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The possibility of the appearance of the Dicke effect in nonlinear ultra-high resolution optical 
spectroscopy is studied. The interaction between a three-level system. one of whose transitions is in 
the microwave region, and two optical fields is considered. The effect of elastic collisions, in which 
the atomic oscillator is weakly perturbed, on a resonant nonlinear interaction between the optical 
fields is analyzed within the framework of the strong collision model. A solution of the system of 
equations for the density matrix which includes the collision integral is obtained by successive 
approximations. It is shown that when the ground level is involved in the microwave transition, 
elastic collisions may .lead to considerable narrowing of the nonlinear resonance within the contour of 
an optical spectral line. In this case the sharp structure reflects the relaxation chal acteristics of the 
microwave transition. The possibility is considered of utilizing the considered effects for nonlinear 
spectroscopy of ultra-high resolution, permitting one to study concurrently the characteristics of both 
optical and microwave transitions by optical methods. 

1. INTRODUCTION 

A strong electromagnetic field that is in resonance 
with an atomic transition alters the shape of the spec­
tral line representing the emission and absorption of a 
weak field in the same transition or in an adj acent 
transition. Specifically, the Doppler contour of the 
spectral line exhibits sharp structure. The appear­
ance of these nonlinear resonances and the dependence 
of their characteristics on the propagation direction of 
the weak field relative to the strong field (the angular 
anisotropy of the spectra) has been interpreted as the 
manifestation of nonlinear interference effects 
(NLIE).[1-3] The investigation of NLIE is an important 
branch of nonlinear spectroscopy, and has been the 
basis on which preciSion methods of nonlinear laser 
spectroscopy have been developed.[4,5J The resolving 
power of these methods is enhanced, in principle, as 
sharper nonlinear resonances are achieved. 

There is a strong distinction between the NLIE as­
sociated with inhomogeneous and homogeneous broaden­
ing, respectively, of interacting transitions. [6J In low­
pressure gases, where the spectral lines of individual 
atoms are broadened only through radiative relaxation, 
the mean free path of the atoms considerably exceeds 
the wavelength of the optical radiation. Consequently, 
the absorption and emission line of the gas as a whole 
undergoes considerable inhomogeneous broadening due 
to Doppler broadening. However, it is possible to pro­
duce conditions where without a change of velocity the 
atomic mean free path is considerably shorter than the 
wavelength of the microwave radiation. This can result 
from elastic collisions with the walls of the vessel or 
with the particles of a buffer gas without quenching an 
atom or essentially perturbing its phase and, therefore, 
without line broadening. [7J It is thus possible to exclude 
Doppler broadening and to reduce considerably the line 
width of the microwave transition (the Dicke effect [8J). 
In the interaction of two fields that are resonant with 
adjacent transitions, NLIE result from oscillations aris­
ing in the medium at a difference frequency that is close 
to the frequency of a forbidden transition. [3J If the 
wavelength of the forbidden transition is sufficiently 
large, then despite the absence of a field corresponding 
to this transition we can expect the Dicke effect to be 
manifested in an altered shape of the nonlinear res­
onances. But the line shapes of unperturbed optical 
transitions should not then be changed, because the 
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Level system of an atom interacting with 
the fields. The field E interacts with the 
electric dipole transition mn; the field Ell 
interacts with the electric dipole transition 
m!. 

wavelengths of these transitions are considerably smaller 
than the mean free path. 

Collisions with a buffer gas can be accompanied by 
several other effects, depending on the specific atoms 
and transitions. It was the aim of the present work to 
show, within the framework of the simplest collision 
model encompassing the main features of the phenomena, 
that the Dicke effect can be manifested in ultra-high 
resolution nonlinear optical spectroscopy. Elastic col­
lisions can here lead to considerable narrowing of the 
nonlinear resonances. 

2. FUNDAMENTAL EXPRESSIONS 

Let us consider the interaction of two monochromatic 
fields with an atom possessing the energy level system 
shown in the accompanying figure. The electromagnetic 
fields and the motion of the atomic center of inertia will 
be described classically. The one strong field has the 
amplitude E and frequency w, which is close to that of 
the mn transition. The other, weak, field EiJ. has the 
frequency w J.l' which is close to that of the ml transi­
tion. The corresponding matrix elements of the per­
turbed Hamiltonian in the interaction representation are 

(2.1) 

Here G=-dnmE/2ti, GiJ. =-dlmEiJ./2ti; n = W-Wmn, niJ. 
= W iJ. -wml; dij is the matrix element of the dipole mo­
ment of a transition. To analyze the line shape for ab­
sorption of the weak field EiJ. in the presence of the 
strong field E we shall begin with the formula for the 
field-EiJ.-absorption power per unit volume: 

(2.2) 

Here Pml is an off-diagonal element of the denSity 
matrix in the interaction representation, normalized 
to unit volume and averaged over an ensemble.[9,lOJ 
The bar denotes time and volume averaging; the angu­
lar brackets denote averaging over the velocities of 
atoms interacting with the field. 
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The equation for the density matrix p in the inter­
action representation is 

(2.3) 

Here L = d/ dt + vV ,where v is the velocity of the 
atomic center of inertia, and R(p) describes the radia­
tive relaxation: 

Rmm=-r mmpmm, Rll=-r1plI+YmIPmmt r'=YJn, 

Rj=-f;jp;; (f;;=f.= (f,+f;)12; i, j==n, l, m). 
(2.4) 

Here r m = Ymn + Yml, with Yij representing the prob­
ability of a transition per unit time from level i to 
level j; rij is the radiative relaxation constant of an 
off-diagonal element of the density matrix (the radia­
tion linewidth). Taking the level n to be the ground 
level, the solution for Pnn is obtained from the con­
servation law 

Spp(v)= 12 p;;(v) =NW(v) , 
; 

where N is the total concentration of atoms having the 
given level structure, and W(v)=(hV)-3 exp[-v2/v2 j is 
the Maxwellian velocity distribution. 

The term (dp/dt)col in (2.3) takes account of elastic 
and inelastic collisions with particles of the buffer gas. 
In the general case this term can be represented 
by [11-14] 

Cd fO . =-(f,;"+i6.,,+v;;)p;;(v) + S dv'A,j(v, V')PH(V'), 

td ''';;:'' (2.5) 
( :, ) mm =- (~m+Vm) pmm (v) + S dv' Amm (v, v')Pmm (v'). 

Since the equilibrium population of level l is not zero 
and corresponds to the Boltzmann distribution, in the 
equation for Pll we also take into account the possibility 
of transitions from level n to level l, induced by 
collisions: 

(.~)CO =-(~'+V')P,,(v)+ S dv'AII(v, v')p,,(v')+ S dv'An' (v, V')pnn(v'). 
dt " 

(2.6) 

Here rfr and ~ij are the collisional broadening and 
shift; I3i is the frequency of inelastic, and Vi is the fre­
quency of elastic collisions in the state i; Vij plays 
the role of the frequency of elastic collisions for off­
diagonal elements. The kernels of the collision inte­
grals, A(v, v'), signify the probabilities of a velocity 
change v' - v per unit time. The indicated parameters 
can be selected in accordance with the model;[1l-13] 
in [14] they are expressed in terms of the characteris­
tics of elementary elastic and inelastic scattering 
events. Specifically, Vi and AU are defined in terms 
of the squared modulus of the scattering amplitude, 
I fi 12 ,while Vij and Aij are defined in terms of the 
fifT products. Thus in the general case the frequencies 
of collisions and the kernels are complex; this reflects 
the shift of atomic resonances that is induced by elastic 
collisions. 

We shall now consider the simplest analyzable case, 
that of almost isotropic scattering, which yields the ef­
fects of interest. In such collisions the projection of the 
atomic velocity on any direction is changed by the same 
order of magnitude as the velocity. For subsequent 
calculations we shall specify the forms of the kernels 
Aii, Aij, and Ah, USing the strong collision model. [11-13] 
This model is based on the assumption that A(v, v') is 
independent of v', i.e., 

A (v, v') =A (v). (2.7) 
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In other words, it is assumed that the velocity v of a 
particle after a collision does not depend on its velocity 
v' before the collision. This model reflects the funda­
mental qualitative characteristics of the scattering of 
light particles by heavy particles. 

A strong electromagnetic field that interacts reso­
nantly with gas atoms induces transitions between their 
energy levels. Since nonlinear resonances occur when 
n - kv = 0, in isotropic scattering the strongest deviation 
from the eqUilibrium distribution results only from the 
projection of atomic velocities on the strong-field wave­
vector direction, such as Vz. These velOCities, which 
lie within a narrow range, are responsible for nonlinear 
resonances in the weak-field absorption power. 

We represent p(v) as p(VZ)W(Vl)' Integrating the 
equations for p(v) over the velocity projections on di­
rections orthogonal to k and neglecting the dependence 
of r col , ~, v, and (3 on Vz in the nonlinear-resonance 
region, we obtain an approximate system of equations for 
p(vz). These equations have the form of (2.3), where 
the term vV is rellaced by vzd/dz, while r col , ~, v, 
and {3 in (2.5) and (2.6) are replaced apprOXimately by 
averages over the atomic velocities. The assumption 
(2.7) and the requirement (dp/dt)col=O under equilibrium 
conditions in the absence of inelastic collisions lead to 

S Aij(v, v')dv J.' =A.j(v,) =Vi;W(V,) , 
(2.8) 

jL(v,)=v;W(v,), A.'(v,)=v.'W(v,), 

where W(vz) is the Maxwellian distribution of atomic­
velocity projections on the wave-vector (k) direction 
of the strong field. The derived system of equations 
enables us to consider the Dicke effect qualitatively in 
nonlinear optical spectroscopy. 

Since the absence of fields should be accompanied by 
an equilibrium distribution of the populations, from (2.3) , 
in conjunction with (2.4)-(2.6) and (2.10) we obtain 

(2.9) 

where Nl and Nn are the equilibrium population levels 
and KB is the Boltzmann constant. 

The system of equations which is derived from (2.3) 
for the density matrix is solved in the stationary case 
by successive approximations to the first order in Gil 
and to the second order in G. In this apprOXimation, 
with the aid of (2.2), for the case of parallel k and kll 
we obtain 

Wm,(R,) =2hmnN,IG,I' Re {1]m'Zm' + ~ [azm, Re 1]mnZmn 
f, 

b ( k/k)Zm'-Zmn (k/k)Zm,+Zm;)] N n I 
+ 1]mn +1]m; - GI' 

(k/k)pmn-Pm' (k,.Ik)pmn'+Pm' N, 

, (k,/6.k)zm,+Zln· [, .( • k .)] 
-T]mn 1+r]ln Vln Zln ~- Zmn 

(Pmn·-(kl6.k)Pln·) (Pm,+(k/6.k)Pln·) 6.k 

x ~ IGI'+1]mn' :k/k).zm,+Zmn· , (2.10) 
N, «6.klk)Pmn -P'n ) «k,.lk)Pmn +Pml) 

N n IGI' ,(k/6.k)zm'+z,; [ Pml+(k/6.k)Pl; i)zm' x - -I']' 1- -'-'-'--'-_:":"'':'' 
N, m. (Pm,+(k/6.k)Pl;)' zm,+(6.klk.)z,; i)pm' 

+1']1;V,; (Zl; + :~ Zm' )] IGI'}. 

Here the following notation has been used: 

6.k=k-k., 1];j= (1-V;;ZH)-I, Pmm=r mn-Ri, Pln=r,n-i(Q-Q,); 

r;=fj+~j+Vj, r;=f;+~;, Qi;=Q;j+6.i;+v,('; 
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'( dvW(v) 
Z'n=_loo P,n+illkv . 

We can write approximately: 

i~ ex {_(Q_~.)2}[ 1+iI(Q-~.)] 
Mv P ,I).kv llkv 

ilp,,, 

if f'n<MiJ, 

if f'n>MiJ. 

Here 
2 • 

I(x)=-=J e"dt. 
l'n, 

In the case of antiparallel k and kf.L the quantity 
~k becomes equal to k+kf.L, and in (2.10) we must 
replace kf.L everywhere by -kf.L. The equation is ap­
plicable for I G12« rlnf mn' 

The terms in the first square bracket reflect the 
change in absorption of the weak field resulting from 
the change in level populations that is induced by the 
field E. The part proportional to b results from the 
change in level populations that is induced by the strong 
field because of selective interaction with atoms at 
specific velocities. The part proportional to a results 
from nonselective interaction, which means that elas­
tic collisions also involve atoms of different velocities 
in the interaction with the field. The second and third 
groups of terms arise from the oscillations induced in 
the medium at the difference frequency w - w f.L' These 
terms determine the NLIE and splitting. In the given 
perturbation approximation these terms can be inter­
preted like those resulting from the interference of 
stepWise and two-photon transitions in which tiw f.L 
photons participate. (2] 

3. LINE SHAPE ANALYSIS 
For the purpose of analyzing the line-shape change 

caused by elastic collisions, we first examine the 
line-shape expression in the absence of elastic colli­
sions. This case corresponds to the frequently em­
ployed relaxation-constant model. This model can be 
used for conSidering the Weisskopf broadening mech­
anism, the Lorentz model (collisional quenching), and 
radiative relaxation at low pressures. The correspond­
ing line shape can be observed in the absence of a buffer 
gas. The value Vij = 0 can also be realized for the case 
of a vanishing scattering amplitude in one of the states 
i or j. As vc, Vij, and Vh aQproach zero, ~om the gen­
eral expression (2.10) with rmn «kv and rml «kf.Lv 
we obtain 

x 

f 
x [ + 

1\'+ (12,,- (k.lk) Q) 2 

where 

- - k.­
f_=fm' +-fmn, 

k, 
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(3.1) 

k. - llk-
kf"+k f "", if k.<k, 

f+= 
- llk-
f,. +Tfm'" if k,,>k, 

_ {1, if x>O, 
8(x)- O'f 0 , 1 x<, 

In the curly brackets of (3.1) the first term which is 
proportional to I GI2 reflects the change in absorption 
that results from a change of population. The integral 
with respect to n f.L of the second group of terms in the 
rectangular brackets vanishes; these terms reflect 
NLIE. The last term is due to splitting.(15,16] The equa­
tion indicates the strong angular anisotropy of the spec­
tral manifestations of nonlinear resonance processes. 
As an example, for Lorentz collisions with purely radi­
ative relaxation, in parallel waves when f"ij = (f"i + f"j)/2 
the structures having the width f"_ cancel out if Yml 
«f"l and there remains only a sharp structure of width 
f" + «f" _ and having its center at n f.L = (kf.L/k)n on the 
background of the Doppler absorption curve. For ~k «k 
there is negligibly small splitting. In antiparallel waves 
there remains only a structure of width f"_ with its cen­
ter at nf.L =-(kf.L/k)n. Hence it is possible to determine 
directly and concurrently the relaxation properties of 
both the optical and microwave subsystems by the 
methods of optical spectroscopy, when the widths f_ 
and f + depend mainly on the relaxations properties of 
these SUbsystems. Since absorption in optical transi­
tions considerably exceeds that in microwave transi­
tions, measurements can be performed at low pressures. 
However, at the very low pressures p'::: 10- 3 Torr the 
width f + begins to be determined mainly by the "optical 
addition" (~k/k)f"ml or (~k/k)fmn' This fact prevents 
utilization of the given method at very low pressures. 
The situation changes, however, when a buffer gas is 
used. 

To simplify the analysis of the general formula (2.10) 
in the presence of elastic collisions, let us consider the 
case where the scattering amplitudes in the states n 
and l are identical. According to (14], we can then as­
sume that vln is real and that the broadening and shifts 
in optical transitions are identical. 

If vln » ~kv the atomic mean free path l = 'ii/vln is 
determined mainly by the elastic collisions and is con­
siderably smaller than the wavelength of the microwave 
transition. Since the interacting optical transitions are 
linked to the microwave transition due to the contribu­
tion of two-photon processes, the general formula re­
flects the dependence of the spectral manifestations of 
nonlinear processes on the type of broadening of the 
latter transition. Indeed, in the considered case when 
kf.L and k are parallel we have zln = pzd and 

1 
'r)lnZln ~ ...... ; 

f,,,+i(Q.-Q) 

This expression reflects the increase of the coherence 
time of oscillations at the resonance frequency, (11,12] 
due to the fact that the phases are Slightly perturbed by 
collisions. The separate trains into which the oscilla­
tions of the atomic oscillator are divided are coherent. 
Their interference can be neglected only for trains of 
length l» Alnl21T; however, this means that vln« ~kv. 
Since IVmnl «kv and Ivmll «kf.Lv, the line shapes of the 
optical transitions remain practically unchanged and 

We shall hereafter neglect the difference between the 
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vectors kJ.L and k. Thus for parallel ~ave~ in the con­
sidered case, with OJ!:. in the region 1 0 J.L - 01 «!Jln and 
liwlnlkBT« 1, from t2.12) we obtain 

Q' IGI' 
Wml(Q.}=Wml(O}exp{- (~) }{ Hb-=-

k,v rlr_ 

+ _ 21"n1 GI' + he -{O"')' [( !tOOl. + 81' ( Q)) (3.3) 
rfrt.'+ (Q,-Q) '] kv KsT kv 

i\. ( Q ) 5,-0 ] I I'} x-----t21 - G . 
r;.'+(Q.-Q)' kv rln'+(Q,-Q}' 

The spectral structure on the considered portion of 
the Doppler curve results from NLIE (the third term in 
the curvy brackets) and from the combination of NLIE 
and splitting (the expression in square brackets). The 
term that is proportional to b results from selective, 
with respect to velocity, change of the level populations, 
induced by the field E. The corresponding structure 
possesses width of the order of r _ »rln . When 0 J.L is 
changed by an amount of the order of !Jln we neglect the 
frequency dependence of this term. The term propor­
tional to a is omitted, because in the present case it is 
negligibly small as compared with the retained terms. 
It follows from (3.3) that elastic collisions with phase 
memory lead to a qualitative change in the form of the 
nonlinear resonance. Thus for parallel waves, in addi­
tion to the structure with the width rln there appears 
an extremely narrow structure with width rln « rln . If 
n = 0, then 1=0 and this spectral structure has a simple 
Lorentz form. Its width for forbidden transitions is 
determined mainly by quenching collisions and can be 
much smaller than <lkv and rln . Another remarkable 
property consists in the fact that in the considered case 
the splitting ceases to depend on the ratio of k and kJ.L 
and can occur even for <lk« k. 

For anti parallel waves 1 k- kJ.L 1 must be replaced by 
k + kJ.L » 1 k- kJ.L I. In this case the conditions for the Dicke 
effect are not fulfilled, because (k + kJ.L)v» !JZn. As pre­
viously, the line shape is that of a Doppler curve with a 
nonlinear addition and now consists of a "band" which 
depends slightly on 0 J.L and is proportional t:? 
a exp[-(O/kv)2], and the contour is of width r _ with its 
center at OJ.L =-0. 

It follows from (3.3) that the amplitudes of the struc­
tures with widths rZn and rln have the ratio 

(!too,n/KBT) 

(rl'ln/[lnkv ) 

with "-Zn=l cm, I1wZn/KBT-1O-3, rZn -102<lkv, r-rm 
-107 sec-I, and l'n-102 sec-1 [16J this ratio is of the or­
der of unity. To observe the considered effects it is 
sufficient to have a field intensity at which the condition 
I G21- rrln is satisfied. These values are smaller by 
the factor r Ifzn - 10 than the values usually employed 
when NLIE are investigated for excited levels. For a 
microwave transition between two optically excited 
states the utilization of a buffer gas makes no essential 
difference, because in this case the transition is 
broadened by radiative relaxation even without the 
presence of a buffer gas (rZn- r mn , rmZ). 

4. CONCLUSION 
On the basis of the foregoing analysis we may con­

clude that "image transfer" of the line shape of a mi-
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crowave transition into the optical region is possible. 
Nonlinear optical spectroscopy can then be used to 
study in a uniform manner the relaxation properties 
of the two different atomic subsystems - the optical 
and the microwave. The resolving power of the method 
is determined by rln and can be considerably smaller 
than the natural line widths of the optical transitions. 

IncreaSing partial pressure of a buffer gas is ac­
companied by greater frequency of elastic collisions, and 
the shape of a nonlinear resonance then changes in ac­
cordance with (3.1) and (3.3). 

In this work we have used a simple parametrization 
of the term (dpl dt)col in the equation for the denSity 
matrix, which describes qualitatively the principal 
properties of the scattering of light particles by heavy 
particles. It should be noted that in the case of small­
angle scattering (scattering by light particles) the char­
acteristics of nonlinear resonance can exhibit a more 
complicated dependence on the buffer gas pressure, as 
has been found for the pressure dependence of the width 
and shift of the Lamb dip.[14J 

The authors are grateful to 1. 1. Sobel'man for dis­
cussions and useful suggestions. 
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