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The Doppler shifted cyclotron resonance in copper in the presence of an applied magnetic field 
parallel to the [Ito] axis has been investigated both theoretically and experimentally at radio 
frequencies. The theoretical treatment is based on a model Fermi surface having rotational symmetry. 
It is shown that the resonance of the electrons undergoing minimal displacement during a cyclotron 
period leads to the propagation of a weakly damped, circularly polarized electromagnetic wave, the 
doppleron, whose circular polarization is opposite in sense to that of the helicon. The wavelength of 
the doppleron is close to the minimal electron displacement. so the excitation of dopplerons results in 
impedance oscillations with a period close to that of the Gantmakher-Kaner oscillations. The 
oscillations in the derivative of the surface resistance of a copper plate as a function of the strength 
of an applied magnetic field perpendicular to the surface were investigated experimentally, a circularly 
polarized rf field being used for excitation. The experimental results concerning the polarization of 
the impedance oscillations and the dispersion of their period are in full agreement with theory. This 
proves that the oscillations are not a manifestation of the Gantmakher-Kaner effect, but are actually 
due to doppleron excitation. 

1. INTRODUCTION 
The Doppler-shifted cyclotron resonance (DSCR) is 

associated with the Fermi statistics of the conduction 
electrons and is characteristic of metals. One of its 
consequences is that the range of magnetic field 
strengths in which helicons exist is bounded from be­
low Y] Another physical consequence of the DSCR is the 
rf size effect in a normal magnetic field["]. The pres­
ence of a collisionless-absorption edge leads to the ap­
pearance of a branch point in the functional dependence 
of the nonlocal conductivity on the wave vector k, and 
this in turn leads to the existence of a small penetrating 
component of the rf field. The phase of this component 
increases linearly with the magnetic field strength H, 
so that the impedance of the plate undergoes periodic 
oscillations-the Gantmakher-Kaner (GK) effect. This 
component is not an eigenmode of the electromagnetic 
field in the electron plasma of the metal, but its wave 
vector is a solution of the dispersion equation. Its 
amplitude decreases inversely as the square of the 
distance from the surface, and as a result the amplitude 
of the GK oscillations is proportional to the small 
parameter (0/d)2, where 0 is the depth of the anomal­
ous skin layer and d is the thickness of the plate. Char­
acteristic features of the GK oscillations are 1) a 
constant period, 2) a low amplitude, which is independ­
ent of the magnetic field strength in the anomalous skin 
effect region, and 3) linear polarization. 

Finally, the presence of a cyclotron-absorption edge 
indicates dispersion of the dielectric constant of the 
electron gas and may lead to the appearance of new 
solutions to the dispersion equation describing propa­
gating modes_[3,4] In alkali metals in a transverse mag­
netic field, the DSCR is due to electrons of the limiting 
point, which have a large longitudinal velocity and no 
transverse velocity and therefore make only a small 
contribution to the transverse conductivity. At the same 
time, the electrons lying close to the central cross sec­
tion of the Fermi surface have small longitudinal 
velocities and make a large local contribution to the 
transverse conductivity. As a result, the singularity of 
the nonlocal conductivity in the DSCR region is weak, 
and there is virtually no resonance mode (doppleron). 
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The DSCR in metals having an anisotropic Fermi 
surface can be considerably stronger. It was shown in [5] 
that in cadmium the DSCR leads to strong dispersion 
of the nonlocal conductivity and to the possible propaga­
tion of a electronic- and hole-type dopplerons. In this 
case the DSCR due to the electrons at the limiting point 
of the lens is strong because the contribution to the 
Hall conductivity from nonresonance electrons is almost 
entirely compensated by the hole contribution. The 
wavelength of the electronic doppleron is somewhat 
greater than the maximum displacement of the electrons 
during a cyclotron period. Hence the excitation of waves 
in the plate leads to impedance oscillations which at 
first glance seem similar to GK oscillations but are 
actually quite different from them. First, the period of 
the cadmium impedance oscillations varies appreciably 
with the magnetic field; second, there is a sharp mag­
netic-field threshold below which the oscillations are 
not observed, whereas the amplitude of GK oscillations 
should remain virtually constant; and third, the ampli­
tude of the observed oscillations is large, being com­
parable with the amplitude of helicon oscillations in un­
compensated metals. The amplitude of these oscillations 
does not contain the small parameter (0/ d)2 and is 
several orders of magnitude larger than the amplitude 
of GK oscillations. All these characteristics of the ob­
served oscillations find a natural explanation in terms 
of resonance waves-dopplerons.[5] It also follows from 
the theory that the doppleron, unlike GK oscillations, is 
circularly polarized, its field rotating in the same 
sense as the electrons. It was shown experimentally 
in[S] that cadmium impedance oscillations are actually 
observed only when the exciting field is circularly 
polarized in the appropriate sense. 

The possibility of making a quantitati ve comparison 
between theory and experiment for cadmium is due to 
the fact that the electron lens has a fairly simple shape 
and can be easily described mathematically. At the 
same time the holes of the monster have considerably 
smaller displacements, and a good description of their 
contribution to the conductivity is obtained in the local 
approximation, in which the complex shape of the mon­
ster is not involved. The Fermi surfaces of other 
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anisotropic metals are more complex, and for them one 
cannot calculate the nonlocal conductivity in analytic 
form. In particular, this is the case for copper, which 
is the first metal in which variations in the period of 
the impedance oscillations were detected(7). The simple 
models of anisotropic Fermi surfaces proposed in[S,9) 
for approximate calculations of DSCR cannot account 
for all the characteristics of the oscillations observed 
in copper, while the numerical calculations published 
in[lO,lll, which were based on a more complicated model, 
do not enable one to understand the physical nature of 
the oscillations. 

Here we report the results of a theoretical and ex­
perimental study of surface-resistance oscillations of 
a copper plate for the case in which the normal n to 
the surface and the magnetic field H are parallel to the 
twofold axis [110]. A model that correctly describes the 
characteristic features of the Fermi surface of copper 
was used in the calculations. Using this model, one ob­
tains a simple analytic expression for the nonlocal con­
ductivity, and the resulting dispersion equation can be 
analyzed. It is shown that the DSCR of electrons having 
minimal displacement along the field leads to the exist­
ence of a doppleron whose circular polarization is op­
posite in sense to that of a helicon. The surface resist­
ance of a copper plate was measured experimentally 
for circularly polarized exciting fields. Impedance os­
cillations with a period corresponding to the minimum 
value of the derivative to the cross sectional area of the 
Fermi surface were observed only when the circular 
polarization of the exciting field was "positive," i.e., 
opposite to that of a helicon. The oscillations exist over 
a wide range of magnetic field strengths, both above and 
below the helicon threshold. The period of the oscilla­
tions is not constant but, in agreement with the results 
of the theoretical calculation, varies by 40%. 

2. THEORY 

A. Fermi Surface Model 

The properties of the doppleron are determined by 
the behavior of the nonlocal conductivity in the vicinity 
of the DSCR, and the behavior of the conductivity is de­
termined, in turn, by the shape and topology of the 
Fermi surface. The relation between the nonlocal con­
ductivity and the shape of the Fermi surface is very 
complicated for the case of arbitrary orientations of 
the wave vector k and the magnetic field H, but it sim­
plifies considerably if the Fermi surface has rotational 
symmetry and the vectors k and H are parallel to this 
rotational symmetry axis. In the latter case the con­
ductivity can be written in the form 

where 

O± (k, H) =oxx±io,x 

ec 2 S (kC as) -1 =±i--- dp,S(p,) 1----± i1 
H (2nh) , 2neH {jp, 

'VC as 
1 = -:;:;;n (jeF ' 

(1 ) 

(2) 

e is the magnitude of the electron charge, c is the 
velocity of light, v is the carrier-lattice collision fre­
quency, and S( EF, pz) is the area of the cross section 
of the Fermi surface E(p) = EF cut by the plane pz 
= const perpendicular to the magnetic field H (S is 
positi ve for electron orbits and negative for hole orbits). 
The expression u+ for the conductivity corresponds to 
the case of a wave whose electric vector rotates clock-
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wise in the xy plane ("positive" circular polarization), 
and the expression u-, to the case of a wave whose 
electric vector rotates counterclockwise ("negative" 
circular polarization). 

In the local collisionless limit, the denominator of 
the integrand in (1) reduces to unity and u± reduces to 
the static Hall conductivity. The second term in the de­
nominator plays an important part under nonlocal con­
ditions: the integrand has an anomaly at 

2n c as 
-=u(p,)""---, 
k eH (jp, 

(3 ) 

where u is the mean displacement of the carriers dur­
ing a cyclotron period. Electrons with different values 
of pz resonate at different values of k/H. Hence the 
integration over pz weakens the resonance so that 
u( k) has a resonance-type anomaly only for values of 
21T/k equal to the extremal displacement uext of the 
carriers. The nature of the anomaly depends on the 
behavior of the function S(pz) and its derivative as/apz 
in the pz region in which the derivative has its ex­
tremum. The anomaly will be a singularity if the reso­
nant electrons have orbits of finite size (S ... 0) and will 
be weak if the resonance is due to electrons at an 
elliptic limiting point (S = 0). The anomalies of the 
nonlocal conductivity for various model Fermi surfaces 
are discussed in[l-6,S-1l). 

The Fermi surface of copper is well known; it is 
highly anisotropic and its cross section area S(pz) is 
a complicated function of pz. P. L. Powell has made 
numerical calculations of the Fermi surface (see[12)) 
and the graphs of S( pz) and as/ apz as functions of pz 
are' given in(12) for the three prinCipal crystallographic 
directions. These graphs for the case H II [l10l.are 
shown in Fig. 1 by thin lines. Closed hole orbits of 
"dog bone" type occur in the region I pz I < PI, where 
PI = 0.2PF with PF = 1.36ti A-I. The derivative as/apz 
tends to infinity as pz - Pl. This singularity is asso­
ciated with the fact that the limiting orbit necessarily 

FIG. I. Cross section area S(pz} 
of the Fermi surface and its deriva­
tive as/apz as functions ofpz for the 
case Pz II [ II 0 J. The thin lines are 
from [12]. 
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passes through a saddle point on the Fermi surface, 
where the nature of the orbit changes radically. 

There are closed electron orbits in the region PI 
< I pz I < P2, where P2 '" 0.8PF, and in the region I pz I 
> P2 there is a layer of open orbits for which the con­
cept of area has no meaning. 

With such a complicated Fermi surface, the nonlocal 
conductivity can obviously be calculated only numer­
ically. Numerical calculations of the impedance of a 
plate were made in(lO,ll] for a model Fermi surface, 
and it was shown that near the helicon threshold the 
impedance of the plate suffers oscillations whose period 
corresponds to an extremal value of as/apz. Unfor­
tunately, these calculations shed little light on the phys­
ical nature of the oscillations. The observed oscillations 
were interpreted in[IO] as a result of the interaction of 
a damped helicon with a GK wave, and the impedance 
oscillations of a copper plate were interpreted in a 
similar manner in[12,13]. 

We do not agree with this interpretation; we feel that 
the observed oscillations are due to the excitation of a 
DSCR mode (Le., a doppleron). In what follows we shall 
demonstrate the correctness of our view on the basis 
of a model that gives a qualitatively correct description 
of the variations of S with pz but is still simple enough 
to permit one to calculate the conductivity in analytic 
form and to describe the properties of the doppleron 
and the impedance oscillations associated with it. 

We shall consider a model in which the cross-section 
areas of the axially symmetric Fermi surfaces for elec­
trons and holes are given as functions of Pz by the ex­
pressions 

Ip,l<p,; 

. (2I p ,! -p,-p, } S, (p,) =So-npo (p,-p,) arCSlll , 
p,--p, 

p,<lp,l<p,; 

here a, po, So, and SI are constants. 

The graphs of the functions Sh(Pz) and Se(Pz) for 
the parameter values 

a=3.3, po=O.591i A-', S,=4S,=41i' A-' 

(4) 

(5) 

(6) 

are Virtually the same as the corresponding graphs re­
sulting from Powell's calculation[12] and shown in the 
upper part of Fig. 1. The graphs of aSh/ apz and 
aSe/apz are shown by the heavy curves in the lower 
part of Fig. 1; they differ considerably from the thin 
curves (taken from [12]) but behave in a qualitatively 
similar manner. The minimum value of aSe / aPz is 
27Tpo, and this quantity determines the period of the im­
pedance oscillations in strong fields. We chose the 
value of po so as to make the theoretical value of this 
period equal to the observed period. 

B. Nonlocal Conductivity and the Dispersion Equation 

Now let us calculate the nonlocal conductivity on the 
basis of our model. To do this we substitute expres­
sions (4) and (5) for S(pz) into Eq. (1) and integrate 
over Pz from -P2 to +P2, regarding Y as constant. 
The result can be written in the form 

o+(q)= ± i~[ ~F (~q~) -~J (~)], 
- H 1±i1' 1±i1, 1+i1', 1+i1'· 

(7) 

q' 1 
F(q) =1- ---= arctg ~-, 

l'1-q' l'1-q' 
(8) 
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where 

J(x)=-- 1-~ 1----~~_,_~-1 ( )-' [ n nx'(l-l'-x') 
1+x' 4a 4a 2(1+x') 

ax' 1+l'1+x' J + ---In ~-==-
2l'1+x' 1-l'1+x' , 

kep, 
q=-;n' 

4S,(p,-p,) 
N,= (2nli) 3 ' 

8, 
11=--, 

2np,p, 

4S,PI ( n ) 
N,= (2nli)' a-T " 

(9 ) 

(10) 

(11) 

Ne and Nh are the electron and hole concentrations, q 
is the ratio of the minimum electron displacement 
during a cyclotron period to the wavelength of the elec­
tromagnetic wave, and Ye and Yh characterize the 
scattering of electrons and holes. In the following we 
shall consider the case of infinite carrier mean free 
path: "e '" Yh '" O. 

Th~ functions F( q) and J( TJq) describe the nonlocal 
effects in the conductivity. As q increases from zero, 
Re J increases smoothly, reaches a maximum in the 
region 7)q ~ 1, and then tends asymptotically to zero. 
When q is small, 1m J increases quadratically from 
zero, remaining small as compared with Re J. In the 
region 7)q ~ 1, the imaginary part of J is of the same 
order as the real part and also has a maximum, and as 
q increases further it tends to zero as 1/q. The imag­
inary part of J is due to collisionless cyclotron absorp­
tion of the wave by holes. In the present case this ab­
sorption is finite for all finite values of q and has no 
threshold. In accordance with the Kramers-Kronig 
relations, Re J is also a smooth function of q with no 
singularities. In other words, there is no DSCR in the 
hole conductivity. This is due to the fact that the mean 
displacement of the holes during a cyclotron period, 
which is proportional to as/apz, varies monotonically 
from - 00 to + "". For comparison, we recall that in the 
case of a convex Fermi surface as/ apz varies between 
finite limits, so that the cyclotron absorption region has 
a long-wavelength threshold. 

Now let us consider the electronic part of the non­
local conductivity. The imaginary part of F, which is 
due to cyclotron absorption of the wave by electrons, 
differs from zero for q in the range 0-1. The imagi~ 
nary part of F increases quadratically from zero when 
q is small and becomes comparable with Re F when 
q ;S 1. As q approaches unity, 1m F becomes infinite 
as (1 - q2 fl/2. This singularity represents electronic 
DSCR. The condition q '" 1 means that the minimum 
displacement of the electrons during a cyclotron period 
is equal to the wavelength of the electromagnetic wave. 
When q > 1 the expression under the radical sign in (8) 
is positive, F is real, and there is no collisionless ab­
sorption. Thus, cyclotron absorption of the wave by 
electrons takes place in the long-wavelength region in 
which q < 1 but not in the short-wavelength region in 
which q > 1. This situation is opposite to that which ob­
tains for metals that have a convex Fermi surface. 
The physical reason for this difference is simple: In 
metals with a convex Fermi surface, I as/ apz I ranges 
from zero to some finite value and condition (3) for 
cyclotron absorption is satisfied only for fairly large 
values of k, whereas in our case as/apz varies from 
some minimum value to infinity, so that collisionless 
absorption takes place only for small q. 

When q is small, the real part of F is large com­
pared with 1m F, which is proportional to q" in this 
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region. In the region q ,s 1, He F varies smoothly, re­
maining positive, while 1m F is of the order of unity. 
In other words, the nonlocal conductivity is essentially 
complex when q ,s 1. At q = 1, He F has an infinite dis­
continuity and changes sign, and for large q it tends 
monotonically to zero, remaining negative. This dis­
persion of He F in the region q > 1 is due to DSCH of 
electrons, which leads to a root singularity in 0'( q). In 
this case, 1m F becomes infinite to the left of the point 
q = 1, and He F, to the right of it, as is typical for root 
singularities. 

There are not only closed electron and hole orbits 
in copper when H II [1101, but there is also a layer of 
open orbits in the region I pz I > pz. The concentration 
No of carriers with open orbits is roughly equal to 
0.04Ne when H is strictly parallel to the [1101 axis. The 
open orbits disappear when the magnetic field deviates 
from the [110) axis by an angle XO = 2°. The transverse 
conducti vity due to carriers with open orbits has the 
same form as in the local limit in the absence of a 
magnetic field. This conductivity can be approximated 
by the expression 

Noe' ( X) 00=-- 1-- 6(Xo-X)' 
mv XO 

(12) 

where X is the angle between H and the (110) axis, 
while e (x) = 1 for positive x and e (x) = 0 for negative 
x. 

The open-orbit transverse conductivity (12) is pro­
portional to the free flight time 1/ II of the carriers, so 
it can be comparable with 1m O'±, despite the relatively 
small number of open orbits. This results in strong 
damping of the helicon when H II [1101. When H devi­
ates from the (110) axis by the angle XO = 2° the open 
orbits disappear, the conductivity given by (12) vanishes, 
and the helicon is weakly damped[1O,lZ,131• In what fol­
lows we shall be mainly interested in the electronic 
DSCH region where I O'± I » 0'0. 

The dispersion equation for a circularly polarized 
wave in the case under consideration has the form 

(13) 

where w is the frequency of the wave. Substituting (7), 
(8), and (12) into (13) and using the dimensionless vari­
able q in place of k, we obtain 

«II", (q) =O>L/O>, 

1 {[ N. ]. No ( X ) } 1>",(q)=--;- ± F(q)--J(T1q) +~-- 1--- 6 (Xo-X) 
q N. 2"(N. XO 

(14) 

(15) 

(16 ) 

We note that the signs of F and 1m J are determined by 
the signs of the small imaginary terms i Ye and i l'h 
occurring in the arguments of the functions F and- J 
(see Eqs. (7)-(9)). These signs are such that all the 
terms in both 1m <1>_ and 1m <1>+ are positive. 

C. Properties of the Helicon and Doppleron 

Let us consider solutions (14) to the dispersion equa­
tion. We begin with the simplest case in which X,G XO 
and there are no open orbits. We are interested in 
solutions describing waves that propagate. Such solu­
tions can exist only for values of q such that 1m <I> 
« He <1>. It is clear from what was said above that there 
are two regions of such q values. The first is the region 
of small q where the cyclotron absorption is small as 
compared with the absorption due to the static Hall 
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conductivity. This is the region in which the solution 
describing the helicon exists. The second region lies 
at q ,: 1, where there is no cyclotron absorption of the 
wave by electrons and He <I> increases rapidly because 
of the electron DSCR. The corresponding solution de­
scribes the doppleron. 

The region in which the wave eXists, and its spec­
trum, are most easily determined graphically. To do 
this we plot the function He <I>_(q) and draw a horizontal 
line corresponding to the selected value of wL/ w. The 
point of intersection of the line with the He <I> _ curve 
gives the value of q, and hence the wavelength, for the 
chosen values of the magnetic field strength and fre­
quency. Figure 2 shows graphs of He <1>_ and 1m <1>_. 
When q is small, F and J are close to unity, He <1>_ 
ex q-Z, and 1m <1>_ ~ 1. For large values of WL/ w, the 
dispersion equation obviously has an almost real solu­
tion that describes a helicon wave with "negative" 
polarization. As the magnetic field strength decreases 
and WL approaches w, the quantity q increases; then 
the real part of <1>_ falls while the imaginary part rises, 
so that the real and imaginary parts become of the same 
order of magnitude in the region q ::; 1. As a result, the 
solution to the dispersion equation becomes essentially 
complex, Le., the helicon is strongly attenuated. Thus, 
the quantity wL, which is proportional to H\ repre­
sents the limiting helicon frequency for fixed field 
strength H. 

Open orbits arise when X < Xo, and then the conse­
quent dissipative conductivity greatly increases the 
helicon attenuation. The imaginary part of <1>_ is then 
of the order of 0.02/rq2 and may be comparable with 
the real part, so that helicon propagation becomes im­
possible. 

In the wavelength region q> 1, where 1m <1>_ is 
small as compared with He <1>_, the latter is negative, 
whereas He <1>+, on the other hand, is positive, ranging 
from +"" to O. This means that there is a solution to 
the dispersion equation with q > 1 that describes a 
doppleron with "positive" circular polarization. We 
emphasize that the circular polarization of this dop­
pieron is opposite in sense to that of the helicon, whose 
field rotates in the same sense as the electrons. The 

FIG. 2. Graphs of the real (curves I and 2) and imaginary (curves I' 
and 2') parts of cI>(q). The magnetic field strength H is laid off on a cubic 
scale on the right·hand axis, the proportionality constant between <I> and 
H3 corresponding to a frequency of 167 kHz. The points were calculated 
from experimental data. 
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reason for this is that in the present case the DSCR is 
due to electrons with minimal displacement, rather than 
to electrons with maximal displacement. In fact, when 
q > 1 the second term in the denominator of the inte­
grand in (1) is greater than the first term, so that the 
sign of the resonance term in the nondissipative con­
ducti vity is opposite to that of the static Hall conduc­
tivity of the electrons. In other words, above the cyclo­
tron absorption threshold (q > 1) the Doppler frequency 
shift exceeds the electron cyclotron frequency, and the 
contribution to the nonlocal conductivity from the elec­
trons has the same sign as that from the holes. When­
ever the DSCR is due to minimal displacement elec­
trons, therefore, the doppleron field and the electrons 
will rotate in opposite senses. If the DSCR is due to 
carriers with maximal displacement, however, the 
doppleron field will rotate in the same sense as these 
carriers. That is the situation that obtains in cadmium. 

The function 4>( q) changes very rapidly near the 
resonance, so when WL/ W "" 1 the solution to the dis­
persion equation gives a value of q close to unity (see 
Fig. 2). Hence the doppleron wavelength turns out to be 
close to the minimal displacement of an electron during 
a cyclotron period. Figure 3 shows the doppleron wave 
number as a function of the magnetic field strength. It 
will be seen that the k'(H) curve runs somewhat above 
the dashed line 

ko=2:rdum,n=eH!poc. (17) 

The 4>( q) curve runs less steeply in the region of large 
q values. Hence the k' curve rises above line (17) as H 
decreases. 

In order to find the attenuation of the doppleron we 
express q in the form q = q' + iq". Assuming q" to be 
small as compared with q' - 1, we expand 4>+(q) in 
powers of iq" and, retaining only the linear term in the 
expansion, we separate the real and imaginary parts of 
the dispersion equation. As a result we obtain the 
following equation for the imaginary part k" of the 
doppleron wave number: 

H eH H eH , [ d , ]_1 
k =-q =--ImID+(q) -,ReID+(q) , 

p,c p,c dq 
(18 ) 

where 1m 4> is determined by the cyclotron absorption 
of the wave by holes. 

1r~!~;3 k'd 
em 1& 

J 75 

2 oJ 

,f-'-".zs----->r---I'--+---+--- roo 

o ~o 
10 H, kO. 

FIG. 3. Real and imaginary parts of the doppleron wave vector vs 
magnetic field strength for a frequency of 167 kHz. The curves were 
calculated; the points represent experimental data. 
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In the strong-field region wL > w, the derivative 
d4>/ dq' increases without limit, and the nonlocal damp':' 
ing of the doppleron, as given by Eq. (18), tends to zero. 
Hence the part of the damping that is associated with 
collisions must be taken into account when H is large. 
The electron collisions, which give rise to the presence 
of the imaginary quantity i Ye in (7), lead to additional 
damping of the doppleron specified by the quantity kC 
= 1/1, where I = pol mv is the mean free path of the 
resonance electrons. 

As the magnetic field strength decreases, the quan­
tity I d4>/dq' I decreases more rapidly than linearly, so 
that the damping k" rises. Figure 3 shows the k"(H) 
curve calculated without allowing for electron collisions; 
it will be seen that the attenuation becomes very great 
when H ~ 3 kOe. Hence it is difficult to observe the 
passage of a doppleron through the plate in weaker 
fields. 

A doppleron is excited in the specimen when the 
latter is placed in an rf field having "positive" circu­
lar polarization. The phase of the signal after it has 
passed through the plate will l?e k'd. The quantity k' 
depends on the field strength H, so the impedance of 
the plate will be an oscillating function of H, the period 
of the oscillations being 

I:1H = (I:1H)'GK [q' +3ID (q') (dID! dq') _1]_1, 

where (LlH) GK = 21TPoC/ ed is the period of the GK 
oscillations [2l. 

(19 ) 

In strong fields (wL» w), q' tends to unity, the 
second term in the brackets in Eq. (19) tends to zero, 
and the period LlH of the oscillations tends to the period 
(LlH)GK of the GK oscillations. As the magnetic field 
strength decreases the second term in the brackets in­
creases, the difference between the terms in the brack­
ets decreases, and the period LlH increases. Figure 4 
shows LlH/ (LlH) GK as a function of H. 

The presence of open orbits when X < xo has less ef­
fect on the doppleron than on the helicon. The reason 
for this is as follows. In strong fields (wL» w) the 
doppleron branch of the function 4>(q) (curve 2 in Fig. 
2) is very steep. Hence the doppleron attenuation as 
given by Eq. (18), which is inversely proportional to 
d4>/dq', remains small despite the appearance of an ad­
ditional term in 1m 4>. In such fields the damping of the 
doppleron is due as before to collisions of resonance 
electrons, and the damping constant is equal to 1/ l. On 
the other hand, the factor 1/ Y in the last term on the 
right in Eq. (15) is appreciably smaller in weak fields 
(wL « w) than it is in fields in which the helicon can 
exist (wL > w). As a result, it turns out that the pres­
ence of open orbits leads to strong damping of the heli­
con but has little effect on the damping of the doppleron. 

~o ----

o 5 H, kO. 

FIG. 4. Ratio of the period of the doppleron osciIlations to that of 
the GK osciIlations vs magnetic field strength. The curves were calculated; 
the points represent experimental data. 
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Thus, the theory shows that there should be both a 
helicon and a doppleron in copper when k II [110] and 
1(H, k) ~ Xo, and that these two waves should be cir­
cularly polarized in opposite senses. A linearly 
polarized rf field excites both waves, and when the 
strength of the applied magnetic field is such that both 
waves can exist, their interference results in a com­
plicated pattern of oscillations [7,10,12,1']. It should be 
possible to distinguish between the helicon and the 
doppleron by using circularly polarized exciting fields, 
for a circularly polarized field should excite only the 
wave whose electric vector rotates in the same direc­
tion as that of the exciting field. Hence we undertook an 
experimental study of the impedance of a copper plate, 
using circularly polarized exciting fields. The results 
of this study are presented in the following section of 
the paper. 

3. EXPERIMENT 

We investigated the surface impedance of a copper 
plate in a circularly polarized electromagnetic field 
over the frequency range from 0.13 to 3.50 MHz. Using 
a constant sensitivity autodyne detector, we measured 
the derivative dR/dH of the surface resistance as a 
function of the strength H of an applied magnetic field 
normal to the surface of the plate. 

The applied magnetic field (strength up to 14 kOe) 
was produced by an electromagnet and was amplitude 
modulated at a frequency of 10 Hz. The direction of the 
applied field with respect to the crystallographic axes 
of the specimen could be adjusted by rotating the elec­
tromagnet in the horizontal plane and inclining it at 
angles up to 5° in two vertical planes. The symmetry 
of the recorded dR/ dH curve served to check whether 
the magnetic field was strictly normal to the surface of 
the plate. 

Two coils perpendicular to one another were used to 
obtain the circularly polarized rf field; one of these 
coils was the tank coil of the autodyne detector and the 
other coil was fed with an rf voltage 90° out of phase 
with the voltage across the autodyne tank. The sign of 
the circular polarization was changed by reversing the 
direction of the dc magnetic field. The measurement 
technique is described in more detail in[7]. 

The plane parallel copper plates were cut from a 
single crystal bar 1) by an electroerosion method. The 
technique used in preparing the specimens is described 
in detail in[l4]. The resistivity ratio p(293°K)/p(4.2°K) 
for the specimens used in the measurements was 1.4 
x 104. The normal to the surface of the plate coincided 
with the [110]direction within 1°. Most of the measure­
ments were made at 4.2 OK on a specimen 0.25 mm thick. 
Reducing the temperature to 1.5 OK did not Significantly 
increase the amplitude of the observed oscillations. 

Examples of d~ / dH curves are presented in Fig. 5. 
Curves 1 and 2 were recorded at X = 3 0

, and curves l' 
and 2' at X = 0; curves 1 and l' were recorded with 
"negative circular polarization, and curves 2 and 2', 
with "positive" polarization. Curve 1 shows a few 
oscillations in the region H > 8 kOe; these oscillations 
are due to helicon excitation. Curve 2 exhibits a series 
of short period oscillations associated with doppleron 
excitation. These oscillations are observed in the region 
H > 3 kOe; their amplitude reaches a maximum at 
H "" 7 kOe and decreases smoothly as H increases 
further. Such an H dependence of the amplitude is char-
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FIG. 5. Derivative dR/dH of the surface resistance of a plate mea­
sured at X = 3° (curves I and 2) and X = 0 (curves I' and 2') using circu­
larly polarized exciting fields; w/2rr = 167 kHz, d = 0.25 mm, T = 4.2°K. 
(Different gains were used in recording curves I and 2 and curves I' and 
2'.) 

acteristic of doppleron oscillations[5]. These oscilla­
tions are observed both below and above the helicon 
threshold, and the doppleron amplitude has no anomaly 
at all at that threshold. On the other hand, there are 
no doppler on oscillations on curve 1, which corresponds 
to the helicon polarization. This shows that the dop­
pleron and helicon have opposite circular po.larizations. 

Curve 2' on Fig. 5, which was recorded with "posi­
tive" polarization at X = 0, hardly differs from curve 
2. On the other hand, curve 1' , which was recorded 
with "negative" polarization, shows no oscillations at 
all; this is due to the strong attenuation of the helicon 
resulting from the appearance of open orbits. 

The period of the oscillations observed below the 
helicon threshold depends on H, increasing appreciably 
with decreasing H. This dependence was first estab­
lished by Weisbuch and Libchaber[7] and was later stud­
ied in more detail in [10,12,13]. That the oscillations on 
curves 2 and 2' are not strictly periodic is quite evi­
dent. The results of our measurements of the period as 
a function of H are shown in Fig. 4. The points on this 
figure represent the ratio of the observed period t.H to 
the calculated period (t.H) GK of the Gantmakher­
Kaner oscillations for po = 0.591iA- 1 • In our experiments 
the period varied by 40%; this agrees with the results 
obtained in [10,12,13]. 

The experimental values of the phase kid of the 
transmitted signal corresponding to the minima of the 
doppleron oscillations are shown by the points in Fig. 3. 
The phase was determined in the same way as in[6]. The 
experimental points lie close to the theoretical k' (H) 
curve describing the doppleron spectrum. The scatter 
of the points on Fig. 4 is due to errors in determining 
the period of the oscillations on the experimental 
curves. If we disregard this scatter we see that the H 
dependence of the period is in good agreement with the 
theoretical prediction. 

The curves on Fig. 5 were obtained at a frequency 
of 167 kHz. Changing the frequency shifts the entire 
oscillation pattern along the H axis, the position of the 
pattern on that axis being proportional to the cube root 
of the frequency. This shift is the same for both the 
helicon oscillations and the doppleron oscillations. 

Thus, the polarization of the observed oscillations 
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FIG. 6. Amplitude of dop­
pieron oscillations vs magnetic 
field tilt; W/211 = 167 kHz, d 
= 0.25 mm, T = 4.2°K. 

and the behavior of their period are in full agreement 
with the theoretical predictions derived from our model. 
In other words, the hypothesis of the existence of a 
weakly damped electromagnetic wave-the doppleron­
leads to a good description of the characteristic proper­
ties of the oscillations. We note, however, that there 
are experimental results that our model cannot account 
for. These include the dependence of the amplitude of 
the doppleron oscillations on the angle X, and the be­
havior of the impedance in weak fields. 

The amplitude A of the doppleron oscillations de­
pends on the angle X between H and the [11 0] axis. As 
X increases from zero, A increases, reaches a maxi­
mum at X"" 5°, and then falls off. There are no oscil­
lations at all when X > 20°. The experimental results on 
the )( dependence of A are presented in Fig. 6. 

Shorter-period oscillations are observed in weak 
fields (H < 3 kOe). A few peaks of such oscillations can 
be seen on the curves in Fig. 5. Increasing the frequency 
shifts the short-period oscillations along the H axis, 
the field strength at which the oscillations appear being 
proportional to W 1/ 3 • These oscillations are apparently 
associated with multiple resonances. The presence of 
such resonances is due to the lack of axial symmetry of 
the Fermi surface. For a quantitative description of 
multiple resonances and the associated oscillations one 
would require a more complicated model than ours, 
which gives no multiple resonances at all. The multiple 
resonance problem is beyond the scope of this paper. 
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