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The emission current and the charge emitted from a metal surface exposed to a picosecond laser 
pulse are determined. The competition between photoelectric and thermionic emissions is considered. 
It is shown that for intensities in excess of a critical value the emission current is entirely due to 
thermionic emission. At the same time, the emission pulse is practically undelayed relative to the 
laser pulse. This is due to the small specific heat of the degenerate electron gas which is practically 
thermally insulated from the lattice during the duration of the ultrashort laser pulse. It is noted that 
the electron-lattice relaxation kinetics can be investigated by measuring thermionic emission produced 
by ultrashort laser pulses. 

1. INTRODUCTION 

The emission of electrons from metal surfaces ex­
posed to laser pulses is due to two phenomena, namely, 
the photoelectric effect (usually multiphoton) and the 
heating of the metal which results in thermionic emis­
sion. The relative importance of these processes de­
pends on the intensity and length of the laser pulses. 
Both emission mechanisms have been extensively inves­
tigated in the millisecond and nanosecond pulse length 
rangesY-6] In particular, it is shown in[2,3] that, unless 
special measures are introduced to prevent the heating 
of the surface, the observed electron current is largely 
due to thermionic emission. At the same time, by using 
oblique incidence of the laser beam on the cathode,[4,5] 
and by reducing the laser pulse length, [7-9] it is possible 
to observe the multiphoton photoelectric effect. There 
is particular interest in experiments with picosecond 
laser pulses which can be used, for example, to ob­
serve[S,9] the theoretically predicted[lO] reduction in the 
effective number of photons necessary for ionization as 
the field strength is increased. 

The competition between the photoelectric effect and 
thermionic emission under laser illumination was in­
vestigated theoretically in[7] where it was shown that 
the optimum conditions for observing the nonlinear 
photoelectric effect against the background of thermionic 
emission corresponded to sufficiently short laser pulses. 
The results reported in[7] cannot, however, be directly 
applied to the important case of picosecond laser 
pulses because the pulse length is then less than the 
characteristic time for the transfer of energy between 
the electrons and the lattice, and this leads to an ap­
preciable increase in electron temperature and thermi­
onic emission current in comparison with the equili­
brium case discussed in, [7] and to certain other features 
which complicate the separation of the photoelectric 
effect from the thermionic effect. 

We shall briefly consider below the question of the 
competition between these two mechanisms under il­
lumination by ultrashort pulses. It is important to note, 
however, that, independently of this question of compe­
tition, the study of thermionic emission under pico­
second pulse illumination is of major interest in itself 
because it enables us to investigate directly the kinetics 
of relaxation between electrons and the lattice in metals. 
The experimental situation, in this case, is apparently 
simpler than in the case of evolution of nonequilibrium 
phonon distributions, which has also been investigated 
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under picosecond illumination (see[ll] and the reference 
therein). 

2. BASIC EQUATIONS 

The establishment of equilibrium between the elec­
trons and the lattice in metals has been considered in a 
number of publications,[12-14] where it was shown that, 
during the relaxation process, the metal must be looked 
upon as a two-temperature system, and the heat trans­
fer coefficient between the electron and phonon subsys­
tems was calculated. According to[12], the energy 
transferred by electrons to the lattice per unit volume 
of the metal per unit time is 

IJ.E=a(T,-T,) , 
n Z mns2 

a=--­
jj T('l'c ' 

(1) 

where s is the velocity of sound and Te is the electron 
relaxation time (for example, in the formula for the 
electrical conductivity of a metal[l5]) which is formally 
regarded here as a function of the electron temperature 
T e. The expression given by (1) is valid when the tem­
peratures T e and Ti are much greater than the Debye 
temperature. Since, in this case, Te ~ Te\ the heat 
transfer coefficient a between the electrons and the 
lattice is independent of temperature. Estimates based 
on the electrical conductivity of typical metals give 
values of a of the order of 10 17 erg/cm 3.sec.deg. The 
relaxation time for the phonon temperature, which is of 
the order of Ci / a (c('is the specific heat of the lattice), 
is then ~1O-1o, and for laser pulses of shorter duration 
the violation of equilibrium between the electrons and 
the lattice becomes important. 

As usual,[1,12-14] we shall write down the energy 
balance equations for the metal absorbing the laser 
pulse in the form 

aT 
ce(T,)----at = xIJ.T,-a(T.-T,) +t(r, t), 

aT, 
c,Tt=a(T,-T.). 

(2) 

The validity of the macroscopic description given by (2) 
can be justified by simple estimates. To calculate the 
thermionic emission current, we must solve (2) and 
calculate the electron temperature on the surface of the 
metal. Since the laser pulse length is small, it is clear 
that this can be done in the one-dimensional case be­
cause, in all the cases of interest in practice, the tem­
perature distribution on the surface is determined by 
the intensity distribution within the laser beam. 
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If we confine our attention to the one-dimensional 
problem and transform to dimensionless variables 

8"i(£, Tj)=(ax)"'[I(1-R)]-!T',i(X, t), 

£=x(a1x)''', Tj=tlt-

(T is the pulse length, I is the maximum intensity in 
the laser pulse, and R is the reflecting power of the 
surface), we obtain the following set of equations: 

ae. a's. 
6e'J;)=~- e,+8i -eg(Tj)e-'I, 

aei 

a:;;-=[l(e.-ei). 
(3 ) 

In (3) we have taken into account the fact that at tem­
peratures much smaller than the Fermi energy EF, the 
electron specific heat is a linear function of tempera­
ture. Moreover, we have neglected the temperature 
dependence of the light absorption coefficient K. The 
dimensionless function g(7J) describes the temporal 
form of the laser pulse and is normalized to unity at 
the maximum. 

The solutions of (3) depend on the following three 
dimensionless parameters: 

0= I(1-R) :rr,'nk', [l=~, e=x V X . 
a.l'ax e" Ci a 

Estimates show that, for experiments with picosecond 
pulses, we usually have 6 « 1, 11 « 1. By increasing 
the pulse length, we can transform to the case 11 ~ 1, 
and by increasing the intensity to the case 0 ~ 1 (it must 
be remembered that, for 116 ~ 1, the approximate 
formula for ce must be replaced by the exact one). 

3. LIMITING CASES 

The problem defined by (3) is nonlinear and, in 
general, requires numerical solution. This solution will 
be obtained in the following sections. Here, we confine 
our attention to a detailed analysis of some simple 
limiting cases. 

We begin with the physically most interesting case 
o « 1, 11 « 1. It is readily shown that, in this case, the 
electron temperature on the surface of the metal is 
given by 

(4) 

It is clear from this formula that the dependence of the 
electron temperature on time repeats the form of the 
laser pulse without delay. This is so because the s peci­
fic heat of the electron gas insulated from the lattice is 
very small (ce ~ 110ci, 110 « 1) and, therefore, the 
electron temperature cannot follow the energy flux 
density in the laser pulse. In actual fact, there is a 
very small delay between the electron temperature and 
the laser pulse (of the order of 6T). However, this de­
lay is so small that the usual method of separating 
thermionic emission from the photoelectric current, 
based on the delay of the former, cannot be used in the 
present case. 

When the parameter 11 is not too small, it is a sim­
ple matter to calculate the corrections to (4) due to the 
heating of the lattice by energy transfer from electrons. 
The necessary formulas are given in [l6]. 

We now consider one further limiting case, namely, 
that of an infinitely large absorption coefficient E - 00 

(surface absorption). For 11 ~ 1 and 6 < 1, this was 
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considered in detail in(11. We note that an increase in 
11 leads to an increase in the electron temperature, 
since the energy lost through phonon generation, which 
is equal to the absorbed power for 6 « 1, is propor­
tional to the temperature difference between the elec­
trons and the lattice. Therefore, the simple formula 
given by (4) tends to underestimate the electron tem­
perature. 

In the limiting case corresponding to (4), we do, in 
fact, neglect the specific heat of the degenerate elec­
tron gas. This is definitely inaccurate for short times, 
but it is not difficult to establish a simple particular 
solution of (3) describing this stage when the intensity 
is a linear function of time. We shall not consider this 
in detail because the initial stage does not contribute 
appreciably to the emitted charge. 

We note that the requirement 0 « 1 imposes a re­
striction on the maximum laser intensity. The in­
equality for Imax can be written in the form 

Im",,(1-R) ~5 ·10". (5 ) 

where Imax is in W/cm 2 • When this condition is not 
satisfied, the complete set of equations given by (3) 
must be solved. 

4. NUMERICAL SOLUTION 

The set of equations given by (3) was integrated 
numerically for a broad range of values of the parame­
ters 6, jJ., and E. The resulting solutions were then 
used to calculate the emission current and the total 
emitted charge. Most of the calculations were carried 
out for pulses g( 7J) of triangular shape with unit half­
width. The temperature of the surface as a function of 
time is shown in Fig. 1. When the electron temperature 
Te is much less than the Fermi energy [in dimension­
less variables, this means that ®e « (3jJ. Or l ], the 
shape of the temperature pulse repeats the shape of the 
laser pulse with good accuracy. For high intensities, or 
long pulses, the temperature pulse spreads out and be­
comes delayed relative to the laser pulse; at the same 
time, the temperature pulse becomes asymmetric. 

Figure 2 shows the dimensionless temperature ®e 
at the maximum as a function of Ii for two values of the 
parameter 11 and E = 1. For other values of E, the 
values of e are obtained by multiplying by 2d (E + 1). 

5. TOTAL EMITTED CHARGE. CONDITIONS FOR 
THE OBSERVATION OF THE NONLINEAR 
PHOTOELECTRIC EFFECT 

We shall now calculate the thermionic emission cur­
rent. In practice, one is interested in the case where 
the electron temperature is much less than the electron 
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FIG, I. The functions ee i(O, 17) for /) = !1 = I (curves I and I ') and 
/) = 0,03 for !1 = 0.1 (curves z' and 2'). 
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FIG. 2. Values of Se(O, 7)} at the maximum for different 6 and /l for 
€ = I. 

FIG. 3. Plots of F(6, /l}. 

work function. The emission current can be calculated 
from the Richardson formula by integrating the current 
density over the area of the illuminated spot on the 
metal surface. The emitted charge is obtained by suc­
cessive integration with respect to time. It is important 
to remember that uncertainties in the constant A and 
fluctuations in the work function rp introduce substantial 
uncertainties into the results of these calculations. For 
the limiting case given by (4), the total charge is given 
by 

[ " ] 'f, [ p(eH)] q,""1.2· 10",Scp'a-'1· --- exp - --- , 
P (eH) e 

(6 ) 

where we have assumed that the beam shape is Gaussian 
of radius ro and the integrals are evaluated by the 
Laplace method. In the above expression S = lTd, 
p = 1.2 X 104 rp( a x)1/2/I( 1 - R), rp is the work function 
in electron-volts, qt is the charge in esu, 1m is the 
intensity at the maximum of the laser pulse, and a is 
the second derivative of g(7J) at the maximum. For A 
we assume the value 3.6 x lOll esu. Estimates based 
on (6) show that, for typical values (E = 0.01 J, 
S = 0.01 cm 2, T = 10-11 sec), a charge of the order of 
10-5 esu (~105 electrons), which is readily recorded 
experimentally, can be obtained for a reflection coef­
ficient R:::; 0.8. 

The numerical calculations can be represented by 
the following formula which is analogous to (6): 

( e )'f, ( P) q,"'1.2 ·1O'",Scp'F(e, b, f,l) -;;- cxp - em . 

In this expression, ® m is the maximum electron tem­
perature. Calculations have shown that the function 
F( E, 6, jJ.) changes by less thanl()% when E is varied 
between unity and ten. This can be neglected. The de­
pendence of F on 6 and jJ. is shown in Fig. 3. 

We must now estimate the charge emitted by the 
metal surface as a result of the multiphoton photoelec­
tric effect. The emission current density is jn = Bnln , 
where n is the integral part of the number 1 + rp/tiw. 
Different authors obtain different results for the con­
stant Bn and, therefore, there are uncertainties in the 
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values of jn. For a triangular pulse of half-width T 

and Gaussian intensity distribution over the beam cross 
section, the total emitted charge is 

qp=[ (1-R)J", j"B"TS[n(n+1) j-'. 

By setting qp = qi> we can determine the intensity 
lin of the laser radiation above which thermionic emis­
sion predominates over photoelectric emissioll. Calcu­
lations performed for silver (n = 3 for tiw = 1.78 e V) 
with B3 = 3.5 X 10-42 esu [17] yield (1 - R) I~ :::; 3 
X 109 W/cm 2. Similar results are obtained for other 
metals. We may, therefore, conc lude that absorbed 
flux densities of the order of 109_10lO W/cm2 can be 
regarded as the limiting values for which the photo­
electric effect can still be observed against the ther­
mionic emission background under illumination by 
ultrashort laser pulses. 
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