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It is shown, on the basis of an analysis of earlier and newly obtained experimental data on the 
thermodynamic properties of argon, that a scaling equation of state can be used as a zeroth-order 
approximation to describe a gas and liquid in a wide interval of variation of the state parameters 
around the critical point:-0.8:S~p=(p-Pc)lpc:S:0.4, t=(T-TJ/Tc~0.5. It is shown that the 
"linear model" of the scaling equation of state gives a correct description of the critical region of 
argon within an accuracy of 1 %. The universality of the "linear-model" coefficients are discussed. It 
is shown experimentally that the corrections to the asymptotic (t < 1) behavior of the specific heat in 
the region t <0.3 are nonanalytic and may be related to the subsequent approximations of scaling 
theory. 

1. INTRODUCTION 

At the present time the success of scaling theory[l,2] 
in describing the anomalous behavior of thermodynamic 
quantities near the critical point of a liquid is generally 
recognized. Of course, certain unclear points and dis
agreements between theory and experiment still exist 
and are subject to intensive discussion (see[3]). But 
there is no doubt that the most significant features of 
critical phenomena have been grasped correctly. Al
though the theory[l,2] claims validity only as an asymp
totic (T - Tc , P - Pc) description of the critical re
gion, and in practice the scaling equation of state is 
sufficiently accurate only within a range of a few per
cent around Tc and Pc[4- Bl, there are experimental in
dications that this interval can be 'extended consider
ably[9,lOI. It has therefore been suggested[lO] that scal
ing theory can serve as a basis for a new approach to 
the physics of the liquid state. 

In the present work, on the basis of an analysiS of the 
earlier and newly obtained experimental data on the 
thermodynamic properties of argon, we demonstrate the 
possibility of using the scaling equation of state as a 
zeroth-order approximation for the description of a 
liquid and dense-gas over a wide range of densities and 
temperatures: 

p p T-T 
-0.8>(~p ~ ;e c >( 0.4, t ~ T ~ 0.5 

in the one-phase region. 

It is well known that the thermodynamic quantities of 
liquids and dense gases, unlike those of solids and rare
fied gases, cannot be calculated in general form, since 
in the absence of a small parameter the specific laws 
governing the interactions between the particles play the 
predominant role[ll, 121. The situation is different near 
the critical point. Here the thermodynamic quantities 
are determined by growing fluctuations that are uni
versal in character[l,2,13J and, equally importantly, pro
vide the primary contribution over practically the en
tire region t < 1 and I t.p I < 1. On this experimental 
fact is based the proposed approach: to regard the in
dividual properties of liquids in this region as correc
tions to the universal zeroth-order approximation, the 
critical state. 

We have confined our analysiS of the experimental 
data to the range of t and t. P in which the corrections 
to the zeroth-order approximation are small. We shall 
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show also that at P < Pc this range merges with the 
region where the virial expansion is valid (see Fig. 1). 
As for a dense liquid, we can expect the existence of 
another zeroth-order approximation, since in the 
vicinity of the crystallization line the thermodynamic 
quantities again display some common features[l2,17]. 

2. EQUATION OF STATE IN THE ZEROTH·ORDER 
APPROXIMATION 

The question naturally arises: what specific form of 
the equation of state should be taken as the zeroth-order 
approximation, and to what extent is it universal? 
Widom[lB] has suggested the following equation of state 
for a liquid near the critical point: 

(1 ) 

from which the expression for the specific heat follows 
immediately: 

pCv MPc ) T ~ --z;-;-[ l~pl-a/'f(x)_[tN (Pc, T) ~p+B(T) J. (2 
c 

In Eqs. (1) and (2) we use 

_ 1 N Tc' ( a'lJ. ) I ~1J.-JJV[IJ.(p,T)-IJ.(Pc,T)], IJ. (Pc,T)~-p -, ' 
c e eVe aT .-.c 

B(T)~1jJ(T)-IJ.N(Pe, T), 

/J (p, T) is the chemic;al potential, h(x) = h(t/l t.p III f3) 
and f(x) = f(t/l t.p 11/f3) are functions with known 
asymptotic forms(1,2], /J(Pc, T) and 1)i(T) are analytic 

p, bar 

tJO 

jJ 

FIG. I. P-V diagram of Ar. Area I corresponds to the region of 
validity of the "zeroth-order approximation" given by Eqs. (I) and (2), 
and area 2 to the introduction of the first correction (~6p2) to Eq. (2). 
The dashed line is the tentative boundary of the region 3 in which the 
virial equation of state, with second and third virial coefficients [14'16], 

is valid. 
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functions of the temperature, and M is the molecular 
weight. 

A purely empirical choice of the function h(x) was 
suggested in[4], where the available experimental data 
for CO2, Xe, O2, He 4, and He 3 were analyzed. The 
analysis in[4] (mainly P-V-T data) indicated a critical 
exponent Q '" 0.04 for the specific heat in Xe, CO2, and 
He4. This does not agree with the results Q = 0.10 to 
0.13 of direct measurements of the specific heat in the 
given substances[19,20]. For He 3 (the reference of[4l) a 
systematic divergence (~10%) between the experimental 
data on the specific heat and the calculated curve was 
observed [7]. 

The parametric representation proposed by Joseph
son and Schofield [21] is both simple and physically clear. 
A special case of this representation is the so-called 
"linear model" (LM) of the equation of state [22], which 
is obtained by eliminating the variable r that character
izes the "distance" from the critical point and the 
"angular" variable e from the system of equations 

Ll !l=ar' '8 (1-8'), t=r(1-b'8'), Llp=kr'8, (3) 

where b 2 = (Y - 2(3)IY(1 - 2(3), and Y, (3, and Ii are the 
respective critical exponents of the compressibility, the 
coexistence curve, and the critical isotherm(1,2]. 

Migdal [23] obtained an equation of state by assuming 
analytiCity of the isocline: 

(4) 

where 

He showed that Eq. (4), uSing only the terms in 11 and 
1) S. can lead by a change of variables to an LM with the 
additional requirement E = {3 + Y - r2 = O. Inclusion of 
the terms ~ 11 5 leads to corrections in E to the LM, but 
this gives rise to a new condition on the relation be
tween {3 and Y. 

Thus the relationship between the LM and the Migdal 
equation remains not entirely clear. We have carried 
out the reverse analysis, constructing the isocline equa
tion from the LM: 

where 

1;=k ( : ) ~/'8 (1-8')[ '¥ (8) 1 ('HI", 

1'];""k(: ) "'8['¥(8) 1"', 

2- -1 

'¥(8)=( 1+ 1-~~ 8') 

(5) 

(6 ) 

By eliminating e from Eqs. (4) and (5) and noting that 
E « 1, we obtain the complete series 1;(11) with the co
efficients 

1 (a ) 2'1, [ 2~] 
<P'=-"k' k 1+ 1-2~ , 

(7) 

=~(~)'~" ~(1 + 3+2~) (1- 2~) 
<P' k' k 1-2~ 1-2~ l' 

(8 ) 

and so on. 

The ratio rp 51 rp~ differs from the corresponding re
sult of Migdal in the second order in E, which corre
sponds to the subsequent terms of the 1;(11) series (from 
Eqs. (5) and (6) we have rp7 ~ (2), which were omitted[23] 
in deriving the expression for rp 51 rp~. 

360 Sov. Phys.·JETP, Vol. 39, No.2, August 1974 

We see thus from the above simple comparison of the 
LM and the Migdal equation that the difference between 
them is inSignificant at the current experimental accu
racy; it appears only in the second order in E = (3 + Y 

- r2'" 0.06. 

This conclusion is also confirmed by the results of 
Brezin, Wallace, and Wilson[24] and AVdeeva and Mig
dal[25], who obtained both the isocline equation (4) and 
the LM equation (3) using the Wilson method[26] in the 
same approximations. This does not mean, of course, 
that the LM is perfect. Although many experiments 
agree with the LM within a few percent[5,7,8,22], its ade
quacy to describe the influence of the gravitational ef
fect on the specific heat remains unclear f27 ]. In this 
case either the predictions of the LM are wrong, or the 
interpretation proposed in[27] for the calorimetric ex
periment in a gravitational field must be reexamined. 
In any case, the LM can at present be regarded both as 
sufficiently well justified and as convenient for the com
parison of the equation of state near the critical point 
with experiment, and we shall base the following analy
sis on it. 

Let us write down the expressions arising from the 
LM for the homogeneous chemical-potential and the 
specific -heat functions that are used below: 

h(x)=a8(1-8') (k181 )-', 

ak 
f(x)= 2ab' 1(1-1) (kI81)-"", 

x=t 1 LlP 1-'''= (i-b'8') (k 1 e I) _'''. 

(9 ) 

(10 ) 

(11) 

If we now use Eq. (11) to eliminate e from Eqs. (9) and 
(10), we obtain for h(x) and f(x) expressions that 
represent products of universal functions of the argu
ment k1/ f3x. and factors that depend on combinations of 
a and k, in agreement with the condition of scaling in
variance (see[25]). 

To compare Eqs. (9) and (10) with experiment we 
must determine any two of the four exponents a, {3, Y, 
and Ii, which are connected by two theoretical scaling 
relations (1,2] : 

a+2il+1=2, 

~(6-1)=1, 

(12a) 

(12b) 

and the two coefficients a and k. Of these, k can be 
determined from the measured behavior of the density 
of the coexistent phases, according to Eq. (11) at I e I 
=1 (Ap =±(ltl/xo){3,k=[(b2-l)/xojP). Then a can 
be found, for instance, from the value of the coefficient 
A +( t > 0) in the Singular part of the specific heat 

where, in accordance with Eq. (3), 

T 2 ak 
_C-,<I+=--1(1-1) 
PcVc 2ab' . 

(13) 

In its phenomenological form [1,2], scaling theory does 
not require that the critical indices, and even less the 
coefficients, be universal. On the other hand, such uni
versality is desirable in order for the critical state to 
be used as a "zeroth-order approximation" to describe 
liquids and dense gases just as effectively as the equa
tion of state of an ideal gas is used to describe rarefied 
gases. 

An analysiS of the experimental data shows that the 
scatter in the values of the critical exponents obtained 
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for various substances (with the possible exception of 
quantum liquids) does not exceed the experimental 
scatter of the same quantity measured in the same sub
stance by different methods and in different laboratories. 
The most probable (in our opinion) values of the critical 
exponents for simple liquids are presented in Table 1 
(Chu [28) gives the same estimates for {3 and IJ). It is 
apparent from Table 1 that the exponents in liquids are 
very close to the results of numerical calculations of 
the three-dimensional lattice gas [29) and calculations by 
the E-expansion method[26) (E = 4 - d, where d is the 
dimensionality of the space)'). The relations between 
the exponents are satisfied within the limits of experi
mental error with some margin, in that the relation 
containing the dimensionality d = 3 is better satisfied 
for liquids than for the results of the numerical calcu
lations in the lattice-gas model. 

Since the ratio of the coefficients K / A + in the LM, 
like the parameter b (see Eq. (3)), depends only on the 
critical exponents, it also must be universal (to the ex
tent that the critical exponents are universal): 

A- =4(~)'[ '(1-2~) ] HZ'. 

A+ '( 2~('(-1) 
(14 ) 

There is also some reason to hope for a certain amount 
of universality in the coefficients a and k themselves. 
The quantity x(j{3 ~ k is the same for different sub
stances within ~10% (again with the exception of the 
quantum liquids), and the differences are due to the 
choice of different values for {3. Evidently we can state 
that Xo, and therefore k, are universal within the ac
curacy of the law of corresponding states. 

There are considerations[30) from which we can esti
mate the degree of non-universality of a. We write the 
free energy near the critical point in the form 

F=FoVlre', 

where the correlation radius is 

(15 ) 

(16 ) 

It is assumed[30) that R(x/xo) is a universal function. 
This assumption is equivalent to the condition of scaling 

TABLE I. Probable critical exponents in simple liquids and in the lattice
gas model 

Liquids 

Truee_dimenSionall 
lattk-e gas 

O.t:2±O,02! O,3!l±O.02! t.23±o,1I21 Q.G3±o.ozl O.03±O.08 ! O.Oi±O,OG 

Numerical methods 

0, t25 0.312 (5) I 1.250 a,G3S 0,04 

€-expansion (includes term ..... £2) 

0,077 0.3:)9 (!') I 1.24.4 0.634 0,02 

TABLE II. Relations between coefficients of the equation of state near 
the critical point and the microscopic parameters of liquids 

I (-kl I To, A I v c ,'rg 61+r3 V c cr, A 0'21'0 

Ar 1.07 1.7 (31) 25'/1 0.15 [10] 3.40 [It, 1G1 1 .I~ 
Xe 1. 70 2.1 (31] 21.6 0,16 PO] 4.~ [1~] 1,0 

4,10 [I"] 0.98 
. CO 2 1,87 l,G [:13] :18,3 0.15 PO] 3,27 [16] \.0 

TLG (numerical methods) 0,133 PO] 1,0 

Note, The following notation is used: TLG is the three·dimensionallattice gas; c')

== A +r ~/kB' The experimental values of ro and A + are computed with v = 0,625 and" 
= 2-3v = 0,125; for fixed" and v, the error in ro and A+ does not exceed 2-3%, The 
values of Xo are given for {3 = 0.33, 
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invariance (see[25)). It follows from Eq. (15) that the 
non-universal part of the coefficients depends on the 
parameter F 0 V c /rg; for example, A + = F 0 (2 - a) 
x (1 - a)· (Vclrg)Tc2. Analysis of the experimental 
data (see Table 11) shows that Fo is a universal con
stant for Ar, Xe, and CO2 with an accuracy no worse 
than 5%, and differs from Fo in a lattice gas by ~15%. 

Thus the basic non-universal parameter that deter
mines the equation of state near the critical point is the 
ratio Vc /rg. However, it is worth noting that twice the 
direct correlation radius ro proves to be almost ex
actly equal to the parameter a-the so-called collision 
diameter-in the Lennard-Jones potential (spherical 
molecules) for Ar and Xe, and in the Kihara potential 
(cylindrospherical molecules) for CO2. It is therefore 
quite possible that, at least for simple liquids, there 
exists a universal combination of ro and a. 

For a further analysis we need the parameters of the 
zeroth-order approximation. The following values were 
obtained in[lO) for argon in the asymptotic, and at the 
same time methodologically reliable, interval t = 10-2 

to 10- 4 : a+ = 0.11 ± 0.02, {3 = 0.34 ± 0.02, Xo = 0.21 
± 0.01, A+ = 0.270 J/mole-deg2, B~ = -0.243 J/mole-deg2, 
and A-/A+ = 1.92 (for a = 0.11). The values chosen for 
the LM parameters are given below: 

Tc=i;'i0.66(4) OK; Pc~0,:;31(5) g/cm3 ; 

Pc=48.:i bar; «=0,11; ~=O,33; '(=1.2:i, 
(17) 

I,"=L~O; a=l:J,O; A-/.1+=1.9;;, 

The value of Y was calculated from Eq. (12a) and agrees 
with the directly measured[31J value Y = 1.20 ± 0.05. The 
value {3 = 0.33 appears to us to be preferable to {3 = 0.34, 
since the reduction of this value by 0.01 (within the 
limits of experimental error) sharply improves the 
agreement of the value of A -/ A + calculated from Eq. 
(13) with experiment. 

As a rule, the coefficient ratio A -/ A + can be deter
mined experimentally with greater accuracy than the 
critical exponents. The depe ndence of A -/ A + on {3 and 
Y can be represented (Eq. (13)) by a graph in which the 
axes are A -/ A + and {3, and on which a network of lines 
of constant a and y is plotted (Fig. 2). It is a property 
of the graph that each point of its plane corresponds to 
three critical exponents related by Eq. (12a)_ The 
sensitivity of the ratio A-/A+ to the values of {3 and "r 
is clearly apparent. The universality of A-/A+ is a 
necessary condition for the universality of the exponents 
a, {3, and "r, and can be used as a criterion for the self
consistency of the experimental data. As may be seen 

l, fj I----I-----l--

l,l 

U,3'1 U,35 j1 

FIG, 2. Ratio of the specific heat coefficients on the critical isochor 
above and below T c as a function of the critical exponents, from Eq, (14), 
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from Fig. 2, self-consistent results are obtained only 
for argon[lO] and He 3 [7], while for CO2 , for instance, 
direct measurements f20 ] give Q: = 0.125 and A-/ A + 
= 1.88, and the values f3 = 0.35 and y = 1.26 cited in[4] 
lead to A -/ A + = 1.3 (another variant, using the same 
value of f3 and a = 0.125 [20J, gives A-;A+ = 2.6). 

3. CORRECTIONS TO THE ASYMPTOTIC LAWS 

As the system recedes from the critical point, cor
rections to the asymptotic laws must be taken into ac
count. The nature and form of these corrections can 
differ. Let us first consider the corrections that arise 
even in the "ideal" lattice-gas system. For this model 
the function fJ. (Pc, T) in the asymptotic laws (1) and (2) 
is linear, so that fJ. "(pc, T) = 0 and complete symmetry 
exists with respect to the critical isochor. 

Wegner[34] obtained nonanalytic corrections to the 
"ideal" system by the E-expansion method [26]. Since 
these corrections are related to the subsequent approx
imations of scaling theory, they are universal. A real 
liquid lacks the total symmetry of a lattice gas. Even 
the Widom equation (1), which is symmetric with re
spect to the critical isochor, leads to some asymmetry 
in the specific heat (2) if fJ."(Pc, T) '" O. 

Fisher[35] suggested a general approach for describ
ing real systems in the language of "ideal" systems by 
means of a special transformation of the thermodynamic 
variables 2 ) (see alsoP]). Pokrovskil [38] showed that for 
the transition from a lattice gas to a real liquid this 
transformation is linear. One consequence of this is the 
"singular diameter" of the coexistence curve. The 
following are the formulas for the corrections to the 
asymptotic laws, which correspond to the next order of 
approximation in scaling theoryl34] and to the inclusion 
of asymmetry in realliquids[38]: 

{ -ltIH. ["] 
I~pl-(Itl/xo)'= -Itl,-a [38] , 

[(~) -rt-v] = {_t-'H ["J. 
all T P~Pc _t-a [38] 

To first order in E we have t:. = 12. 
Green, Cooper, and Levelt-Sengers [39] have proposed 

a special parametric equation of state for liquids that 
also gives rise to a "singular diameter." The correc
tions to the other quantities in[38] and[39] are different. 
For instance, the specific-heat correction term obtained 
by PokrovskH [38], which vanishes on going to "iso
morphic" variables, corresponds to the second-order 
eorrection in [39]. However, it is easy to show 3) that 
these corrections [39] do not satisfy the E-expansion[26] 
and thus cannot be regarded as the next order of ap
proximation in scaling theory. 

By taking into acc'mnt the specific properties of the 
liquids [38] we obtain llonsymmetric, nonanalytic correc
tions to the asymptotic temperature dependence of the 
liquid and gas densities Pl and Pg on the coexistence 
curve. These corrections cancel out when the tempera
ture dependence of Pl - Pg is analyzed. However, there 
still remain some symmetric corrections that appear 
even in an "ideal" system. These corrections may 
poSSibly lead to systematic overestimates of the experi
mental values of f3 "" 0.34 to 0.36 compared to the re-
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sults obtained by numerical methods for the three
dimensional lattice gas. 

Unfortunately, the accuracy of the currently available 
experimental data is not sufficient to confirm the pres
ence or absence of a "singular diameter" (see, e.g.,[40]) 
or the possible singularity of the third derivative of the 
chemical potential with respect to temperature[39]. A 
study of the critical isotherm of He 3has shown[41] that 
the correction terms in the chemical potential can be 
described with nearly identical accuracy either by a 
nonanalytic function ~ \ t:.p \20 - 1/ f3, for example, or by 
an analytic term ~t:.p 6. It is natural also to expect ana
lytic corrections to the specific heat and the chemical 
potential on the isochore and to the density on the co
existence curve. 

4. TESTS OF THE HOMOGENEITY FUNCTIONS OF 
THE THERMODYNAMIC FUNCTIONS OF ARGON IN 
A WIDE REGION AROUND THE CRITICAL POINT 

Table III shows experimental values of the specific 
heat of argon on four isochors for P < Pc. The experi
mental procedure was explained in detail in[lO]. We 
have also used values of Cy calculated[15] from P-y-T 
data. These values on the critical isochore agree with 
the results of our direct measurements to within ~25%. 

Figure 3 shows the function f(x) calculated from 
Eq. (2) using constants determined from experi
ments[lO,15] (B(Tc) = -15.5, fJ."(Pc, Tc) = -7 ± 1) in the 
asymptotic limit T - Tc , i.e., the temperature depend
ence of fJ."(Pc, T) and B(T) was not taken into account. 
The homogeneous function f(x) on the near-critical iso
chors of He 3 was constructed in the same approxima
tion[7]. The continuous line in Fig. 3 corresponds to Eq. 
(10) with the parameters (17). Deviations from the 
zeroth-order approximation are observed only for points 
lying more than 10% distant from Tc and Pc; in all 
cases they are small (:S 10-200/0) and appear to be 
systematic. We can partially reduce these deviations, 
even within the limits of the zeroth-order approxima
tion, since the complete temperature dependence of the 
chemical potential on the critical isochor must be taken 
into account in Eqs. (1) and (2). The temperature de
pendence of fJ.(Pc, T) and B(T) was determined by 
graphical interpolation of pCy /T and fJ. (p, T) on the 
critical isochor (see Fig. 4). 

By taking these dependences into account we can 
widen the interval of homogeneity of the experimental 

Lgf(x) 
r 

1,3 

I,Z 

/.1 

!,O 

u,§ 

/Jp 
• - . (/0/57 
o· . (/,03/0 
+ - -Il.OJ80 
• - - 0.0550 

-( (} z 

Data from {'5J 

~f1 
0- - 0.855 
0-- o.lJZ 
• - - 0.5!!7 
'7- - O¥(jJ 
'" - - OJZg 
0- - (//,9q 
0- - l!(/o(J 

(UN 
I!Z(/8 
(/.)92 

(/ ¥17 

FIG. 3. Scaling function of the specific heat from Eq. (2) in the ap
proximation p." (pc, T) = const and B(T) = const. The solid line is plotted 
from the LM equation (10) with the parameters (17). 
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TABLE III. Specific heat of argon (CV in J /mole deg) at noncritical 
densities 

Cv II T,,'K I Cv 

p=0.522(6) glcm' p=0.515 gjcm' 

150.6666 150.6733 87.71 150.6672 150.6828 73.20 
150.6672 150.6745 83.70 150.6825 150.6996 64.40 
150.6678 150.6764 82.13 150.6992 150.7249 59.53 
150.6682 150.6812 80.00 150.7245 150.7581 55.38 
150 .6734 150.6807 77.69 
150.6746 150.6832 74.00 p=0.5H(3) g/cml 
150.6773 150.6868 71.82 
150.6780 150.6977 69,40 150.6659 150 6734 75.90 
150.6791 150.6949 70.33 150.6674 150'6781 74,75 
150.6808 150.6897 72.5 150.6697 150:6829 68.95 
150.6833 150,6924 69.50 150.6723 150.6801 70.75 
150.6879 150.6880 66.43 150.6756 150.6840 68.90 
150.6900 150.7017 66.6 150.6763 150.6970 66.65 
150.6940 150.7110 63.56 150.6774 l~g:~~~~ 65.74 
150.6992 150.7123 63.20 150.6781 67.80 
150.7019 150.7217 61.40 150.6784 150.6866 68.30 
150.7077 150.7298 59.30 150.6819 150 6931 67.20 
150.7100 150.7324 58.58 150.6892 150'7012 64.00 
150.7135 150.7414 57.26 150.6920 150'7034 62.98 
150.7312 150.7546 55. \0 150.6952 150'7084 61.50 
150.7333 150.7561 56.56 150.6990 150'7146 59.50 
150.7428 150.7719 54.22 150.7062 150)278 59.04 
150 7528 150.7764 54.10 150.7141 l~n~~~ 56.74 
150.7733 150.8143 50.94 150.7234 56.95 
150.8164 150.8623 49.0 150.7338 150)619 54 10 
150.8838 150.9216 45.43 150.7612 150 7972 51.20 
150.9232 150.9962 43.45 150.7963 150: 8434 48.30 

p = 0.496 (4) g/cm' 
150.6657 150.6828 60.90 

Note. T 1 and T 2 are the starting and ending temperatures of the calorimetric 
experiment. The temperature are given in the natural thermometer scale; in this case 
Tc = 150.6645 [IOJ. 

values of f(x) to t"" 0.5 for -0.3;::' t:..p:S 0.2 (Fig. 5). 
Figure 6 shows the function h(x) for the chemical po
tential calculated from Eq. (1) (the solid line corre
sponds to Eq. (10)). We should stress that the experi
mental values of h(x) in Figs. 6 and 5 were constructed 
using the same approximations. The intervals of t:..p 
and t in which the experimental data satisfy the homo
geneity condition are the same as those for the specific 
heat (see Fig. 1). 

The interval of homogeneity cannot be expanded 
further within the limits of the zeroth-order approxima
tion. Let us consider the effect of including the next 
terms (of order ~t:...p2) in Eq. (2) for the specific heat. 
We shall use the expression t:..p2(ao + alt) to approxi
mate the deviations of the experimental values from the 
homogeneous function. The values ao = -5.5 and al 
= 7.7 for the coefficients were obtained by minimizing 
the errors, with the additional condition that the altera
tions of the experimental values due to the introduction 
of the corrections should not exceed the experimental 
error. This condition was satisfied by the isochors in 
the range -0.73:5 t:..p :5 0.34 (Fig. 7). By introdUCing 
the corrections of the next order in t:..p we can easily 
widen even further the region in which the proposed 
method can be used to describe the thermodynamic 

~---------------------- Q208 

-2 

a2 0.4 G.B 
t 

FIG. 4. Deviations of the experimental specific heat b. = pCv/T
(b.p-CY./~ f(x) + B) from the values given by Eq. (2) (in dimensionless units) 
in the approximation /l"(Pc> T) = 0, B(T) = const. 
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FIG. 7. Scaling function of the specific heat with corrections -b.p2. 

properties of argon. This method is evidently quite ef
fecti ve for our practical purposes. However, the pres
ence of absence of nonanalytic terms in the corrections 
(see Sec. 3) is of fundamental significance. The insuf
ficient accuracy and large temperature spacing of the 
experimental data[15] prevent any definite answer to this 
question, although some deviations from smooth behav
ior can be noted in the difference between the experi
mental values of the specific heat and the values that 
correspond to the asymptotic law near Tc on the near
critical isochors (Fig. 4). 
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5. SPECIFIC HEAT OF ARGON ON THE CRITICAL 
ISOCHOR OVER A WIDE RANGE OF TEMPERATURES 

To determine more accurately the functional depend
ence of the asymptotic correction terms, we carried out 
additional measurements of the isochoric specific heat 
at P = Pc in the one-phase region, up to T = 1.8Tc . The 
measurements were performed in an improved calori
meter (compared with that used in earlier work(1oJ) that 
had been tested at pressures up to 400 bar. The specific 
heat of the empty calorimeter was ~60 J/ deg. The mean 
error in the measurement of Cy was ~0.3%. A detailed 
description of the construction of the improved calori
metric apparatus and the measurement procedure has 
been given elsewhere[42J. The results are shown in 
Table IYand Fig. 8. The solid line corresponds to the 
asymptotic law (13). The deviations of the experimental 
values of Cy from the asymptotic behavior are shown 
in Fig. 9; in the range t ;S 0.3 they are described by the 
expression 

CvIT- (A+t-a+Bo) =(A+A,)ta" (18) 

where (A+Ad = 0.035 J/mole-deg2, A, = 0.13, and QI 
= 0.5 ± 0.1. This value of QI is close to the theoretical 
estimate Q,"" 0.4[34J. 

Brown and Meyer[7J, who approximated a similar 
correction by expression (18) with QI = 1 - 2Q - f3 = 0.44 
(the value predicted in[391), found Al = 0,11 for He 3• For 
argon, A, = 0.13. When the same value of Q, is used in 
both results, the two values of A, agree within 5%. This 
may indicate that the nonanalytic corrections to the 
asymptotic law are universal. The fact that the form of 
the corrections obtained experimentally corresponds to 
estimates of the next-order approximations in scaling 
theory indicates that self-consistent field theory is in
applicable to liquids, at least for Ar and He, when 

FIG. 8. Temperature dependence of the specific heat CVon the criti
cal isochore over a wide temperature interval. The solid line corresponds 
to the asymptotic law (13). 
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FIG. 9. Difference!:;' = C~xP/T-(At-<> + B) between the experim
mental specific heat Cv of Ar on the critical isochore at T > T c and the 
values given by the asymptotic law (I 3). 
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TABLE IV. Specific heat of argon (CV in J/mole deg) at the critical 
density over a wide temperature interval 

Cv T,,'K I Cv 

152.4267 152.5822 29.5 178.3729 178.9297 17.5 
152.5780 152.8339 29.9 182.0052 182.5988 17.0 
152.9448 153.6762 27.2 182.9052 183.4234 16.8 
153.6716 153.8925 26.4 183.4054 183.9261 16.8 
154.1071 154.3290 26.0 187.1031 187.6142 16.6 
154.3250 154.5478 25.5 187.6101 188.1208 16.5 
154.5440 154.7675 25.3 188.1182 188.6302 16.5 
154.7640 154.9730 25.1 189.3586 190.1878 16.6 
154.9686 155.7559 24.6 190.1856 190.6810 16.6 
155.7513 156.3046 23.8 210.2350 210.7027 15,6 
156.3004 156.8557 23.3 210.7004 211.1677 15.6 
156.8519 157.3737 23.0 211.1624 211.6290 15.6 
157.3688 157.8918 22.5 211.5901 212.0567 15.6 
157.8886 158.4131 22.1 225.1500 225.5801 15.5 
158.4099 158.9355 21.8 225.5871 226.0167 15.4 
160.5044 161.0330 20.8 225.5836 226.0439 15.4 
161.0307 161.5595 20.7 226.0449 226.5054 15.3 
161.5576 162.0873 20.5 226.5059 226.9661 15,3 
162.0854 162.6156 20.3 226.9669 227.4269 15,3 
162.6139 163.1444 20.1 240.3403 240.7716 14.9 
163.1411 163.6721 20.0 240.7707 241.2012 15.0 
163.6686 164.1998 19.8 241.6479 242.0792 14.9 
164.1979 164.7290 19.7 242.0919 242.5228 15.0 
164.7275 165.2586 19.6 242.5249 242.9554 15.0 
170.7161 171.2471 18.4 261.0676 261.4929 14.6 
171.2464 171. 7770 18.3 261.4894 261.9146 146 
171. 7767 172.3073 18.2 261.9143 262.3409 14.6 
171. 7750 178.3699 17.3 262.3328 262.7578 14.6 

t < 1. Earlier analyses of the behavior of Cy for t ;S 1 
indicated that the experimental data for many substances 
were compatible with fluctuation corrections of the 
self-consistent field(1o, 17 1. However, the new and more 
accurate data for argon presented here lead rather to 
nonanalytic corrections of the form implied by the re
sults of Wegner[34J. 

6. CONCLUSIONS 

An analysis of the thermodynamic properties of 
argon shows that, in a wide range of variation of the 
state parameters, the primary contribution comes from 
terms whose behavior is to a great extent universal for 
all liquids. This means that in the given region the 
fluctuations of the order parameter (density) are large, 
and the correlation radius exceeds the effective range 
of the intermolecular forces. The existence of such a 
wide universality range is evidently related physically 
to the short-range forces in simple liquids (a/2ro "" 1) 
and to the resulting absence of a region in which the 
self-consistent field theory is applicable. 

We have not attempted here to construct a single 
equation of state for argon from the ideal gas to the 
crystallization line. Nevertheless it appears probable 
that the proposed approach (using the critical state as 
a zeroth-order approximation) can be employed to ob
tain such a single equation of state, at least for the 
gaseous phase. In fact, an expression in the form of a 
virial equation of state can be obtained by expanding the 
nonanalytic functions of scaling theory in powers of 
pi Pc in the vicinity of the nonsingular zero-density 
point. 

We wish to thank E. E. Gorodetskii, Yu. F. Kiyach
enko, A. I. Larkin, A. A. Migdal, and Y. L. Pokrovski'i 
for useful discussions of this work, and T. N. Pavlikova 
for help in processing the experimental data. 

tlUnfortunately, it is difficult at present to estimate the true accuracy of 
these methods. 

2)This approach was used successfully to describe the behavior of solu
tions near the critical point in the language of one-component li
quids [36.37] (the isomorphism hypothesis). 

3)This fact was pointed out by A. A. Migdal. 
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