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The equations of the general theory of the relativity in the case of central symmetry are considered 
with the object of finding self-similar solutions. Instead of t and r, the special set of independent 
variables m and r is chosen which simplifies the equations and allows their solution. Some exact 
particular solutions of the "self-similar" equations are found. 

It is always of great interest to find exact solutions 
in the general theory of relativity. In the present paper 
we present some exact solutions for self-similar adia
batic motions possessing central symmetry in the proper 
gravitational field with the interval 

-ds2=-c'e'dt2+e'dr'+r' (d6'+sin' 8d<p'). ( 1) 

For the purpose of finding these solutions, we find it 
sensible to transform the basic system of equations, 
choosing rand m=rK- 1(I-e- A), instead of rand t, as 
the independent variables. The system of equations then 
assumes the simplest form, and allows us to first find 
p, E, and u as functions of rand m and then to deter
mine v= v(r, m) and t=t(r, m). In the variables rand 
A, the equations have a slightly more complicated form. 

Taking the matter tensor in its usual form T~= (p 
+ E)UiUk+6~P, and equating its covariant derivatih T~k 

1 1, 

to zero, we obtain the equations 

_1_. [Au,+uu,.]+ (~p,+p.)_1_ =_1_(AA,+UA.), 
c'{;' c2 p+e 2u 

1 1 (U ) 2u u (U )' (Ae,+ue.)--+- A-u,+u. +-=- A-A,+A. , 
p+e fr' c' I' 2 c' 

(2) 

where 

Let us use the equation Tt k = 0, which can be reduced 
to the form ' 

[ r'(e+pu'/c') ] + [ur'(p~] = 0. 
0' , . Ii}' • 

Equation (7) is a consequence of the Eqs. (2). Let 

r'(e+pu'/c') 
{)2 

The field relations yield 

1" ( u' 1 ~;;- e+ fi~) = ---[ 1-- (re'),] =1-e-'( l-rl.,). 
u~ c- x 

From (8) and (9) we have 

Let us now use m and r as the independent vari
abIes; since 

a(t,r) (at) 
rJ(m,r) = am .",,0, 

it is easy to express the Eqs. (8) in terms of these 
variables: 

A ( U') ut,=-- e+p~ , 
p+e c' 

A iT' 
ut =----

m r'(p+e) ' 

(7) 

(8) 

(9) 

(10) 

(11) 

and u is the ordinary three-dimensional radial velocity. which yields 
In deriving these equations for the transformation of the 
derivatives of A. and v, we used one of the transformed 
field equations: 

A (I +u'/c')A, t-u ("+A) .=0. (3) 

Let us write the second field equation in the form 

( e' 1 ) A>.,+UA.+U -r-+xpre' =0. (4) 

If we write the equations of conservation of entropy for 
the given particle, da/ds = 0, then we arrive at the 
equation 

0=0(1', d. 
(5) 
(6) 

The six equations (2)-(6) constitute a complete sys
tem for the determination of the six sought-for func
tions p, E, a, u, A, and v. The solution of these equa
tions in the independent variables t and .r is, however, 
apparently impossible. Earlier £Il, we wrote down sys
tems of self-similar equations in which as the indepen
dent variable we chose the quantity z = r/t or z = A = z(z). 
These self-similar systems are, however, also not con
venient for further use. To obtain more compact and 
visible expressions, it is convenient to proceed in the 
following manner. 

399 SOy. Phys.·JETP, Vol. 39, No.3, September 1974 

(12) 
1" ( U') t.+tm f)' e top -;:z = O. 

Further, it is easy to express the Eqs. (2) and (5) in 
terms of these variables: eliminating tr and tm from 
the transformed equations, we obtain the equations[2l 

";'(u.-pr'um) +_I_(p.+er2Pm) + x (!'!.. + pr') =0, (13) 
ciT p+e 2r(t-xmlr) r 

1 t 2 x (m ) --(e.-pr'em)+--(u.+er'um )+-+ --er' =0, 
p+e \1'u r 2r(1-xmlr) r (14) 

a,-pr'a", =0, (15) 

The system of equations (10-(15) determines p, E, 

u, A, v, and t as functions of m and r. In the basic 
system, all the variables are mixed up, and it is nec
essary to solve the six equations simultaneously. A 
similar situation obtains for the self- similar motions. 
In the present case, if a;" const, then it is necessary to 
solve the three equations (13), (14), and (15) simultane
ously, while if a=const, then only two equations (13) 
and (14) need be solved simultaneously. In either case 
the functions t=t(m, r) and v=v(m, r) have to be de
termined after the solution of the equations; e- A 
= 1- Km/ r is already known. 
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We should, for what follows, make certain thermo
dynamic transformations. With the aid of the relations 

do=c. dT + (!!..-) dv, 
l' dl'. 

dv= [c,dp- (:~) r vde]{ c, (~~) T+ (~~, U (p+e)-T (:; ur', 
dT={vde( :~)T +dp[ (P+~)-T( :;U}, 

x {c. (!!..-) +T(!!"-) [(p+e)-T(!!..L) ]}-' 
av T ,aT, aT • 

we express da in terms of dE and dp; Eq. (15) then as
sumes the form 

( Tp , ) v 
(p,-pr'pm) - _r_ - p. _+ (e,-pr'em) =0. 

c. p e (16) 

The system of equations (13), (14), and (16) is com
plete, and determines p and E as functions of m and r. 

For the ideal gas p=RT/v, PT=p/T, Pv=-p/v, where 
R is the gas constant. After simple thermodynamic 
transformations Eq. (16) assumes in this case the form 

(p,-pr'pm) - ~(e,-pr'em) =0, (17) 
p+e 

where k = cp/cv is the specific-heat ratio. 

Let us now find the relation between m and the La
grange coordinate R, which is introduced in such a way 
as to allow the fulfilment of the relation A(8r/8t)R=u, 
in which case A(8a/8t)R=0 and a=a(R). Going over to 
the independent variables rand m, we have 

substituting the expressions for utr and utm from (11), 
we arrive at the equation 

(18) 

which determines R=R(m, r); from (18) we can derive 
the interesting relation (8m/8r)R + pr2 = 0 for p=O and 
m=m(R). 

Let us now proceed to find the self-similar equations. 
Let 

lllc=a=a(z) , pr'=1;(z) , 

er'=I'){z) (z=mlr); 
(19) 

in this case e- A= 1-Kz. Upon making these substitu
tions, we find that the indicated system of three equa
tions allows self-similar motions; as can easily be veri
fied, generalizations with other powers of rand m do 
not yield self-similar motions. 

Let us transform (14) and (16) with the aid of (19) to 
the equations 

(~ ___ x_] (s+z)+ 21;-6.(I')-Z) 0, 
i-a' 2(1-xz) s+I') 

[ aa, X] 2s-I'),(s+z) 
(1-a')a'-2(i-xz) (I')-z)+ ;+1') =0, 

12s+s,(s+z) ]_( Tp,,' - p,) _v-[21')+I'),(S+z) ]=0. 
c, p+e 

The last equation in (20) will yield a class of self
similar motions only under the condition that 

( TPx'_p)_V =_p [(alnp)' ~_(alnp) ]=/(z) 
c. 'p+e p+e a In T • c,T a In v r' ' 

(20) 

where f(z) is an arbitrary function of z. For the ideal 
gas 

( R ) p kp f(z)= -+1 -=-. 
c, p+e p+e 
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This expression also defines a selection of classes of 
equations of state for which the motion is self-similar. 
In this case 

dO_dP-/(Z)de[(iiln p ) c,T ]-' -- -- --fez) . 
c" p dIn T, pv 

The last equation in (20) accordingly assumes the form 

ks 
[2s+s,(s+z)]- s+I') [21')+I'),(1;+z)]=0. (21) 

The self-similar analog of the Eqs. (12) will, if we set 
t = raT(z), assume the form 

r'-OA=ca[aT-T' (6+Z)] =r,-oe"-"/', 

aT=T' (z _ I')+sa'). 
i-a' 

Hence, since e- A= l-Kz and v= v(z), it follows from 
the first equation that a = 1, and the equation deter
mining v assumes the form 

e-·I '=ca(1-xz)'''[T-T' (s+I')]· 

Further, we find that 
T' 1-a' 

T z(1-a')-(I')+sa') 

e-v /'=caT(1-xz)'{' [ 6+1') 1. 
(I')+sa')-z(1-a') 

(22) 

(23) 

Knowing ~,T/, and a as functions of z, we find from 
(22) that T = T(z) = t/r and obtain from (23) the function 
v = v(z), which completely solves the formulated prob
lem. Introducing R= rYw(z), we write Eq. (18) in the 
form 

(O'(s+z) -16)=0. 

Let us consider the case when p=(k-1)E= aE, or 

s=(k-i)I')=al'), 

Then Eq. (21) is, as can easily be verified, satisfied 
identically. Equations (20) assume the form 

( a,' X) 2a [ 1'), ] --,--- (al')+z)+-- 2--(I')-z) =0, 
i-a' l-XZ a+l I') 

( a.' x ) 2a [ 1'). ( z )] ------ (I')-z)+-- 2-- 1')+- =0, 
(I-a'),,· 1-xz a+ 1 I') a 

(24) 

(25) 

Let us transform this system into one second-order 
equation. We first determine 

x{ l~xz - ::1 I')~z (2- ~'(I')+ :)]r'~~, 
Further, we find 

and finally obtain 

d F 
-In-=(J)-F 
dz (J) 

d {[ 'X 2a 1 (2 I'),(I')-z»)] 
dzln 1-xz - a+1 al')+z ---1')--

[ X 2a 1 ( 1'), ( z ))] -'} x ------- 2-- 1')+-
1-xz a+1 I')-z I') a 

2a [ 1 ( 1'), ( z )) 1 ( z ) -, (I'), )] +-- -- 2---- 1')+-- --- 1')+- 2--(I')-z) =0. 
a+1 I')-Z I') a a a I') 

The investigation and numerical solution of this 
equation can be carried out by ordinary methods. It is 
easy to indicate some particular solutions to Eqs. (25). 

Let us set T/ = z. Then the second equation in (25) 
is identically satisfied when k = 2 and a= 1. In this case 
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The first equation in (25) yields 

da' dz 2%z-1 

i-a' z 1-%. 

and integrating it, we obtain 

a'=1-A o'z(1-%z), 

where ~ = const; the constant is determined from the 
condition a= 1 for KZ = 1. Equation (22) assumes the 
form 

dT 1 A o'(1-%z)dz 
r=-21-A(l2z{1-xz) , 

which, on integration, yields 

t 2 ] Of' 
-= T=B[ 1-Ao'z(t-%z) ]"-""'[--- -AD'z 
r 1+~ 

~=(l-4%/Ao')'!', B=const. 

Further, Eq. (23) determines 
/ ' eT 

e-" '= (1-%.) "
a 

eB[ l-Ao'z(l-%.) ]"-"'" 
=(1-%z)' 

[1-A o'z(1-%.) ]'I' 
[ 2 , ] 'I' ---A z . 
1+~ 0 

(26) 

For K-O and ,\- 0, we have v-O and cB = 1. Thus, 

e: =CT=[l-Ao'Z(1-%Z)]"-w"L~~-Ao'Z] 'I', 
e-,n= [-,---:-1.,---,.,-%_Z---,-_ ] 'I, [l-A o'z[ 1-%,)] "-w"'[ _2 ,-- -A02z] '12. 

1-.1o'(1-%z)z l+p 

Since 
1 { [4% ] 'I, 1 z=- 1+ 1--('1-a') ~ 

2% Ao' . J (27) 

we can express ct/r in terms of a2 : 

~= (~O') 'I' a"-"!20[±( 1- 4.%,(1_a2 )) 'I. _ (1- 4%,)';'] ,/2 
r 2x ,10 ,10 

(28) 

The relations (26)-(28) completely solve the prob
lem of the self-similar motion of a medium for E = p. 
The eguation E = P is called the most rigid equation of 
state 3). It makes sense in the presence of an ex
tremely strong electromagnetic field [4) , or in the case 
when the particle system interacts with a vector 
field [3). We can also find the solution to the system 
(26)-(28)when a11+z=O; in this case k=-% and 
E + 3p = O. However, this equation of state is not re
alistic in general relativity, and we shall not investi
gate it here. 

Let us give still another particular solution, which 
was suggested by I. A. Fedose~w. Let a2 = KZ; then 
from Eqs. (20) we have 

1], (£+z) -2~ 

1;+'1 

These equations are identically satisfied if ~ = yz, where 
y is any quantity. Noting that 11 = 3z, we can write the 
equation of state in the form 

P='!sle, k=I+'/,I· 

Further, we find from (22) that 
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which yields 

dT 

T 

dz l-xz 

where B = const. 

Then from (23) we obtain 

e-· 12 =Bc%'I,( 1+3) [2+% (,+ 1) z] (H')I'(';+ ". 

Since v-O as K-O, e- V/ 2 =1. Hence 

B;= _2_. __ 1 __ _ 
1+3 c 1';;-2{t'+J)J2('>'+~) 

which finally yields 
t 2 [ %(,+1) ](\"+3'12(1+» 

-=1= 1+---2 
r cfxz(,+3) 2 

=--- 1+·---
2 [ "(+1 u:...·] (\·+.111!(7~ 1) 

u(,+:,) 2 c' 

.. { x(,+1)Z] "-'''''''0'+', 
e·'I,= 1+--2-- (1-xz) 

as K- 0, a - 0, and t - 00, and we arrive for this par
ticular solution, in the limit when there is no gravita
tional field, at the equilibrium conditions for a sta
tionary medium, when p = const and E = const. 

n is likewise easy to find the Tolman solution, when 
p=O (a=O). In this case we first have from (20) that 

which determines a2 = 1-A5(1-Kz), and then we find that 

whence we determine 11. This problem has already been 
solved by us [5), and we shall not reproduce the solution 
here. 

It is also easy to find both the self-similar and the 
general solutions for E + P = O. 

The author is grateful to I. A. Fedoseev, G. N. 
Shikin, and M. Yu. Ivanov for a valuable discussion of 
the results of the paper. 
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