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The equations of motion of charged radiating shells are derived in general relativity. It is shown on 
the basis of this model that during the anticollapse stage there is a possibility for open systems to 
undergo transitions into semiclosed ones, as well as for transitions of nonfriedmon states into 
friedmon states, as a result of processes of emission of charge and energy. 

1. INTRODUCTION 

The determination of interior solutions (Le., solu
tions inside a distribution of matter) for the Einstein 
equations is a relatively difficult problem. The problem 
is complicated all the more if the matter can lose en
ergy by radiation, since in this case one must take into 
account the additional radiation reaction forces. There 
are several related questions for which it is desirable 
to have an exact interior solution for a radiating sys
tem. Thus, in studying the problem of gravitational col
lapse it was pointed out(1,2] that possibly the emission of 
energy exerts a crucial influence on the dynamics of the 
collapse. 

Another problem for which it is necessary to know an 
exact solution of the interior problem is that of the pos
sibility of formation of semi-closed universes from 
open ones. Semi-closed universes were first considered 
by Klein, Zel'dovich, and Novikov[3-5] and are structures 
for which the boundary of matter is situated in the 
second R-region, connected to the space of an outside 
observer through a narrow "throat." Semi -closed 
universes have a geometry that differs strongly from 
the Euclidean one and are characterized from a physical 
point of view by a gravitational mass defect comparable 
to the total mass of the system. Obviously, if the 
initially open system loses part of its mass as a result 
of radiation, the remaining matter may be compressed 
as a result of radiation reaction and the gravitational 
mass defect may increase. An exact solution of the 
problem involving radiation is required in order to 
clarify whether there exist conditions for which a semi
closed universe can be formed as a result of such a 
process. 

Finally, a solution of the equations for a radiating 
system is necessary also for the discussion of the fol
lowing problem. It was shown in papers by Markov and 
the author[6-B] that in the investigation of the problem of 
self-energy of sources of electric fields, a natural 
generalization of the concept of electric point charge is 
the concept of "friedmon," an object which appears as 
a result of simultaneous solution of the Maxwell-Ein
stein equations and representing a semiclosed universe 
for which the external parameters (i.e., the external 
mass and the size) are completely determined by its 
charge and are the minimal ones admitted by the theory. 
An investigation of the equations for a radiating system 
allows one to answer the question whether such objects 
can appear in the Universe under definite conditions, 
i.e., whether on account of emission of energy and 
charge a system can transform into a friedmon. 

In all cases mentioned above it is very convenient to 
consider a simple model in which the source of the 

393 SOy. Phys.·JETP, Vol. 39, No.3, September 1974 

field is a massive charged radiating shell, Le., a dis
tribution of matter which is concentrated near the sur
face of a sphere of radius p the thickness of the shell 
being small and the mass of the matter inside the shell 
finite. A theory of massive shells was developed in[9,lO]. 
In this model the dynamics of the system is described 
by prescribing the dependence of the radius p of the 
shell on the time T, and the partial differential equa
tions necessary for the description of a continuous 
medium here are replaced by an ordinary differential 
equation for the function p( T). Israel[9J has shown how 
this equation can be obtained from the Einstein equation 
if one knows the metric both inside and outside the 
shell and specifies the distribution of matter on the 
surface of the shell. Israel's equations have been used 
for the derivation of an equation of motion of a spheric
ally-symmetric neutral[9,10] and charged[llJ shell and of 
a shell conSisting of radiation [12J. 

In the present paper we derive the equations of mo
tion of charged radiating shells in a form which is use
ful for the description both of emission and absorption 
processes of radiation. These equations are used for 
establishing a relation between the parameters which 
characterize the system before and after the radiative 
process. As a result of an analysis of these relations 
we show that in the anticollapse stage open systems can 
go over into semiclosed ones and nonfriedmon states can 
go over into friedmon states. 

We use the following notation: greek indices take on 
the values 1,2, 3,4 and lower-case latin ones, i, j = 2, 
3,4. The tetrad components of tensors have the indices 
A, B = 1, 2, 3,4 or X, Y = 2, 3,4. A prime denotes dif
ferentiation with respect to coordinate time z and a dot 
denotes differentiation with respect to proper time T. 

The speed of light is c = 1, K is the gravitational con
stant. The Signature of the metric is (- - - +). 

2. THE EXTERNAL METRIC FOR CHARGED 
RADIATING SYSTEMS (THE CHARGED 
VAIDYA METRIC) 

In the Introduction we have indicated that in order to 
obtain equations of motion of charged radiating shells it 
is necessary to know the metric outside the source, i.e., 
in the region where only radiation is present. The 
nature of the radiation can be arbitrary, and the radia
tion itself is described thermodynamically by giving the 
energy-momentum tensor TiJ.lI = qkiJ.kll , where kiJ.kV 

= 0 and q 20 O. The quantity q describes the energy 
density of the radiation in an appropriately chosen ref
erence frame. For a neutral spherically symmetric 
body the external metric in the presence of radiation 
was found by Vaidya [13-15] and is of the form 
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ds'=2pdzdr-r'da'+j(z, r)dz', 

where 
2xm(z) 

l(z,I")=1----, da'=dS'+sin'Sdq,z, 
r 

{J 
k=p-. ar 

(1) 

for p = +1 the z coordinate has the meaning of retarded 
time u, and from the positivity of q it follows that 
m(u) is a decreasing function, i.e., the system radiates 
energy. For p = -1 the radiation is absorbed by the 
system (m' 2: 0) and z has the meaning of advanced 
time. 

The generalization of the Vaidya metric to the case 
when the system is charged and the radiation can trans
fer charge, given in[16,17] has the form (1), but in this 
case 

l(z,r)=1- 2xm(z) +xe'~z). 
r r 

(1' ) 

For constant m and e this metric coincides with the 
usual Reissner-Nordstrpm metric and at e = 0 it goes 
over into the well-known Schwarzschild metric. 

The boundary of the radiating system is a sphere 
with the radius r depending on time: 

r=R(z). (2) 

In the case when the source of the field is a masSive 
shell, the boundary of matter coincides with the surface 
of the shell. In studying the motion of the sources of the 
field it is important to keep in mind that the coordinates 
(r, e, cp, z) under discussion do not cover the whole of 
spacetime. This is easily checked by noting that the 
metric in these coordinates is not geodesically com
plete. The structure of the whole of spacetime depends 
on the function f( z, r), but in its general features it will 
be similar to the structure of the maximal analytic 
extension of the Schwarz schild metric obtained by 
Kruskal(18), and to the extension of the Reissner
Nordstrpm metric found by Graves and Brill(19). The 
Penrose diagrams for the appropriate complete space
times are shown respectively in Fig. 1 and Fig. 2. We 
use these diagrams in studying the motion of shells in 
the case when the emission or absorption occurs during 
a short proper time interval, so that before and after 
the emission or absorption the system moves in its own 
field with constant parameters m and e. 

Both figures represent space-time in the coordinates 
introduced by Penrose ["0). The details of the construc
tion of such diagrams for different metrics can be 
found, e.g., in the paper of Walker[21].* The notation in 
Fig. 1 and 2 is analogous to that used in[2o,21]. The lines 

r=O 

FIG. I. The Penrose diagram for the maximally extended 
Schwarzschild·Kruskal spacetime (a section e = cont, <p = canst). * 
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FIG. 2. The Penrose diagram for the maximally extended 
Reissner-Nordstr¢m Graves-Brill spacetime for m > eK- 1I2 (a section 
e = canst, <p = canst). 

r = 2Km for the Schwarzschild metric and the lines 
r = r ± = K( m ± (m 2 - e 2j K)1/2 ) for the Reissner-Nord
strpm metric partition spacetime into parts. In the 
scale chosen by us the centers of these parts are at 
points with integer coordinates nand t. In the Schwarz
schild case there are four parts and the Penrose dia
gram for the Reissner-Nordstrpm spacetime consists 
of a countable set of parts. The equation u = const 
(v = const) describes straight lines making an angle of 
45° (135°) with the X axis. 

It is convenient to introduce the following notation: 
[k, ±]= U [n, (2k-1) ±nj, 

n 

where in each case the union is taken over all n such 
that the corresponding blocks under the union sign be
long to the spacetime diagram. The parts of spacetime 
which end up in the blocks [k, +] ([ k, -]) are completely 
described in the coordinates (r, u) (or (r, v), respec-
ti vely). In writing the metric in the form (1) it turns 
out that p = +1 (p = -1) in the blocks [21, ±] ([21 - 1, 
± ]). Finally we note that the coordinate systems used 
for the description of the different parts of spacetime 
may have different orientations. We make the conven
tion to consider the coordinate system (r, e, cp, t) 
introduced by an external observer at Euclidean infinity 
as right-handed. Then it is easy to show that the coordi
nates (r, e, cp, u) in the blocks [21, +] ([21 + 1, +]) 
are right (left-) handed. Similarly, the coordinates 
(r, e, cp, v) in the blocks [21 - 1, -] ([21, -]) are 
right- (left-) handed. We associate with each coordinate 
system the number a equal to +1 for right-handed sys
tems and to -1 for left-handed ones. 

We note that in the blocks [0, 2n + 1] the coordinate 
r has a timelike character!), Le., in the course of time 
it varies strictly monotonically. If the boundary of 
matter is in a T-region one talks about collapse (de-
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crease of r) or anticollapse (increase of r) of matter. 
In the case of the metric of form (1) one can partition 
the whole of spacetime into R- and T-regions, however 
for m and e which depend on z the boundary between 
the R- and T-regions will no longer be a horizon, as is 
the case for the Schwarzschild and Reissner-Nordstr.6m 
spaces. 

For a general characterization of the physical 
properties of the considered system it is important to 
know through which of the two regions (1,0] or (-1,0] 
passes the worldline of the boundary of matter. If the 
matter passes through (1, 0] the system is called open, 
in the other case it is called semiclosed. For semi
closed systems at the time of expansion it is character
istic that the areas of the spheres which surround it de
crease as one goes away from the matter to the outside, 
up to the minimal sphere- "throat." In order to de
scribe the property of semiclosedness it is convenient to 
introduce the invariant quantity 

(3 ) 

where e 1 is the unit vector of the external normal to 
the boundary of matter. The sign of E characterizes 
the openness (E > 0) or semiclosedness (E < 0) of the 
system when it is in an R:i-region. 

3. DERIVATION OF THE EQUATIONS OF MOTION 
OF A CHARGED RADIATING SHELL 

In this section we use a method similar to the one 
used in [9,11] to derive the equations of motion of a 
charged radiating shell. In the case considered by us 
it is convenient to use the tetrad formalism. There 
exists a natural choice of tetrads (moving ortho-frames) 
consisting in the following. The boundary of matter or 
the surface of the shell forms in the total spacetime a 
hypersurface ~ 0, separating spacetime into an internal 
and an external parts. In the coordinates (r, e, cp, z) 
the hypersurface is described by the equation (2). To
gether with ~o we consider the hypersurfaces ~c de
fined by the equations 

r-R(z) ~c. (4) 

On ~c one can choose uniquely an orthonormal system 
consisting of three vectors, e2, e 3 and e4, directing the 
first two along the e and cp coordinate lines and the 
last e4 into the future, determined by orthogonality and 
normalization. The constructed triad of vectors is 
completed to form an orthonormal frame by e 1, the 
external normal to the surface ~c. In the a-coordinates 
(r, e, cp, z) these tetrads are given by the following 
formulas 

e,~a(f+2pR')-'!' ((f+PR')!...- - p!...-], 
ar iJz 

1 f) 1 a 
e:!=-;:-a8' e3= rsin8 ihP' (5 ) 

e,~(f+2pR')-1' (R'!...-+!...-). 
Or uz 

The spacetime metric induces on ~c two quadratic 
forms. The first of these is 

dl'~-pc'(T)da'+d-r:'~b,!dxidx', (6) 

and characterizes the intrinsic geometry of the surface, 
through bij, where 

p,(-r:)~R(z)-c, (7) 
and T is the proper time on ~c, related to the z coordi
nate by 
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i~(f,+2pRY!·. (8) 

The second quadratic form related to 1:c is the ex
ternal curvature form n, the tetrad components of 
which are given by 

Thus, on each hypersurface ~c which partitions 
spacetime into an exterior and an interior region there 
appear two sets of quadratic forms band n, induced 
on it respectively by the metric of the exterior (b+, n+) 
and the interior (b-, n-) parts of spacetime. It follows 
from the Einstein equations that the condition bij = bij 
must hold. However, in the general case the quantities 
n are not necessarily continuous on 1:c. Following 
Israel[9], we introduce the notation 

+ - I + _ 1 
kxr=Q.n·-·Qxy, K.n' = 2(Q·yy+Q·n), S",=- Hrrx (kn-1l.nkz(zio) 

If one uses the Einstein equations one can obtain the 
following relations between n± and the energy-momen
tum tensor of matter near ~o (cf.[9]): 

,3'R+ [K., ,EXY -(K, X)'+4"'x'(8,, SXY -'I, (8/)') 1 ~-8rrx (1',,+ -T,,-). 

K XY S x },=T\l +-T 11 -, 

K"Y, ,.-K,Y; .,~-1.rr,,(TlY++T,-,-). 
8 x Y ; y=T1X+-Tlx~, 

(11) 

(12 ) 
(13) 
(14) 

where Th are the limits of the tetrad components of 
the energy-momentum tensor as 1:0 is approached from 
the outside and inside and (3)R is the scalar curvature 
computed from the intrinsic metric of the hypersurface 
~o. The tensor S plays the role of a surface density 
tensor of energy-momentum on the surface ~o and it 
was shown in[9] that in normal coordinates ds 2 = _dq2 
+ bijdxidxi where the surface ~o has the equation 

q = 0, the tensor S has the following relation to the 
volume energy-momentum tensor: 

, 
Sx>~ lim S Tn dq. 

HO 
(15 ) 

In the case when the energy-momentum tensor is finite 
everywhere (S = 0), Eqs. (11)-(14) transform into the 
usual matching conditions at the separation of two 
media[23,24] expressed in terms of the geometric char
acteristics of the separating surface. 

In the case in which we are interested of the motion 
of a charged radiating massive shell, the particles 
which form the shell move along the radius. Let the 
total (internal) mass of the shell be M( T). Then the 
relations (15) allows one to conclude that 

and therefore 

M(-r:) 4 , 
Sn ~--6x 6y' 

4np' 
(16) 

"M(-r:) 
kXl"~--p-,-6x>. (17) 

We shall consider that the matter inside the shell is 
absent and therefore spacetime is flat there. 

In order to make use of the relation (11)-(14) for a 
derivation of the equations of motion of the shell it is 
necessary to obtain the quantities n5{y making use of 
the expressions (5). On the basis of the definition (9) 
one can deduce the following values for the non vanishing 
tetrad components of the external curvature tensor2): 
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+ [a ( p ) a ( pR'+j )] 
Q" =a a; 1/+2pR' - a; Yj+2pR' .,,' (18 ) 

The quantities n- are obtained from these relations by 
setting f = 1. Substituting the expressions obtained here 
into the equations (11)- (14) and taking into account (16) 
one can obtain a differential equation for the function 
R( z). It turns out to be more convenient to derive an 
equation which describes the motion of the shell ex
pressed only in terms of internal characteristics of the 
shell. For this it is necessary to express R' in terms 
of p and to substitute the corresponding expression into 
Eq. (18). Making use of the relations (7) and (8) we 
have 

R'=p(pp+E), i=(pp+E)-', E=aE, (19) 

where E is ~fined by Eq. (3) and a direct calculation 
shows that I E I = (p2 + f)1/2. 

The relations (19) allow one to write the following 
expressions for the nonvanishing tetrad components of 
the tensor n5{y: 

S2,,+=Si,,+= a;, fl"+=-~ [ii++ :: + 2 (PP:E) 2 ::L.,; 
_ _ Yp'+l 

Q:!~ =Q.'I.'I = --, 

(20) 

p 

Let us compute from Eqs. (10) the corresponding quan
tities K, k and S, and substituting these quantities into 
the equations (11)-(14) we take into account that TAB 
= O. Then the relation (13) for X = 2, 3 yields T~2 
= T~3 = 0, Eq. (14) is verified identically for X = 2,3 
and for X = 1 Eqs. (13) and (14) lead to 

(21 ) 

1 d 'S) 1 . T,,+=--(p' •.•. =-111. (22) 
p'd, 4np' 

Substituting the corresponding values for K22 and K44 
after some manipulations we obtain from these two re
lations 

(pp+E)-' (!1) = _ 2xaM. (23) 
Dz .,' p 

Making use now of the equality k22 = -( KM/ p2) with the 
appropriate value of k22 we have 

-- xM 
E=aE=Yp'+l--. (24) 

p 

One can verify that the remaining equations are simple 
consequences of these relations. 

Remembering that in the case which interests us f 
has the form (1') one can rewrite (23) in the form 

rh=a(pp+E)M+~. 
p (25) 

Since I E 1= (p2 + fo)1/2, we have, solving (24) with re
spect to m 

-M" . '+1 xM'-e2 m-,p - ___ . 
2p 

(26) 

If we now differentiate (26) with respect to T and 
eliminate ill with the help of (25), we finally obtain the 
required equation of motion of the radiating charged 
shell 

p xM'-e' J>/ 
-=+---pa-=O. (27) 
Y1+p2 2Mp' M 

We recall that pa equals 1 for emission and equals -1 
for absorption of radiation. Equations (24), (26), and 
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(27) allow one to investigate the motion of a radiating 
shell and determine the relation between external and 
internal parameters. We note that these equations con
tain only the intrinsic characteristics of the shell, such 
as M, e, p, T. For the description of the motion of the 
shell in the variables (r, z) one can make use of the 
relations (19). 

The relations (24) and (26) obtained above allows us, 
in particular to find out for what relation between the 
parameters the system is open, and for which it is 
semiclosed. For this it suffices to determine the value 
of Eo at the instant of time-symmetry (p = 0). Making 
use of (24) and (26) we obtain for Eo the following 
expression: 

2xMm-xM'-e' 
Eo = ---::-:::---c-

xM'-e' 
(28 ) 

In the sequel we restrict our attention to systems for 
which KM2> e 2. In this case the relation (28) proves 
that Eo> 0 (the universe is open) for m ~ M < m 
+ (m2 _ e 2/ K )1/2 and Eo < 0 (the universe is semi
closed) for M> m + (m2 - e 2/ K)1/2. In particular, a 
semiclosed neutral universe has a gravitational mass 
defect which exceeds half of the total (internal) mass of 
the system. 

4. PULSEWISE EMITTING SHELLS 

It is in general difficult to solve the nonlinear differ
ential equation (27). In order to study the properties of 
radiating shells we proceed in the following manner. 
We assume that up to a certain time the shell moves in 
its own field without radiating and has the parameters 
Mo, eo and mo. Then for a short interval of proper 
time it radiates or absorbs part of its energy and 
charge acquiring the parameters Ml, el, and mI. We 
are interested in the relation between the parameters 
before and after this process. In order to clarify this 
relation we note that (27) can be rewritten in the form 
of Lagrange equations 

(29 ) 

corresponding to the following Lagrangian 

.P=idn(p+)fp2+1) -par' In M-l'p'+1+ (xM2-e')/2pM. (30) 

This fact can be proved by simple substitution of (30) 
into (29). For a finite change of M and e the quantity 
a!f'/ op undergoes a bounded change. Therefore in inte
grating (29) along an infinitesimal proper time interval 
(To - E, To + E) containing the instant of emission To, 
and letting E go to zero we obtain the following law of 
momentum conservation: 

(31) 

where 7To and 7Tl are the corresponding momenta for 
To - 0 and To + O. Differentiating (30) with respect to 
p we obtain the following expression for 7T: 

n=ln(p+)fp'+1) -pa In M. (32) 

After a simple transformation (31) can be rewritten 
in the form 3) 

Mo(l'po2+1-papo) =M,()fp.'+l-pap,). (33 ) 

To write (33) in a more compact form, we introduce in 
place of p the quantity 1/, related to p by means of the 
following relation: p = sinh Tt. Then the condition (33) 
can be rewritten in the form 

(34) 
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It is easy to verify that if the system moves without 
radiating (M = 0) (27) admits a constant of the motion 
coinciding with (26), which we rewrite in the following 
form 

(35 ) 

(a = 0 corres ponds to the motion up to the radiation 
process (or absorption process) and a = 1 corresponds 
to the subsequent motion). At the instant of emission of 
absorption p undergoes a jump and p is continuous. 
Therefore at that instant the following condition must 
be satisfied 

Mo ch tjo-mo M, ch tj,-m, 
x Mo2-eo2 xM t 2- e t 2 

(36 ) 

The relations (34)-(36) establish a connection between 
the parameters of the system before and after the emis
sion or absorption process. They allow one to determine 
the change in external mass (mi - mo) after the emis
sion of the energy (Mo - MI ) at different stages of the 
motion of the shell. In the following sections we analyze 
various situations which can arise under these circum
stances. 

5. NEUTRAL RADIATING SYSTEMS. THE 
POSSIBILITY OF TRANSITION OF OPEN UNIVERSES 
INTO SEMIClOSED UNIVERSES 

In the case of neutral (e = 0) shells which emit or 
absorb radiation the analysis of the relations derived 
in the preceding sections is not complicated. Assume 
that up to the instant of emission the system moved in 
its own field and has the parameters mo and Mo. The 
shell initially expands from a point (1/0 = +"") (anti
collapse) gets into an R.- or K-region and then after 
the instant of maximal expansion (1/1> = 0) begins to 
contract and, getting into a T_-region, it collapses to a 
point (1/0 - - uo). The possible trajectories for open 
and semiclosed shells are represented in Fig. 1 re
spectively by the lines 1 and 2. 

If the process of emission or absorption occurs at a 
time when the velocity of the shell is po = sinh 1/0 and 
as a result of this process the mass of the system be
comes equal to MI, Eqs. (34)-(36) allow one to deter
mine the external mass: 

(37) 

where 0' = MI/Mo. We discuss separately the cases of 
emission and absorption of radiation. 

A. Neutral emitting shell (pa = 1, Mo > M i , 0' < 1). 
For fixed parameters Mo, Ml and mo the minimally 
possible value of mi turns out to be equal to 

ml=rx2mo (38 ) 

for emission occurring at the beginning of the anticoi
lapse (1/0 = +00). If the emission occurs at later stages, 
then mi will be larger. If the emission occurs at the 
instant of maximal expansion (1/ 0 = 0) one can conclude 
from Eq. (37) that the mass of an open system (YMo 
< mo) diminishes whereas the mass of a semiclosed 
system (mo < 12 Mo) increases. In both cases the mass 
mi tends to the value 1Mo as 0' - O. If the emission 
occurs in the stage of collapse (1/ 0 - - 00) m always 
increases. 

These results admit the following interpretation. For 
emission in a T .-region the radiation reaction de
creases the velocity of the motion and hence the kinetic 
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energy. In addition, part of the internal mass is radi
ated away. All this leads to a decrease of m. In the 
case when the emission occurs in a T_-region the radi
ation reaction increases the speed of motion of the 
shell and consequently its kinetic energy. If this in
crease turns out to be larger than the emitted energy, 
m increases. In addition, one should keep in mind that 
as the internal mass decreases so does the gravitational 
mass defect, and as a consequence the external mass of 
the system can increase. This is the effect which oc
curs when the emitting sphere is in an R_ region, where 
the gravitational mass defect is very large. 

The relations listed above allow us to show that an 
open system (mo > 1Mo) in the anticollapse stage can 
go over into a semi-closed state (mi < 12Ml) on ac
count of emission of energy. In order to prove this it 
suffices to rewrite the relation (38) in the form 

(39 ) 

If after the act of emission the system has a mass M, 
< M~/2mo, (39) shows that the appropriate universe is 
semi-closed. 

B. Neutral absorbing shell (pa = -1, MI > Mo, 
0' > 1). Analyzing the relation (37) it is easy to establish 
that if radiation is absorbed during early stages of 
anticollapse (1/0 - +00), even for small values of the 
absorbed energy MI - Mo the universe may close up 
(m I = 0). In this case however, there will be no ex
ternal space which is flat at infinity. If the absorption 
occurs at the instant of maximal expansion ('I) 0 = 0) the 
mass of an open system increases, whereas the mass 
of a semic losed one decreases. Finally, for collapse 
(1/0 - - 00) mi = elmo and any absorption of energy in
creases the mass of the shell. 

6. CHARGED RADIATING SYSTEMS. 
THE POSSIBILITY OF FORMATION OF 
FRIEDMONS FROM NONFRIEDMONIC STATES 

We now consider the case when the shell has a 
change e. Up to the emission process the system moves 
in its own field with constant mo and eo, having internal 
mass Mo (Mo ~ eo K- I / 2 ). In this case the possible tra
jectories for the open and semi-closed shell are repre
sented in Fig. 2 by lines 1 and 2, respectively. We call 
attention to the fact that an observer situated at 
Euclidean infinity will obtain information about all 
stages of the initial expansion of the open shell, whereas 
for the semiclosed universe he will be able to observe 
only phenomena occurring in a T .-region. In the general 
case the analysis of the relations (34)-(36) is difficult, 
therefore we limit our attention to the discussion of two 
limiting situations: the case when the charged system 
emits energy, but does not lose charge, and the case 
when the system emits charge with an unchanged internal 
mass. The second situation is physically reasonable for 
the description of processes of emission by a system of 
charged ultrarelativistic particles the mass j.J. of which 
is small compared to their charge E: j.J. « EK- 1,2. For 
realistic charged particles this relation is valid. 

A. Charged radiating shell with constant charge 
(pa = 1, Mo > MI, a < 1, el = eo = e). In this case one 
can derive from the relations (34)-(36) 

MoCt-a') • a'--~' 
m= C"-e"'+c"")+m---- (40) , 2Cl-~') p , 0 1-~' ' 

where {3 = e/ K 1/ 2Mo. For fixed values of e, mo, Mo and 
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MI the minimal value of ml is attained for 1/0 = -In {3 
and equals 

(41 ) 

It is easy to see that if the charge of the shell is small 
(e.g. eK-l/2 < (1/10)Mo(1 - (32», then after radiating 
away a sufficiently large fraction of its energy (MI 
::s M~ (1 - (32) 4mi/ ) the initially open universe converts 
into a semiclosed one'). Thus, in the presence of a 
small charge an anticollapsing open system can also 
convert into a semiclosed one after radiating. The con
sideration of possible types of radiation during the 
early stages of motion of the shell is carried out in the 
same manner as in the preceding section. 

B. Shells that emit charge (po- = 1, Mo = MI). In 
spite of the fact that internal mass M remains un
changed in this case, the external mass m will undergo 
a change. This change of m is related to a lowering of 
the electrostatic energy and, making use of (34) and 
(35) it is easy to show that 

m, ~mo- (eo '-e, ') 12p. (42) 

We make use of this equation to explain the possibility 
of appearance of friedmon states [6-8J as the final result 
of such a radiation process. In the preceding section we 
have already shown that a charged open universe may 
go over into a semi-closed universe. Let us therefore 
consider a semi-closed charged universe which emits 
charge during the anticollapse stage. As the charge e I 
decreases so does the mass mi. It turns out that ml is 
minimal for fixed values of eo and e I if the emission 
takes place at p = r _ (the minimal value of p in the 
T .-region). Since r _ = K (mo - (m~ - e~/ K//2) we ob
tain for the minimal value of ml the expression 

[ 60'-6,'] m}=mo 1- , 
2(1-Y1-6o') 

(43) 

where lia = ea/l/2mo. For friedmon states the charac
teristic equation is ml = eIK- I/2[7J. From the relation 
(43) it follows that this equality will be satisfied after 
the emiSSion, if as a result of the radiation process e I 
becomes e I = KI/ 2 (mo - (m~ - e~/ K)I/2). One can also 
see that an initially semiclosed universe remains semi
closed. Thus, summarizing what was said above, we 
can assert that it is in principle possible that anticol
lapsing charged systems go over into friedmon states 
on account of emission of charge and energy. 

This fact is of particular interest in relation to the 
following. The electric potential C{i produced by the 
charge eo on the surface of a sphere of radius p equals 
C{i = eo/po In a T-region, where the minimal value of p 
is P = r _ = K( mo - (m~ - e~/ K)I/2), a maximal value is 
attained for the potential equal to 

60 

<:P""" = -----==-. 
Y,,(1-Yt-6,.') 

(44) 

Since O::s lio::S 1, it is easy to see that C{imax '? K- I / 2 • If 
the system has a suffiCiently large charge eo then in a 
T.-region the vacuum is unstable with respect to pair 
production and polarization processes and therefore 
such an anticollapsing charged system will emit energy 
and charge. Without a detailed analySiS of the dynamical 
description of these processes one cannot determine 
the values of the final parameters MI, e I and ml of the 
system. However, in principle, it is possible to expect 
in some cases that friedmon states may appear as the 
final states. 
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In conclusion the author expresses his profound 
gratitude to M. A. Markov for posing the problem and 
for valuable remarks. 

I)Following the terminology proposed by Novikov in (22) such regions 
of spacetime are called T-regions. In the general case they are defined 
invariantly as sets of points were N = gcx/h7ol"/3r > O. The points where 
N < 0 form an R-region. The boundaries between T- and R-regions are 
defined by the equation N = O. 

2)The calculations simplify considerably it one notes that nXY = 
-rIXY, where r ABC are the Ricci rotation coefficients for the 
tetrad eA. One can therefore write r ABC = r A[BC) + rB[CA)
rC[AB), where r A[BC) = Y2e~e~(eAcx, /3-eA/3,cx) (cf. also [2S)). 

3)We note that for pIc « I in the first approximation (33) yields 
MoPo = MIPI + pa(Mo - M,). This equation can be simply interpreted 
as the equality of the momentum before the emission.(Moi» to the 
sum of the momentum after the emission (M,p,) and the momentum 
carried off by radiation po(Mo - MI ); po = -I cQrresponds to 
radiation incident on the system, po = I to emission of radiation. 

')In order to prove this fact it suffices to make use of the expression 
(28) for Eo and to verify that after the emission of radiation 
Eo becomes negative. 

*For details on Penrose diagrams cf., e.g., S. W. Hawking and G. F. 
R. Ellis, The Large-Scale Structure of Space-Time, Cambridge U. Press, 
1973 (Translator's note). 

IC. W. Misner, Phys. Rev. 137B, 1360 (1965). 
2p. C. Vaidya, Astrophys. J. 144, 943 (1966). 
30. Klein, in "Werner Heisenberg und die Physik 
unserer Zeit," Vieweg, Braunschweig, 1961, p. 58. 

"Ya. B. Zel'dovich, Zh. Eksp. Teor. Fiz. 42, 1667 
(1962) [Sov. Phys.-JETP 14, 1158 (1962)]. 

51. D. Novikov, Vestnik MGU, ser. 3, No.6, 61 (1962). 
6M. A. MarkOV, Preprint D2-4534, JINR, Dubna 1969. 
7M. A. Markov and V. P. Frolov, Teor. Matem. Fiz. 3, 

1 (1970). 
8M. A. Markov and V. P. Frolov, Teor. Matem. Fiz. 13, 
41 (1972). 

9 W. Israel, Nuovo Cimento 44B, 1 (1966); 48B, 463 
(1967). 

lOA. Papapetrou and A. Hamoui, Ann. Inst. H. Poincare, 
9,179 (1968). 

11 V. de la Cruz and W. Israel, Nuovo Cimento 51A, 744 
(1967 ). 

12W. Israel, Proc. Roy. Soc. A248, 404 (1968). 
13p. C. Vaidya, Nature 171,260 (1953). 
I"p. C. Vaidya, Proc. Ind. Acad. ScL, A33, 264 (1951). 
15p. C. Vaidya, Phys. Rev., 83, 10 (1951). 
16 J . Plebanski and J. Stachel, J. Math. Phys. 9,269 

(1968 ). 
17W. B. Bonnor and P. C. Vaidya, Gen. Rel. Grav. 1, 

127 (1970). 
18 M. Kruskal, Phys. Rev. 119, 1743 (1960). 
19 J. C. Graves and D. R. Brill, Phys. Rev. 120, 1507 

(1960). 
20 R. Penrose, "Structure of Spacetime," in Bate lle 

Rencontres 1967, ed. by C. M. de Witt and J. A. 
Wheeler, N. Y. 1968 (Russ. Transl., 1972). 

21 M. Walker, J. Math. Phys. 11,2280 (1970). 
22 I. D. Novikov, Communication of the Shternberg State 

Astr. Observatory, No. 132, 1964, p. 3 and 43. 
23 J . L. Synge, Relativity, the General Theory, North

Holland, 1960 [Russ. Transl. 1963]. 
2"S. O'Brien and J. L. Synge, Comm. Dublin Inst. Adv. 

St. Ser. A No.9, 1952. 
25 V. P. Frolov, Preprint FIAN, 1973. 

Translated by Meinhard E. Mayer 
85 

V. P. Frolov 398 


