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The equations of the general theory of the relativity in the case of central symmetry are considered
with the object of finding self-similar solutions. Instead of ¢ and r, the special set of independent
variables m and r is chosen which simplifies the equations and allows their solution. Some exact

particular solutions of the “self-similar” equations are found.

It is always of great interest to find exact solutions
in the general theory of relativity. In the present paper
we present some exact solutions for self-similar adia-
batic motions possessing central symmetry in the proper
gravitational field with the interval

—dst=—c*e'dt*+e*dri+r (d0*+sin’ 6dg”).

(1)

For the purpose of finding these solutions, we find it
sensible to transform the basic system of equations,
choosing r and m=rk~(1-e” 7‘), instead of r and t, as
the independent variables. The system of equations then
assumes the simplest form, and allows us to first find
P, €, and u as functions of r and m and then to deter-
mine v=v(r, m) and t=t(r, m). In the variables r and
A, the equations have a slightly more complicated form.,

Taking the matter tensor in its usual form Tk= (p

+ €)uiuk+5ip, and equating its covariant derivative Tli{k
b

to zero, we obtain the equations
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where

A=et-M"2 §r=1—u’/c?

and u is the ordinary three-dimensional radial velocity.
In deriving these equations for the transformation of the
derivatives of A and v, we used one of the transformed
field equations:

A(1+u ) dAu(vir) ,=0. (3)
Let us write the second field equation in the form
L
A)Fur,+u ( et + upre*) =0. (4)

If we write the equations of conservation of entropy for
the given particle, do/ds =0, then we arrive at the
equation

Ao +uo,=0,

(5)
(6)

The six equations (2)-(6) constitute a complete sys-
tem for the determination of the six sought-for func-
tions p, €, 0, u, A, and v. The solution of these equa-
tions in the independent variables t and r is, however,
apparently impossible. Earlier m, we wrote down sys-
tems of self-similar equations in which as the indepen-
dent variable we chose the quantity z= r/t or z=x= z(Z).
These self-similar systems are, however, also not con-
venient for further use. To obtain more compact and
visible expressions, it is convenient to proceed in the
following manner.

o=a(p, €).
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Let us use the equation Tli{k:O’ which can be reduced
to the form ’
r*(e+pu’/c’) urt(pte) 1
[ IE ]+[ A19° ,—0' (7
Equation (7) is a consequence of the Egs. (2). Let
r(etpu’/c’) S 1“'2(17?'3) —Am. (8)
9 W
The field relations yield
2 2 1
() = e )= et (), (9
From (8) and (9) we have
o (1—e) ,4_1_:\4771
mv‘—’{ —e*), et= - (10)
Let us now use m and r as the independent vari-
ables; since
at,r) (0t
T~ (aw) 0
it is easy to express the Egs. (8) in terms of these
variables:
A u* A'Oz
, = e+ p— e ———
w pte (& Pz )' ut r(pte) ' (11)
which yields
A=u(t,.—prt,),
2 (12)

P
r ,,.W(b pF):O,

Further, it is easy to express the Eqgs. (2) and (5) in
terms of these variables: eliminating ty and ty from
the transformed equations, we obtain the equationsm

u

1
——(u,—priu.) + E([Jﬂ'grﬂpm) I

s () =0, (13)
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(15)

1
e Crpre
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The system of equations (10-(15) determines p, ¢,
u, A, v, and t as functions of m and r. In the basic
system, all the variables are mixed up, and it is nec-
essary to solve the six equations simultaneously. A
similar situation obtains for the self-similar motions.
In the present case, if o # const, then it is necessary to
solve the three equations (13), (14), and (15) simultane-
ously, while if o=const, then only two equations (13)
and (14) need be solved simultaneously. In either case
the functions t=t(m, r) and v=v(m, r) have to be de-
termined after the solution of the equations; e~}
=1-km/r is already known.

Copyright © 1975 American Institute of Physics 399



We should, for what follows, make certain thermo-
dynamic transformations. With the aid of the relations

da=‘c.,d—17|‘-+ (ij) dv,
ar=[eap=(32) vael{e.(3) +(55) [oro-1(35) ]}
a-fpa(22) oo}

e (55), +1(55) [oro-1(35) ]}

we express do in terms of de and dp; Eq. (15) then as-
sumes the form

Tpst
Cy

2 v 2
(pr—pripm)— ( _Pu) st(Er_Pr em) =0. (16)
The system of equations (13), (14), and (16) is com-
plete, and determines p and € as functions of m and r.

For the ideal gas p=RT/v, pT=p/T, pv=—p/v, where
R is the gas constant. After simple thermodynamic
transformations Eq. (16) assumes in this case the form

kp 5
(pr—pr*pm) — F_"S‘(Er—Pr en) =0, (1M

where k=cp/cv is the specific-heat ratio.

Let us now find the relation between m and the La-
grange coordinate R, which is introduced in such a way
as to allow the fulfilment of the relation A(ar/ #t)R=u,
in which case A(80/8t)R=0 and o=o{R). Going over to
the independent variables r and m, we have

AR ,=ut R, —ut.R,;

substituting the expressions for uty and uty, from (11),
we arrive at the equation

pr*R,—R,=0, (18)

which determines R=R(m, r); from {18) we can derive
the interesting relation (8m/ar)g+pr°=0 for p=0 and
m=m(R).

Let us now proceed to find the self-similar equations.
Let

u/c=a=a(z), pr*=Et(z),

(z=m/r);

er*=n{z) (19)
in this case e"=1—«xz. Upon making these substitu-
tions, we find that the indicated system of three equa-
tions allows self-similar motions; as can easily be veri-
fied, generalizations with other powers of r and m do
not yield self-similar motions.

Let us transform (14) and (16) with the aid of (19) to
the equations

L S 288, (n—3z) _

o Sy ) B 0,
L N 28—n.(g+z) _
[ (1~a)a* 2(1—nz)](q AR (20)

L2s+e. (e 1- (72— p) ot () 10

The last equation in (20) will yield a class of self-
similar motions only under the condition that

Tpst v P dlnp\* pv dlnp
()R (GE) 7 (G ) -re:
¢, pte pte dlnT/ , ¢,T dlnv/z.

where f(z) is an arbitrary function of z. For the ideal

gas R i
P P
={ =+ L
US) ( cy 1) pte pte
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This expression also defines a selection of classes of
equations of state for which the motion is self-similar.
In this case

Tt G ) -]

The last equation in (20) accordingly assumes the form

kg
[25+§z(§+z)]—m[Zn“‘m(Eﬂ) ]1=0. (21)

The self-similar analog of the Eqs. (12) will, if we set
t=r2T(z), assume the form

ri-ed=ca[al—T" (§+2) | =r'~=e®-9"2,
ntga’
1—a? )
Hence, since e~*=1—«z and v=(z), it follows from

the first equation that @ =1, and the equation deter-
mining v assumes the form

eP=ca(1—nz)"[T—-T"(E+7) 1.

Further, we find that
Vil 1—-a*

al'=T’ (z—

T " z(1—a)—(nFia) 2
e~V?*=cal (1—x3z)" [—Eﬂ]—-] (23)
(nt+ta®) —z(1—a’)

Knowing £, 7, and a as functions of z, we find from
(22) that T=T(z)=t/r and obtain from (23) the function
v=v(z), which completely solves the formulated prob-
iem. Introducing R=rYw(z), we write Eq. (18) in the
form

o’ (§+z2) —y0=0. (24)
Let us consider the case when p=(k—1)e=ae, or
gE=(k~1)n=an.
Then Eq. (21) is, as can easily be verified, satisfied
identically. Equations (20) assume the form
e Lo Bt ER U] B

2 :
IR
ati n a

(25)

b
) (-
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Let us transform this system into one second-order
equation. We first determine

a2~{ x  2a 1 [2 n,(n—z)]
1—%xz atl antz n }

x{ ® 20 1 [2 n,( +z -t
1—xz atl n—z n f a)]}

Further, we find

F
6‘.
d_ F
ElnE= O-F
and finally obtain
—%ln{[ 1—xxz h az-:‘l an:z (2_ m(rl]—_Z) )]
" -1
e e At )|
i (n—ﬂ)] =0.
n

The investigation and numerical solution of this
equation can be carried out by ordinary methods. It is
easy to indicate some particular solutions to Egs. (25).

Let us set n=z. Then the second equation in (25)
is identically satisfied when k=2 and a=1. In this case
t=n=2z, p=e=z/r*=m/r’,
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The first equation in (25) yields

da* _ dz2nz—1

1—a* 2z

1—x%z
and integrating it, we obtain
a*=1—A,z(1—xz),
where AJ=const; the constant is determined from the
condition a=1 for «z=1. Equation (22) assumes the
form
ar __LA.,Z(l—uz)dz
T 2 1-A22(1-x3)
which, on integration, yields
t 2 A /e
_ T _ A2 - a-pspl A2
- T=B[1-A,2(1—x2)] [ 143 Z]
B=(1—4n/As*)", B=const.
Further, Eq. (23) determines
e“"’=(17uz)"‘i
y (26)
=(1—xz)"

eB[1—Agz(1—xz) [O-/% ¢ 2
[1—Aiz(1—xz) 1" [ 148

For k—0 and A—0, we have v—0 and cB=1. Thus,

't . 2 p/2
& eT=[1=Az(1—n2) ]“"W'-ﬁ[—— Agz ] ,

. 1+5
R 1—xz ,lz A A 27— =)/t 72,_ 2 e
e | A ]
Since
1 dn o, '/’1
= =[S (27

we can express ct/r in terms of a’:

i: (ﬂ) B a(ua)/za[ i(l—%(f—a”) ) " (1_3_);?)‘/,] a2 - 28)

r 2%

The relations (26)—(28) completely solve the prob-
lem of the self-similar motion of a medium for €=p.
The eguation €=p is called the most rigid equation of
state ©*), It makes sense in the presence of an ex-
tremely strong electromagnetic field [4], or in the case
when the particle system interacts with a vector
field . We can also find the solution to the system
(26)—(28)when an+z=0; in this case k=—%; and
€+3p=0. However, this equation of state is not re-
alistic in general relativity, and we shall not investi-
gate it here.

Let us give still another particular solution, which
was suggested by I. A. Fedoseev. Let a’=«z; then
from Egs. (20) we have

N"F e (&+z)--2§

2=8(n-2), -~ -

These equations are identically satisfied if £=yz, where
Y is any quantity. Noting that n=3z, we can write the
equation of state in the form

p="lsye, k=1+"x.
Further, we find from (22) that
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dar _ dz 1—xz
T

z 24+x(y+1)z
which yields

t_= T =-i[2+n("{+1)z]("“”2"’+”,
r z"

where B=const.

Then from (23) we obtain
e“”:BCK"'(Y—{—g) [2+H(’{+1)Z] A=9/2(041)

“V/2_1, Hence

2 1

oA /2
Y+3 c¥u 2 v

Since v—0 as k—0, e

B~

which finally yields

(v /2(v+1)
—t:Tz _2 [1+ () z]
r c¥xz(y+3) 2
2 Y+1 u? G2 /2(v4 1)
= [1+5-5% :
u(y+3) 2 ¢t
P + U=p)/2(0+1)
e"’3=[1+—d<‘{2 UZ] (1—%z) .

as k> 0,a—0,and t —«, and we arrive for this par-
ticular solution, in the limit when there is no gravita-
tional field, at the equilibrium conditions for a sta-
tionary medium, when p=const and €=const.

It is likewise easy to find the Tolman solution, when
p=0 (¢ =0). In this case we first have from (20) that

a; x

’

1—a®* 1—xz

which determines a®=1- A%(1-«z), and then we find that

a,’

s (n—z)= AL

a Al
whence we determine 7. This problem has already been
solved by us [5], and we shall not reproduce the solution
here.

It is also easy to find both the self-similar and the
general solutions for €+p=0.
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