
with the decrease (due to the violation of the conditions 
for resonance interaction of the waves when the plasma­
density modulation is sufficiently deep) of the incre­
ments of the parametric instability that leads to plasmon 
production. The other mechanism is connected with the 
transfer of plasmons to the region of low phase veloci­
ties (large k), for which their resonance absorption 
by the particles is essential. Such an absorption leads 
to the "elongation" of the tail of the electron-distribution 
function and, eventUally, to the establishment of a quasi­
stationary state in which the growth of the energy of the 
plasmons owing to the parametric instability of the elec­
tromagnetic radiation is balanced by the absorption of 
their energy by the resonant electrons. 

2. In the modified decay the instability increment is 
comparable to the frequency of the slow motions, and 
we cannot use the random -phase approximation and the 
kinetic-equation method for the waves. To describe such 
strongly nonlinear processes as the modified-decay 
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process, the method used by Zakharov in [3J and based 
on the averaging of the dynamical plasma equations over 
a "fast" time of the order of 1/w L 1) proves to be ex­
tremely convenient. 

In the present paper we limit ourselves to the con­
sideration of one-dimensional oscillations. Representing 
the plasma-electron and plasma-ion densities in the 
form 

n,=n,+'/,(Iln,(t, z)e-'·"+c .c. )+Iln(t, z), n,=n,+lln(t, z) (1) 

(one = -(41Ter1a E/az is the high-frequency perturbation 
of the electron density, on = -noa~/az is the quasineutral 
perturbation of the particle density in the low-frequency 
oscillations, and ~ is the particle displacement in these 
oscillations), we have after averaging over the "fast" 
time the following system of equations for E and ~ 
(see [3J): 

{}E -~i~ {)'E = iWL E~ 
at 2 m,WL {}z' 2 {}z ' 

()'; T. {}'~ 1 {} lEI' 
--;-;;;--;;;a;;=- 16nnom, a;-

(2) 

(3) 

(Te is the electron temperature; the plasma is assumed 
to be strongly nonisothermal, i.e., Te »Ti' 

lt is not difficult to investigate with the aid of Eqs. (2) 
and (3) the stability of a Langmuir wave of large ampli­
tude: 

E,(t, z) ='/,{E, exp [ik,z-iw Lt(1 +'/,ko'An') j+ C.c. }. 

Setting 

E=exp [ik,z-'/,iko'An'WLt]{E,+E+ exp [ikz-iwtj+E_exp [iwt-ikzl}, 

;='/,{;. exp [ikz-iwtj+C.c .. } 

and linearizing with respect to the amplitude of the test 
waves, we obtain from (2) and (3) the following disper­
sion equation: 

W'_k • .!.:...=_e'Eo'k'[ 1 ,1+ 1 ]', 
mj 4memi CJh:!.6+-2wLW tJl L2lL+2{!hOl 

1l±=3[ (k,±k)'-ko'jAn'. 
(4) 

From this equation follows for k «ko the dispersion 
equation for the mOdulation instability [5J : 

T ~e'E 2 k'A • (5) w'-k'-'=" n • 
m, 8m,m, (w-3kk,An'WL)' 

The solution to this equation for w »k-v'Te /mi has the 
form 

(00- ~ kk,An'wL) '= ~ k'ko'An'W.' [1± k'!An' (:7 :: w)"'] . (6) 

The condition for the appearance of the instability is ko 
:s (%7)1/4g, where 

1 m, ) 'J. ( E,' 1 ) 
An ( m, 4n noT, 

g=- w- w=--. (7) 

The instability increment defined by (6) grows 
linearly with k. The last circumstance is connected with 
the assumption made in going over from (4) to (5) that 
the terms in OJ; proportional to k2 are small, and is valid 
only for k «g. At higher k the increment becomes 
saturated, and the instability becomes aperiodic. Simple 
analytical formulas for this instability can be obtained 
in the limiting case when ko «k. Then 0+ = 0_, and from 
(4) follows the equation previously obtained by Silin [6J 
for w 2 : 

00'= __ L_ ± __ L_ + __ ' _ ,1l=3k'An' Il'w' [ Il'w ' e'E 'k'il ] ,/, 
8 64 8m,m, 

(8) 

For k « g, the instability increment is, in accordance 
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with (6), proportional to k: 

W=iWLkAn (~w~) 'I, ; 
8 m, 

for k ~ g, the increment levels out: 

i (m. )'" W=-=.CO L w- . 
l'6 m, (9) 

The relations (7) and (9) determine the characteristic 
spatial and time scales of the instability during a modi­
fied decay. By gOing over to the dimensionless variables 

l;=~(~w)"', 'I"=~(~w)'I', 8=.!!..., 11=l.(~W) -'I. 
An m, 2 m, E, AD m, 

(10) 

(here Eo is the amplitude of the hi field at t = 0), we can 
write the basic system of equations (2), (3) in a univer­
sal form containing, as a parameter, only the quantity 
r = 4 (me /miw)11z: 

{}8 . {}'8 . {}11 
--3,-=,8- (11) 

{)'I" {}~. {}~ , 

{}'11 {}'11 {}181' 
--f-=----. (12) 
{}'I"' {}~' {}~ 

2 / 2 lt follows from (7) and (9) that the parameter r ~ Ws y 

(y is the increment), the condition for a modified decay 
being r « 1, i.e., w »me/mi' 

3. In this section we investigate with the aid of Eqs. 
(11) and (12) the modified decay in a three-wave system. 
Let us accordingly set 

8=8,('1") exp [ix,1;-3ixo'-r+ia,(-r) j 

+8,(-r) exp [i(x+x,)~-3i(x+x,)'-r+ia,('I")], 

i 
11 =-{S('I")exp[ix1;+i<D(-r) j- c.c.}. 

x 

We then have from (11) and (12) the following system of 
equations for the amplitudes and phases of the waves 
participating in the decay: 

~[8, exp(ia,) j=-ilC,S exp(ia,-ill+'I"-illl) , (13) 
d'l" 

~[8, exp(ia,) j=-ilC,S exp{ia,+ill+ -r+i<D) , (14) 
d-r 

~[Sei"1+fx'Se'''=-x'8,8, exp(ia,-ia,-ill+ '1"), (15) 
d'l"' 

where ~+ = 3[(K + Ko)2 - K~l. In these equations we have 
neglected the excitation of the Langmuir satellite with 
the wave number K- = K 0 - K, assuming that the 
"detuning" ~_ corresponding to it is sufficiently large. 

Assuming that for the given pump wave (fo = 1, and 
setting Seicl> ~ e- iIJT , we obtain from (14) and (15) the 
dispersion equation of the linear theory: 

(16) 

This equation describes a continuous transition, as the 
parameter r decreases, from ordinary decay, which is 
investigated in r2J , to a "mOdified" decay. For r »1, 
we have in accordance with[2J: 

v=±xl'Nx/1'211+, ll+=±xl'f. 

The instability in this case arises when ~+ < 0, i.e., 
leads to the excitation of a long-wave satellite. For 
r « 1 (i.e., for "mo~ified" decay) all the "detuning" 
values ~+ ~ -3(K/2)2 3 in (16) are unstable, the values 
~+ > 0 corresponding to the excitation of a short-wave 
satellite. In the case when ~+ » 1, there develops an 
aperiodic instability with an increment 1m IJ "" K/..ft:;: 
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Of great importance for the investigation of the non­
linear dynamics of the "modified" decay are the in­
tegrals of Eqs. (13)-(15), solutions which are similar to 
the Manley-Rowe relations for the ordinary decay: 

(17) 

The complete analytical solution to the problem of 
the nonlinear phase of the decay can be obtained only for 
Ll+ » 1, when we can use the fact that in this case the 
instability increment 1m v ~ Ll+ and, accordingly, that 
t~e. amplitude of the Langmuir perturbations varies sig­
niflCantly more slowly with time than the phase (see [10J ). 
In this case we obtain from Eqs. (13) and (14), besides 
the first solution in (17), the following approximate re­
lations: 

a,-a,+cD+~+,;=n-_l_~[~] ""ll 
/t,9 d1: da.ld1: . 

It is not difficult to determin~ from these relations the 
amplitudes and phases of the Langmuir waves: 

~=(~+,+s,)'I'+Ii+ da, = (Ii+" ,)'1' ~+ 
d1: 4 2' d1: 4 + S - 2"" 

/to= ( 1+S' / (~:t)'] -':' 
(18) 

With the aid of these formulas, Eq. (15) can be written 
in the form 

d' x'Se'"' (Ii 2 -'I d,7[Se''']+fx'Se'0>='--2- ++S') • 

The first integral of this equation is 

( dS )' , (dID)' (dS, )' (( Ii ' ) 'I, (Ii' 'I, -;z;- +S "dt" = ---;h +X' ++S' - ++s,,) ] -fx'S' 

(19) 

where 
S =S( =0) dS, _ dS I ' ,; ,----

d1: d1: ,~, 

Using the second equation in (17), we can easily show 
that in the case Ll+ » 1 under consideration the term 
82 (d<I>/dT)2 is negligibly small. As r - 0, the function 
8(T), which is the solution of Eq. (19), increases without 
restriction with the time: the exponential growth 
8 ~ exp(KT!v't::\ which is valid for 8 ~ Ll+, is subse­
quently replaced by the power law 8 "" K2 i/4 when 
8 »Ll+; for such large 8 the quantity to"" 0'1"" 1/12. 

Allowance in Eq. (19) for the term proportional to 
r82 leads to the limitation of the growth of 8 and to the 
appearance of a periodic solution with the period 

1:0= 2~, +_21'1i+ K[1 __ 1 IE_~(~)'I] 
xlI Yo 21i+ Ii.,. x'd, (20) 

(K is the elliptic integral of the first kind). In this solu­
tion 8 varies from the minimum va.lue 

Smjn ='[So' - ~('!'!.o.. )']'1' 
x" It. 

(the quantity 8min = 0 for (Ll+ /K2)(d8 0 /dT)2 > 8~) to the 
maximum value 

Sm~~1/r, 

corresponding to a density perturbation on = now/2 
in the low-frequency mode. The maximum ~~ue of the 
energy that can be acquired in the oscillations of the ion 
component also turns out to be quite considerable: 
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__ n,mjv,' W ( m,) 'I, ( dS ) , 
W j ---=- w- -

2 4x' m, d1: m~ 

W' (21) 

(the bar denotes averaging over t). 

The plots of the functions 8(T), t'o(T), and t'l(T) are 
shown in Fig. 1. The invertible character of the solution 
which is demonstrated in this figure, is maintained only' 
when w < 1. Upon increase of the pump-wave amplitude 
to values at which the parameter w > 1, it, generally 
speaking, becomes necessary to take into account in the 
basic equations (2) and (3) the electronic nonlinearity of 
the Langmuir oscillations, since at such amplitudes the 
vibrational velocity ve of the electrons in the Langmuir­
wave field satisfies the condition k 2v2 /w 2 ~ Y /w L (the 
characteristic values of the wave nu!be~k and the in­
cr~ment yare determined by the relations (7) and (9)). 
ThIS does not, however, change the qualitative nature of 
the solution, and, as a result of the growth of the ampli­
tude of the low-frequency perturbation, values of 
8 ~ (mi/mew)ll2 < r-1 are attained at which breaking of 
the front of this perturbation (on/n ~ 1) and the dissi­
pation of the pump-wave energy owing to the intersec­
tion of the ion trajectories occur2). 

In conclusion of this section, let us note that anum­
erical solution on an electronic computer of Eqs. 
(13)-(15) with r = 0 was carried out in[10J. It follows 
from this solution that the development of the instability 
into an asymptotic regime in whicl!...S grows as T2, while 
0' oscillates about the mean value 0' = 1/v'2, occurs at aU 
Ll+ > 0, Le., in aU those cases in which the instability 
leads to the excitation of a short-wave satellite. 

4. A similar asymptotic regime occurs also in the 
case of the modulation instability of a plasmon gas, In 
fact, we can show that for T » 1 and r = 0 the system of 
equations (11) and (12) has the following self-similar 
solution: 

/t(1:, s) =/(s)exp [hS x dl;-if:;;,l. 1]= -~:!!.: J 2 ds . (22) 

Here ,\ = const and, as in (18), the phase of the Langmuir 
waves grows with the time as T'. The solution given 
above describes a modulation, which grows with the time 
in proportion to T 2, of the plasma density in the low­
frequency oscillations: 

" (m, ) 'I. d'!' Iln=no- -w -
2 m, ds' 

(23) 

and the spectral transfer, due to such a modulation, of 
plasmons to the short-wave section of the spectrum: 

_ 1: (m. ) 'I. 
k~~ -w . 

'AD mi 
(24) 

For f(l;) and K(I;), separating the imaginary (propor­
tional to i) and the real (proportional to T) terms in 
Eq. (11), we obtain 

1 ef'!, dx df 
- --+3(x'-),,)=0 /-+2x-=0 (25) 

2 dl;' 'dl; d~ . 

It follows from this that f = foNK (fo = const), while the 

5(1') 

FIG. 1 
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(\ FIG. 3. The dependence of f and d2f2fdr2 ,. 
: \ on t. , . , , , . , . 

• 

function u = l/K (I:) satisfies the equation of the nonlinear 
oscillator: 

d'u 6 (1 ) 
df:'+f1 ~-A =0. (26) 

The law of "conservation of energy" for such an oscilla­
tor can be written in the form 

~(~)'=e+~ (~-HU) e=const. 
2 d~ /0' u ' 

The plot of the potential energy 

U(U)=-~(~+AU) 
to' u 

is shown in Fig. 2. The condition that E should be boun­
ded as I: - 00 is satisfied by the solution in which u 
varies periodically in the interval 0 < u < umax; such a 
solution, as is easy to see, exists for either sign of A. 

The solution (22) corresponds to the geometrical­
optics approximation, when the plasmons have a wave­
length significantly shorter than that of the low-fre­
quency perturbation, Le., /'I)-ld'l)/dl:/ «KT. In the vicin­
ity of the points u = 0, where 'I) ~ (I: - I: or1!3, such a 
solution is inapplicable, and it becomes necessary to 
take into account the highest space derivatives in Eqs. 
(11) and (12), i.e., a2f/a 1: 2 and ra 2 '1)/aI: 2• For r = 0, the 
solution in the neighborhood of the point I: 0 can be ob­
tained with the aid of the self -similar substitution 

<f='c'<p (y), T]='t'1jl(y), y= (~-~o) 't', (27) 
where the functions <p(y) and 1{!(y) are determined from 
the equations 

_d'<p ____ <p _d1jl d'1jl d1jl 1 d<p' 
, 3y'--+8y-+21jl=----. 

dy' 3 dy dy' dy 3 dy 
(28) 

The contribution of this solution to the general 
Langmuir-oscillation energy balance is negligibly small, 
being of the order of l/Ts. In Fig. 3 we show a typical 
Langmuir-field amplitude distribution ~f(l:) and a typi­
cal plasma -density modulation distribution ~ d2f2/d 1: 2 in 
the low-frequency oscillations; the dashed sections of 
the curves correspond to the regions of applicability of 
the solution (27). Thus, the modulation of the plasma 
leads to the appearance of potential wells in which the 
plasmons are trapped, the short-wave pumping of the 
plasmons occurring as a result of the increase of the 
depth of these wells. 

The region in which allowance for the spatial transfer 
of the low-frequency oscillations (Le., for the term 
ra 2'1)/aI: 2 in Eq. (12» is essential expands in time ac­
cording to the law Ii:; - i:; 0/ ~ T(me /miw)l!\ As in the 

462 Sov. Phys.·JETP, Vol. 39, No.3, September 1974 

model problem considered in the preceding section, the 
transport of the low-frequency oscillations leads here to 
the limitation of the growth of lin during times To 
~ (miw/me)1!4. During such times T, the plasma-density 
perturbation, the energy transferable to the ion compon­
ent, and the maximum value of the wave number of the 
plasmons increase to the values 

W n,m,v.' W' 1 ( W )'/. 
(jn--, W,='-----, k_----

T. 2 tOn,T. AD n,T. 
(29) 

It follows from these formulas that as the quantity 
w = W/noTe increases, two plasmon-dissipation mechan­
isms become possible: the transfer of the plasmon en­
ergy to the low-frequency oscillations and its absorption 
by the resonant electrons. At the not too large values of 
the parameter w ~ 1/10 the dominant mechanism is the 
absorption of the plasmons by the epithermal particles, 
which leads to the formation of a fast-electron "tail" in 
the distribution function. When w ~ 1, we also have 
coming into effect the dissipation mechanism connected 
with the intersection of the electron trajectories. Sub­
stituting into the condition aae /az ~ 1 for intersection 
the electron displacement ae = eEo dmewL in the 
Langmuir wave and geT, 1:) from (22), we find that the 
time T ~ (m /m )1!4W-3/4 for such an intersection is, 
when w ~ 1, comparable to To. 

In conclusion, the author expresses his gratitude to 
Academician R. Z. Sagdeev for formulating the problem 
and for valuable advice and to A. A. Galeev, Y. E. 
Zakharov, and Y. I. Shevchenko for a discussion of the 
paper. 

1) Actually, such an averaging was used in 1',9], where some limiting cases 
of the system of equations (2), (3) were derived. 

2)ln a plasmon gas, the spectral pumping, during a modified decay, of the 
plasmon energy into the short-wavelength region leads to a situation in 
which the dissipation mechanisms connected with the resonance ab­
sorption of the plasmons by the particles and (for w > I) with the 
intersection of the electron trajectories (for details, see Sec, 4) turn out 
to be more important. 
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