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The equations of the general theory of the relativity in the case of central symmetry are considered 
with the object of finding self-similar solutions. Instead of t and r, the special set of independent 
variables m and r is chosen which simplifies the equations and allows their solution. Some exact 
particular solutions of the "self-similar" equations are found. 

It is always of great interest to find exact solutions 
in the general theory of relativity. In the present paper 
we present some exact solutions for self-similar adia­
batic motions possessing central symmetry in the proper 
gravitational field with the interval 

-ds2=-c'e'dt2+e'dr'+r' (d6'+sin' 8d<p'). ( 1) 

For the purpose of finding these solutions, we find it 
sensible to transform the basic system of equations, 
choosing rand m=rK- 1(I-e- A), instead of rand t, as 
the independent variables. The system of equations then 
assumes the simplest form, and allows us to first find 
p, E, and u as functions of rand m and then to deter­
mine v= v(r, m) and t=t(r, m). In the variables rand 
A, the equations have a slightly more complicated form. 

Taking the matter tensor in its usual form T~= (p 
+ E)UiUk+6~P, and equating its covariant derivatih T~k 

1 1, 

to zero, we obtain the equations 

_1_. [Au,+uu,.]+ (~p,+p.)_1_ =_1_(AA,+UA.), 
c'{;' c2 p+e 2u 

1 1 (U ) 2u u (U )' (Ae,+ue.)--+- A-u,+u. +-=- A-A,+A. , 
p+e fr' c' I' 2 c' 

(2) 

where 

Let us use the equation Tt k = 0, which can be reduced 
to the form ' 

[ r'(e+pu'/c') ] + [ur'(p~] = 0. 
0' , . Ii}' • 

Equation (7) is a consequence of the Eqs. (2). Let 

r'(e+pu'/c') 
{)2 

The field relations yield 

1" ( u' 1 ~;;- e+ fi~) = ---[ 1-- (re'),] =1-e-'( l-rl.,). 
u~ c- x 

From (8) and (9) we have 

Let us now use m and r as the independent vari­
abIes; since 

a(t,r) (at) 
rJ(m,r) = am .",,0, 

it is easy to express the Eqs. (8) in terms of these 
variables: 

A ( U') ut,=-- e+p~ , 
p+e c' 

A iT' 
ut =----

m r'(p+e) ' 

(7) 

(8) 

(9) 

(10) 

(11) 

and u is the ordinary three-dimensional radial velocity. which yields 
In deriving these equations for the transformation of the 
derivatives of A. and v, we used one of the transformed 
field equations: 

A (I +u'/c')A, t-u ("+A) .=0. (3) 

Let us write the second field equation in the form 

( e' 1 ) A>.,+UA.+U -r-+xpre' =0. (4) 

If we write the equations of conservation of entropy for 
the given particle, da/ds = 0, then we arrive at the 
equation 

0=0(1', d. 
(5) 
(6) 

The six equations (2)-(6) constitute a complete sys­
tem for the determination of the six sought-for func­
tions p, E, a, u, A, and v. The solution of these equa­
tions in the independent variables t and .r is, however, 
apparently impossible. Earlier £Il, we wrote down sys­
tems of self-similar equations in which as the indepen­
dent variable we chose the quantity z = r/t or z = A = z(z). 
These self-similar systems are, however, also not con­
venient for further use. To obtain more compact and 
visible expressions, it is convenient to proceed in the 
following manner. 

399 SOy. Phys.·JETP, Vol. 39, No.3, September 1974 

(12) 
1" ( U') t.+tm f)' e top -;:z = O. 

Further, it is easy to express the Eqs. (2) and (5) in 
terms of these variables: eliminating tr and tm from 
the transformed equations, we obtain the equations[2l 

";'(u.-pr'um) +_I_(p.+er2Pm) + x (!'!.. + pr') =0, (13) 
ciT p+e 2r(t-xmlr) r 

1 t 2 x (m ) --(e.-pr'em)+--(u.+er'um )+-+ --er' =0, 
p+e \1'u r 2r(1-xmlr) r (14) 

a,-pr'a", =0, (15) 

The system of equations (10-(15) determines p, E, 

u, A, v, and t as functions of m and r. In the basic 
system, all the variables are mixed up, and it is nec­
essary to solve the six equations simultaneously. A 
similar situation obtains for the self- similar motions. 
In the present case, if a;" const, then it is necessary to 
solve the three equations (13), (14), and (15) simultane­
ously, while if a=const, then only two equations (13) 
and (14) need be solved simultaneously. In either case 
the functions t=t(m, r) and v=v(m, r) have to be de­
termined after the solution of the equations; e- A 
= 1- Km/ r is already known. 
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We should, for what follows, make certain thermo­
dynamic transformations. With the aid of the relations 

do=c. dT + (!!..-) dv, 
l' dl'. 

dv= [c,dp- (:~) r vde]{ c, (~~) T+ (~~, U (p+e)-T (:; ur', 
dT={vde( :~)T +dp[ (P+~)-T( :;U}, 

x {c. (!!..-) +T(!!"-) [(p+e)-T(!!..L) ]}-' 
av T ,aT, aT • 

we express da in terms of dE and dp; Eq. (15) then as­
sumes the form 

( Tp , ) v 
(p,-pr'pm) - _r_ - p. _+ (e,-pr'em) =0. 

c. p e (16) 

The system of equations (13), (14), and (16) is com­
plete, and determines p and E as functions of m and r. 

For the ideal gas p=RT/v, PT=p/T, Pv=-p/v, where 
R is the gas constant. After simple thermodynamic 
transformations Eq. (16) assumes in this case the form 

(p,-pr'pm) - ~(e,-pr'em) =0, (17) 
p+e 

where k = cp/cv is the specific-heat ratio. 

Let us now find the relation between m and the La­
grange coordinate R, which is introduced in such a way 
as to allow the fulfilment of the relation A(8r/8t)R=u, 
in which case A(8a/8t)R=0 and a=a(R). Going over to 
the independent variables rand m, we have 

substituting the expressions for utr and utm from (11), 
we arrive at the equation 

(18) 

which determines R=R(m, r); from (18) we can derive 
the interesting relation (8m/8r)R + pr2 = 0 for p=O and 
m=m(R). 

Let us now proceed to find the self-similar equations. 
Let 

lllc=a=a(z) , pr'=1;(z) , 

er'=I'){z) (z=mlr); 
(19) 

in this case e- A= 1-Kz. Upon making these substitu­
tions, we find that the indicated system of three equa­
tions allows self-similar motions; as can easily be veri­
fied, generalizations with other powers of rand m do 
not yield self-similar motions. 

Let us transform (14) and (16) with the aid of (19) to 
the equations 

(~ ___ x_] (s+z)+ 21;-6.(I')-Z) 0, 
i-a' 2(1-xz) s+I') 

[ aa, X] 2s-I'),(s+z) 
(1-a')a'-2(i-xz) (I')-z)+ ;+1') =0, 

12s+s,(s+z) ]_( Tp,,' - p,) _v-[21')+I'),(S+z) ]=0. 
c, p+e 

The last equation in (20) will yield a class of self­
similar motions only under the condition that 

( TPx'_p)_V =_p [(alnp)' ~_(alnp) ]=/(z) 
c. 'p+e p+e a In T • c,T a In v r' ' 

(20) 

where f(z) is an arbitrary function of z. For the ideal 
gas 

( R ) p kp f(z)= -+1 -=-. 
c, p+e p+e 
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This expression also defines a selection of classes of 
equations of state for which the motion is self-similar. 
In this case 

dO_dP-/(Z)de[(iiln p ) c,T ]-' -- -- --fez) . 
c" p dIn T, pv 

The last equation in (20) accordingly assumes the form 

ks 
[2s+s,(s+z)]- s+I') [21')+I'),(1;+z)]=0. (21) 

The self-similar analog of the Eqs. (12) will, if we set 
t = raT(z), assume the form 

r'-OA=ca[aT-T' (6+Z)] =r,-oe"-"/', 

aT=T' (z _ I')+sa'). 
i-a' 

Hence, since e- A= l-Kz and v= v(z), it follows from 
the first equation that a = 1, and the equation deter­
mining v assumes the form 

e-·I '=ca(1-xz)'''[T-T' (s+I')]· 

Further, we find that 
T' 1-a' 

T z(1-a')-(I')+sa') 

e-v /'=caT(1-xz)'{' [ 6+1') 1. 
(I')+sa')-z(1-a') 

(22) 

(23) 

Knowing ~,T/, and a as functions of z, we find from 
(22) that T = T(z) = t/r and obtain from (23) the function 
v = v(z), which completely solves the formulated prob­
lem. Introducing R= rYw(z), we write Eq. (18) in the 
form 

(O'(s+z) -16)=0. 

Let us consider the case when p=(k-1)E= aE, or 

s=(k-i)I')=al'), 

Then Eq. (21) is, as can easily be verified, satisfied 
identically. Equations (20) assume the form 

( a,' X) 2a [ 1'), ] --,--- (al')+z)+-- 2--(I')-z) =0, 
i-a' l-XZ a+l I') 

( a.' x ) 2a [ 1'). ( z )] ------ (I')-z)+-- 2-- 1')+- =0, 
(I-a'),,· 1-xz a+ 1 I') a 

(24) 

(25) 

Let us transform this system into one second-order 
equation. We first determine 

x{ l~xz - ::1 I')~z (2- ~'(I')+ :)]r'~~, 
Further, we find 

and finally obtain 

d F 
-In-=(J)-F 
dz (J) 

d {[ 'X 2a 1 (2 I'),(I')-z»)] 
dzln 1-xz - a+1 al')+z ---1')--

[ X 2a 1 ( 1'), ( z ))] -'} x ------- 2-- 1')+-
1-xz a+1 I')-z I') a 

2a [ 1 ( 1'), ( z )) 1 ( z ) -, (I'), )] +-- -- 2---- 1')+-- --- 1')+- 2--(I')-z) =0. 
a+1 I')-Z I') a a a I') 

The investigation and numerical solution of this 
equation can be carried out by ordinary methods. It is 
easy to indicate some particular solutions to Eqs. (25). 

Let us set T/ = z. Then the second equation in (25) 
is identically satisfied when k = 2 and a= 1. In this case 
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The first equation in (25) yields 

da' dz 2%z-1 

i-a' z 1-%. 

and integrating it, we obtain 

a'=1-A o'z(1-%z), 

where ~ = const; the constant is determined from the 
condition a= 1 for KZ = 1. Equation (22) assumes the 
form 

dT 1 A o'(1-%z)dz 
r=-21-A(l2z{1-xz) , 

which, on integration, yields 

t 2 ] Of' 
-= T=B[ 1-Ao'z(t-%z) ]"-""'[--- -AD'z 
r 1+~ 

~=(l-4%/Ao')'!', B=const. 

Further, Eq. (23) determines 
/ ' eT 

e-" '= (1-%.) "­
a 

eB[ l-Ao'z(l-%.) ]"-"'" 
=(1-%z)' 

[1-A o'z(1-%.) ]'I' 
[ 2 , ] 'I' ---A z . 
1+~ 0 

(26) 

For K-O and ,\- 0, we have v-O and cB = 1. Thus, 

e: =CT=[l-Ao'Z(1-%Z)]"-w"L~~-Ao'Z] 'I', 
e-,n= [-,---:-1.,---,.,-%_Z---,-_ ] 'I, [l-A o'z[ 1-%,)] "-w"'[ _2 ,-- -A02z] '12. 

1-.1o'(1-%z)z l+p 

Since 
1 { [4% ] 'I, 1 z=- 1+ 1--('1-a') ~ 

2% Ao' . J (27) 

we can express ct/r in terms of a2 : 

~= (~O') 'I' a"-"!20[±( 1- 4.%,(1_a2 )) 'I. _ (1- 4%,)';'] ,/2 
r 2x ,10 ,10 

(28) 

The relations (26)-(28) completely solve the prob­
lem of the self-similar motion of a medium for E = p. 
The eguation E = P is called the most rigid equation of 
state 3). It makes sense in the presence of an ex­
tremely strong electromagnetic field [4) , or in the case 
when the particle system interacts with a vector 
field [3). We can also find the solution to the system 
(26)-(28)when a11+z=O; in this case k=-% and 
E + 3p = O. However, this equation of state is not re­
alistic in general relativity, and we shall not investi­
gate it here. 

Let us give still another particular solution, which 
was suggested by I. A. Fedose~w. Let a2 = KZ; then 
from Eqs. (20) we have 

1], (£+z) -2~ 

1;+'1 

These equations are identically satisfied if ~ = yz, where 
y is any quantity. Noting that 11 = 3z, we can write the 
equation of state in the form 

P='!sle, k=I+'/,I· 

Further, we find from (22) that 
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which yields 

dT 

T 

dz l-xz 

where B = const. 

Then from (23) we obtain 

e-· 12 =Bc%'I,( 1+3) [2+% (,+ 1) z] (H')I'(';+ ". 

Since v-O as K-O, e- V/ 2 =1. Hence 

B;= _2_. __ 1 __ _ 
1+3 c 1';;-2{t'+J)J2('>'+~) 

which finally yields 
t 2 [ %(,+1) ](\"+3'12(1+» 

-=1= 1+---2 
r cfxz(,+3) 2 

=--- 1+·---
2 [ "(+1 u:...·] (\·+.111!(7~ 1) 

u(,+:,) 2 c' 

.. { x(,+1)Z] "-'''''''0'+', 
e·'I,= 1+--2-- (1-xz) 

as K- 0, a - 0, and t - 00, and we arrive for this par­
ticular solution, in the limit when there is no gravita­
tional field, at the equilibrium conditions for a sta­
tionary medium, when p = const and E = const. 

n is likewise easy to find the Tolman solution, when 
p=O (a=O). In this case we first have from (20) that 

which determines a2 = 1-A5(1-Kz), and then we find that 

whence we determine 11. This problem has already been 
solved by us [5), and we shall not reproduce the solution 
here. 

It is also easy to find both the self-similar and the 
general solutions for E + P = O. 

The author is grateful to I. A. Fedoseev, G. N. 
Shikin, and M. Yu. Ivanov for a valuable discussion of 
the results of the paper. 
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