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The density of electron states in a random Gibbsian field is calculated by means of Feynman path 
integrals and functional integrals over the fields <p. The correlations of the scattering centers are 
taken into account by using the analogy between the statistical averaging and the functional 
averaging of Green functions over the vacuum in quantum field theory. Virial expansions of the 
density of states and of the free energy are obtained, and also the equation of state for a mixture of 
classical and quantum particles. The quantum-mechanical virial coefficients are expressed in terms of 
the Feynman integrals and the phase shifts for scattering of an electron by many centers. The 
density of states of an impurity electron is calculated at the critical point of the system of scattering 
centers. 

1. INTRODUCTION 

The equilibrium and kinetic properties of electrons 
in a dense system of neutral scattering centers (im­
purity electrons in dense atomic and molecular gases 
and liquids; electrons in a dense plasma with a small 
degree of ionization) have been considered many times, 
but agreement between the data of theory and experiment 
is still far from being achieved (cf., e.g., the sur-
veys [1-3]). In the case of a semiconducting plasma, the 
solution of the problem is made easier by the facts that, 
firstly, for a sufficiently high density of charged cen­
ters, the electrons can be described semi-classically[2] 
and, secondly, the distribution of impurities can al­
most always be assumed to be a Poisson or Gaussian 
distribution. To obtain correct results in a dense sys­
tem of neutral centers, the scattering of the electrons 
must be treated quantum-mechanically (X-10-100 A.). 
The problem is also made considerably more compli­
cated by the necessity, in a dense gas, plasma or liquid, 
of taking into account the Gibbs correlations of the scat­
tering centers, since, e.g., phase transitions in the 
system of scatterers can give rise to considerable 
changes in the equilibrium and kinetic characteristics 
of the electron subsystem. 

Below, by means of the method of continuous inte­
gration, the equations of state of a mixture of quantum 
particles (non-degenerate electrons) and classical 
particles (the scattering centers) will be obtained. The 
method of continuous integrals is evidently the most 
natural generalization to the case of quantum systems 
of the classical methods of thermodynamic averaging, 
since it enables us to reduce a quantum ensemble to a 
classical ensemble of Wiener-Feynman trajectories. 

Integrals over virtual "paths" (and "fields"-cf. 
Sec. 2) provide great opportunities for the construction 
of new perturbation-theory methods, inasmuch as they 
are always sums of an infinite number of diagrams. 
Here, the analogy between functional averaging of the 
Green functions over the vacuum in quantum field theory 
and averaging over the ensemble of the scattering cen­
ters of the Green function of the electron in the random 
field (written in the form of a Feynman path integral and 
a functional integral over the "field qJ") turns out to be 
extremely useful. 

We shall consider the solution of the Schrodinger 
equation (everywhere below, n=m=k= 1) 

[-+~+ Sdr'v(r-r')n(r') ] Ijl(r) =EIjl(r) , 
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N N 

n(r)= ,~,)(r-R), V(r)= Lv(r-R), ( 1.1) 
i=t 

for electrons in a random field of Gibbsian origin, Le., 
we shall assume that the probabilities of different con­
figurations (R1' ~, ... , RN) of the scattering centers, 
the density n(r), the binary function g12 and the higher 
correlation functions are determined in Gibbsian fashion 
(U is the potential energy of interaction of the centers, 
and T is the volume of the system), 

W(RI, ... ,RN)=;Ne-'u, ZN=Sd'tI ... d'tNe- OU , ~=~, 
( 1.2) 

2. THE DENSITY OF STATES 

The density of states of an electron interacting with 
N scattering centers can be expressed in terms of the 
S-operator for N-particle scattering (K is the kinetic­
energy operator): 

A 1 S ,M p.v(E) =Sp b (E-H,,) =p,,(E) + Tn dt e"" Sp(r"Kf), 

(2.1) 
7=8--1, B.v=K+V, po(E)=Sp 6(E-K), 

Calculating the trace (2.1) in the plane-wave represen­
tation, using the displacement theorem and, in the ex­
pansion in powers of n 

e"k,,(l' - tk - R)e- ilk -.- Ve"~ -lk - R) + it lKp(I' - tk - R)] +, .. 
(2.2) 

retaining only the first term, we can take the thermo­
dynamic limit N -00, T -00, N/T= n <00 in (2.2) and ob­
tain a closed expression for p(E). 

First, we shall discuss the classical approximation 

S dkd't k' 
p(E)= --b(E-e.-V) e.=-

(2:rt)''t ' 2 . 
(2.3) 

For the averaging (denoted in (2.3) by a line) over the 
distribution P( cl» of the random field cl> (cf. [1]) 

p(E)= S d<Dpo(E-ID)P(ID), P(ID)= 2~ S dte""P(t), 

(2.4) 

we must calculate the partition function ZN of a real 
gas in the external field itV /{3. 

In (2.4), we go over to a functional integration, using 
the generalized Fourier transformation (cf., e.g., [4]): 
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exp [- ~ S drdr'n(r)u,,·n(r') ] 

= S Il",K(<f)exp [ip S drn(r)",(r)]/ S Il",K(",) , 

K('I')=exp [- ~ S drdr'",(r)u~;'",(r') r 
(2.5) 

Here ur~' is the matrix in the coordinate representa­
tion that is the inverse of the interaction matrix urr', 
i.e., 

(2.5') 

Then ( ( ... ) denotes functiol1fll integration with weight 
K(cp)) , 

P (t) = < exp [ n S dc (h/+h+f) ]) / < exp ( n S d-r h) ) 
(2.6) 

Thus, the calculation of the Gibbsian average reduces 
to functional averaging over all possible distributions 
of the field cp, with a nonlinear self-action. 

It is not difficult to generalize the formulas (2.5)­
(2.6) to the case of a multi-component mixture of gases 
(or of a pure gas with allowance for excited states of 
the centers). 

In the self-consistent field approximation, the values 
of the functional integrals in the numerator and de­
nominator of (2.6) are determined by the fields CPl and 
CP2 satisfying the conditions that the functionals be 
stationary: 

In (h,+1) =-np S dr'u,,· (1+1) (h,+1), 
(2.7) 

In(h,+1)=-np S dr'u ... (h,+1). 

The practical calculation of the functional integrals 
can be effected by expanding in powers of cP in the ex­
ponent in (2.6) and using the linear functional transfor­
mations 

'" (r) ..... "" (r) +in S ilr'u,,·f(r'). (2.8) 

Another Simple method is to expand in semi-invariants: 

(e")=exp [In (1+(e"-1»]=exp [(x)+'/,«x')-(x)') + ... ]. (2.9) 

For a large partition function of the system of centers, 
the series (2.9) corresponds to the usual virial expan­
sion (M is the mass, j.J. is the chemical potential, ~ 
is the activity, and bl is the cluster integral) 

p(E)= S (~:~: exp[it(E-Eo-e.)-+vo't2], Eo=nSd-rv(R), 

d (2.14) 
v02=n S (2:)' Iv,I'S" S,=1+n S dRe'qR[gl2(R)-1]. 

In the absence of correlations, g12 = 1, the structure fac­
tor Sq = 1 and (2.14) coincides with the known results[I,2). 
The terms of order n2 in (2.13)-(2.14) describe the de­
viation of the Gibbsian random field from a Poisson 
field. It is possible to generalize the classical ex­
pressions (2.3)-(2.13) to the case of the eikonal ap­
proximation (which corresponds to the first term in 
the expansion (2.2», by replacing 

, • ( ) +, 

j~j'=exp [ -i S dv v (vk-R) ] -1=exp [i E i!~:;1) (kV)Jv(R) ] -1; 

o J~O (2.15) 

to pass to the classical approximation, it is sufficient 
to take into account only the first term in the sum over 
j in the exponent in (2.15) 2) . 

3. USE OF CONTINUOUS PATH INTEGRALS 

If the scattering of an electron by a center is essen­
tially quantum in character, it is necessary to take into 
account all the terms in the expansion (2.2), so that it 
is not possible to pass to the thermodynamic limit di­
rectly in (2.1). In this case, we can obtain a closed ex­
pression for the density of electron states with allow­
ance for the correlation of the scattering centers by 
writing (2.1) with the aid of a continuous path inte-
gral [11): 

pee) = _1_S drdte ilE rf- Ilr (v) e"'p', So= ~S dv[dv) J', 
2Jt j 2 (I 

(3.1) 

p'=eXP(-itSi), SJ=jdvV(r(v)-RJ). 
3=1 II 

The continuous integral is taken over all closed trajec­
tories with r(O) = r(t) = r; for r(O) = rand r(t) = r', the 
path integral in (3.1) defines the corresponding Green 
function Gt(r, r'). The averaging over the configurations 
and the passage to the thermodynamic limit in (3.1) are 
carried out in exactly the same way as in Sec. 2. In 
place of (2.6)-(2.13), we find 

p'= < exp {n S d-r[h(e- i6 -1) +h+e-i6 -1] }) / < exp (n S d-rh ) ) 
2 (3.2) 

"'exp [n S d-r(e-"-1)+ ~ S d-r,d,,(e- i6'-1) (e-"'-1) (gl2-1)]. 

• SN d .. 
z= E NiZN= < exp [S I.: e~(.+i')]) =exp (-r E S'b,) , 

N_O 1=1 

If we expand e-i9 in a series in powers of v and 
(2.10), confine ourselves to terms no higher than ~ in the 

exponent in (3.2), we obtain 

In the expansion for P(t) 

P(t)=exp {n S d-r j+ ~ S d"d,,j./2[exp(-pu(R,-R,» (1+ ... ) -1] '(2.11) 

we perform the summation of the subsequence of Mayer 
diagrams contained in the round brackets, which reduces 
to the replacement 

exp(-pu(R,-R,» {Hn S d-r'[exp(-pu(R,-R'»-1] 

(2.12) 
x[exp(-pu(R,-R'»-1]+ ... }~ g", 

and find, finally 1) , 

S dkdt [ s n' S ] p(E)= (2n),exp it(E-e.)+n d-r/+ 2 d-r,d-r,f./,(gl2-1) . (2.13) 

In the calculation of the integral over t by the stationary­
phase method, terms of order e in the exponent in (2.13) 
can be omitted, so that 
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p'=exp [ -itEo-t dv,dv,Q(v" v,) ], 

Q(v"v,)=-~ S (::)' Iv,I'S,exp[iqr(v,)-iqr(v,)]. 

(3.3) 

The averaging in (3.1) was performed, without allowance 
for the correlations (g12 = 1), by Edward sand Gulyaev[12); 
the possibility of taking pair correlations into account 
in the case of a Gaussian random field in the n~­
approximation has been discussed by Lukes [13) and 
Chaplik [14). The integrals in (3.2)-(3.3) can be calcu­
lated directly if we use the analogy between Eq. (1.1) 
and, e.g., an equation of the Klein-Gordon type for a 
scalar charged particle in a quantized electromagnetic 
field. Then the procedure for averaging over the con­
figurations of the scattering centers (or, after the ther­
modynamic limit has been taken, over the random field 
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<p) in (3.2) corresponds to the functional quantum-field 
averaging (in the nv"-approximation, I vql2Sq in our 
case plays the role of the causal field function Dq). We 
remark that, in contrast to (3.2), in the usual linear 
formulation of quantum field theory the averaging can 
be carried out exactly, since the integrals are Gaussian 
(if we exclude the contribution of the polarization loops). 

After a displacement in the functional space, 
r(v) -w(v)+k, the density of states (3.1)-(3.2) can be 
written in the form[15,16] 

1 dk 
p(E)=--Im I-(-. -) .. G(k,E), n 2n " 

G(k,E)=i j dtexp[it(E-E/,+i11) Jc I o",(v)exp [ ~ f dv ""(v)] p', 

o (3.4) 

11-+0, C S ow (v) exp (~j dv",'(v) ) =1. 

" 
Here p' is defined according to (3.3), but with 

, , 
8= I dvv(r(v)-R), r(v)=vk+ I dv'ro(v'). (3.5) 

If in the inte gration in (3.4) - ( 3 .5) we confine our­
selves to rectilinear paths r(v) = vk we obtain the 
eikonal approximation (2.15), and wi th e = tv( R) we find 
the classical result (2.13). 

In the discussion of the infrared asymptotic behavior 
of the Green functions in quantum field theory in [16], 
an approximation going beyond the framework of per­
turbation theory (and connected with a regrouping of the 
corresponding series) was proposed for integrals of the 
type (3.4)-(3.5) in the nv2-approximation. We introduce 

w,=«Q(v" \",»>, W2=«Q(V" v,)Q(v,', v,')l>,... (3.6) 

«( ... » denotes the Feynman averaging (3.4)). It is not 
difficult to calculate the averages in (3.6) by means of 
linear transformations of the type w - w' + q6( V2 
- v)6(V-Vl) (6(x)=0 for x<O and 6(x)=1 for x>O). 
Specifically, 

n I dq 2 • w,=- --.-3 Iv,l S,exp[l(e.-e.~,) Iv,-v,l]. 
2 (2,,) 

(3.7) 

Cumbersome expressions for W2, W3, etc. can be obtained 
by performing calculations analogous to those of Bar­
bashov [16]. In the so-called "modified" perturbation 
theory, the expansion is performed not in n but in 
the difference n-Wl; terms of order v" then vanish. 
In the next approximation, we have (allowance for fur­
ther terms in the exponent leads to the complete can­
cellation of the terms of order v2 and v4 and the partial 
cancellation of terms of higher order) 

, , 
ei!E.p' =exp {- I dv,dv,w,-~ I dv,dv,dv: dv,' [w, 

" Il 

(3.8) 
-w, (r" '·2) w, (v/. v,') J (1+ ... ) }, 

and so on (cf. [16]). In fact, the expansion (3.8) coin­
cides with the cumulant expansion (2.9). 

By comparing (3.3) and (3.7), it can be seen that tak­
ing the functional argument w into account leads to a 
quadratic dependence on the virtual momenta. If the 
product I Vq 12Sq is small for large q, then Ek-q - Ek 
'" k . q and the dependence of n on w can be neglected 
(the eikonal approximation). 

We put 
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, d' t' I dv,dv,u',=tn I -q-.. Iv,I'S" I dt' (1-- --) cxp[it' (EII-e,,_,) l=t~+I(k. t). 
, (2,,). t (3.9) 

Since the integrand in the integral over t 

G(k, E) =i I <it eXjI[it(E-Eo-e.+i11) -t~-Il (3.10) 

is bounded, the possible singularities of G are associ­
ated with the integration over the large t. Near the 
"mass" surface Ek'" E- Eo = E, we find in the limit 
t- oO 

I dq, . f dq Iv,l's, (3 10') Jim~=r-it.=nn --, Iv,1 S,15(e-e._,)-m -(-)-, --, . 
,~~ (2n) 2n e-f._, 

which corresponds to the usual 2:-approximation [3]. 

For the correction function I(k, t) we can use ap­
proximations that ensure the correct asymptotic be­
havior. For example, for I(k, t)"'Beitb we have 

1 I dk [ r 
p(E)=-; (2n)' A.'+r' 

+ {l1-Blm rmcos(margB)-Amsin(margB)] 
(3.10") 

~ m! Am2+r m 2 ' m_' 

where Am=E+~-Eo+m Reb, and rm=r+m 1mb. 
Thus, the correction function I(k, t) takes into account 
the contribution, proportional to I B Im/m! , of the singu­
larities of the Green function that are displaced by 
m Re b from the principal (for I B 1« 1) pole corre­
sponding to the 2:-approximation. 

The results obtained make it possible to study the 
change in the denSity of states of the impurity electrons 
near the critical point (Tc, nc) of the system of scat­
terers, when we can use the Ornstein-Zernike approxi­
mation 3) Sq=So(1+L2q2)-1 for the structure factor (at 
the critical point, the correlation length L(T, n) -00). 
It follows from (3.7) that 

t 

J dv,dv,w,=F(t)-F(O)-tF'(O), . 
(3.11) 

I dq Iv,I'S, [. 
F(t)=-n (2)' (_ )' exp it (e.-e._,) J. 

II ell. 811.-q 

In the particular case I Vq 12 = v~ exp(-2qRo) (which corre­
sponds to the polarization interaction v(R) - (R2 + ~(2), 
in the classical approximation p' '" exp[-itEo- ~eF "(0) 1 
we obtain (ao -0; C=0.577 is the Euler constant) 

F" (0) =Q'=Qo'[ l-'/,na.+a.' In a.- (C-1) ao'+ ... J, 

Qe2=nSoVt2/4n2RoLz, ao=2RoIL. 
(3.12) 

Since Qc =Q(nc, Tc) >Q(n, T) and the function p(o) 
- 101- 3/2 exp(-02/2Q2) for 6 = E- Eo ---<>Q, the denSity of 
states in the "tail" increases sharply in the critical 
region-it behaves like -exp(-lTao62/4Q~). For 6 -00, 
the denSity of states at the critical point has a mini­
mum «p- Pc)/Pc '" lTaoQU462). When Q -Qc for any 
0, it is not difficult to find (Dp(z) is the parabolic cylin­
der function) 

p-p, 1 na.15 ( (5) [ ( (5)] -, --=--.nao+-t,-D_I/ -- D_3/2 -- . 
p, 8 lQ, Q. (j, 

(3.13) 

By analogy with the results (3.2)-(3.4), we can calcu­
late the averaged two-particle Green function, which de­
scribes the kinetic properties of the electrons with the 
correlation of the scattering centers taken into account. 
A virial expansion for p(E) can be obtained either by 
expanding the exponential in (3.2) in powers of the den-
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sity n, or directly from (2.1)-(2.2) with the aid of the 
series 

!;=exp(iti{J exp{-it[K+v (r-R;) ])-1. 

The expansion (3.14) of the nonunitary f-operator for 
scattering at many centers in terms of the operators for 
scattering at one, two, etc. centers is analogous to 
the representations used by Luttinger and Kohn[17J for A 

the collision T-operator and the density operator e-i3H 
(cf. also [lJ). We note that for the one-particle density 

operator e- i3(K+V) and the electron free energy we can 
use the results of Secs. 2 and 3, by replacing (it) by 13. 
For example, in place of (3.1)-(3.2) we find 

Sp{exp[-~(k+V)]l=« exp[ nJ dR,/,.+ ;' J dR,dR'/I2/,,/,.+ ... ]l 
~ (3.15) 

/12=exp[ -~u(RI2) ]-1, /,.=exp [-J dv v(r(v) -R,) ] -1. 
o 

4. EQUATIONS OF STATE FOR A MIXTURE OF 
CLASSICAL AND QUANTUM PARTICLES 

We shall discuss in more detail the vi rial expansions 
for the free energy, density of states and equilibrium 
properties of a mixture of N1 + N2 classical particles 
(atoms and ions) and N3 quantum particles (a nonde­
generate electron gas). In the case of a classical mix­
ture, the grand partition function 

(4.1) 

which enables us to calculate the densities, partial 
pressures, etc. from the conditions of equilibrium and 
quasi-neutrality, can be written analogously to (2.1O). 
In place of the virial expansion of the partition function 
(2.10) and the corresponding quantum expression 
(cf. [4J), it is Simpler to use (4.1) directly with 

, N3 1 Nt xJ dN,rp&"r(v)cxp { - J dv.E [ 2 r"'(v)+.E v,,(r(v)-R,) (4.2) 
o a_I i=1 

Here H12 is the kinetic and potential energy of the 
classical components of the mixture; vai3 is the poten­
tial energy of interaction of particles of types a and 13; 
the trajectories of the electrons in (4.2) are closed, Le., 
r(O} = r(i3} = r. In the expansion in Mayer diagrams in 
(4.2) we can use the usual diagrammatic formalism, 
but the coordinates of the particles in the Mayer func­
tions f for the electrons will depend on the choice of 
propagation traj ectoL'y, and, therefore, in the final ex­
preSSion for the vi rial coefficients, we must integrate 
over all possible trajectories, with the appropriate 
weighting function. For example, 

B •• =-«/,,», 

B",= ; B'.'-2~ J dR,dR, ((/12/"/"+/,,/,,», 

(4.3) 

For the practical derivation of the virial expansions we 
must express the virial coefficients in terms of the par­
tial phase shifts for scattering at N centers 4). From 
the integral representation 

, 'iJ [- (), (()- )' ] Sp(e-~K-OV_e-~K)=_. dee+Sp S-'(e)-S(e)- -S-'(e) See) 
4n, {)e oe ' 

(4.5) 

(cf., e.g., [17J; the integration is taken over a contour 
enclosing all the singularities of the resolvent (Ii - E}-l), 
going over directly to the eigen-amplitudes Ay(!!-) and 
eigenvalues exp(2i7Jy) of the collision operator S( E) and 
using the completeness of the sr:stem of eigenfunctions 
on the surface of a unit sphere 20J 

.EA;(Il)A,(n')=&(n-n'), J dnA;(Il)A,·(n)=&",·, (4.6) 

we obtain 

Sp(e-';-~v -e-';) = 4:i .E J dn dn' de e-~' [A; (n) 
.,.,' 

{) 
Xexp (-2i'1,)A,(Il')a;(A,.· (n')exp(2i'1'· )A,. (n» 

- ~(A; (n) exp (-2i'1,)A,(n') )A," (n') exp(2i'1,' )A,' (n) ] 
{)e 

( 4.7) 

In the presence of bound states the singularities in (4. 5) 
lead to additional terms, forming a sum over the dis­
crete spectrum. 

For the virial coefficients in (4 .3), it follows from 
(4.7) that . 

-B .. "=n"'(2~)",rdkexp(-+k')~ {1 (2l+1) '1;" (k), _ ok L. 
1=[0 

-B"'=(2n)"'~"'JdReXp[-~v,"(R)0dkexp(- ~ k') (4.8) 

() - 1 
x- ['\"'1 '1(2)(k R)-2 '\"'1 (2l+1)'1<"(k) ]--B,;. 

Bit ~ ':' l...J " ~ 
'1 1=0 

The second virial coefficients (the classical Bia for the 
polarization interaction and the quantum Bea for scat­
tering by a center with a short-range potential) have 
been calculated by Likal'ter[21J; the second and third 
classical virial coefficients were recently discussed in 
a paper by Vetchinin et al. [22J. For an arbitrary poten­
tial, the calculation of the phases 7Jy is extremely labori­
ous even in the simplest case of scattering at two cen­
ters. However, in the approximation of short- range 
stationary centers (s-scattering of slow electrons), the 
calculation of 7Jy reduces to the solution of an alge-
braic equation of degree N [20J* 

I ( SillkR,; cos kR,;) ( tg'1 ) I 
~+tg'1~ (1-6,;)+ -;-+k 0,; =0. (4.9) 

Here ai is the scattering amplitude at the i-th center; 
Rij is the distance between the scattering centers i and 
j. In particular, for scattering at one and two identical 
centers, 

~ (2) 2 (!) 
.::..... '1, - '10 

(1-a'k') sin 2kR-2ak cos 2kR 
= arctg cc( 1---'+-a-:':'kC":-' ):-:'-=R-:-'j'"'a':----'2ac-::-k -si-n-.,.-2':"'kR=----:-( 1-:---a-::'-:-":k':7") -co-s""'2':"'kR=-

( 4.10) 

and so on. 

The equation of state has the form [lSJ 

p=po+n,n,T(B"+B,,)+n;TB .. +2n,.n,'T(B, .. +B,,,)+ ... 

An interesting feature of (4.9)-(4.10) is the presence 
of resonances arising as a consequence of interference 
of electron waves during simultaneous scattering at 

(4.4) several centers, as in diffractional scattering at one 
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center. In a low-temperature plasma, therefore, the 
results of the classical and quantum calculations of the 
electron-atom vi rial coefficients can differ sharply. 
With allowance for the polarizability Q! of the scatter­
ing centers, we have for the partial phase shifts 1) I [23] 

1 mzk 4 ak' <-

k ctg 1')0=-- + --+ ~-ln(L23kl'a) 
a 3a' 3 a 

1 [ 21t - 21t a'" 21t' a' ] +- ro+-l'a------ p+ ...• 
2 3 3 a' 9 a' 

(4.11) 

Ita,," 
tg 1'),= (21+1) (21+3) (21-1)' Z;;,,1. 

As an example, we shall consider the calculation of Bea 
in a low-temperature mercury plasma 5). According to 
Fiichtbauer and Gossler [24], a = 1.73; the effective range 
ro is unknown, but since the other terms in the square 
brackets in (4.11) are of the order of 102, we have put 
ro = O. At temperatures T = (1.5-2) X 103 "K, the principal 
contribution to the integral (4.8) is made by k for which 
the partial phase shifts from (4.11) do not exceed 
0.15-0.20, and therefore the results of the work of 
O'Malley et al.[23] can apparently still be used. A 
semi-classical treatment of the scattering of an elec­
tron by a polarization potential is applicable (cf., 
e.g., [21]) when T.2:16 RY/Q!-10 eV, so that, as we 
should expect, the calculated vi rial coefficients Bea 
= 3.94 X 10-22 cm3 at T = 1600"K and Bea = 3.88 X 10-22 cm3 
at T = 1700"K differ considerably from the classical co­
efficients [22]. In the calculation of Bea, we assumed 
that there is no bound state of Hg- [25]. 

The author is sincerely grateful to V. L. Bonch­
Bruevich and the participants in his seminar for valu­
able discussions, and to 1. M. Lifshitz for a useful 
discussion of the results of the work. 

*tg = tan. 

1) An analogous result in the calculation of the correlation corrections to 
the Holtzmark distribution for micro-fields in a plasma was obtained by 
another method in [5] (cf. also [6]). 

2)For a random distribution of centers (g12 = I), the eikonal approxima­
tion (2.13)-(2.15) and the corresponding Green function have been 
obtained recently [" ,8] by means of a diagram technique (cf. also [9]); 
some specific (unsubstantiated) models of eikonal scattering have been 
considered by Jones [10]. 

3)ln a weakly ionized dense plasma the transition at the critical point of 
the system of neutral particles can be regarded as isomorphous with re­
spect to perturbations due to the electrons. 

4)In the case of spherically symmetric scattering at one center, the ap­
propriate formula was first obtained by Beth and Uhlenbeck [19]. 
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S)The author thanks M. Berlin for help in the calculations. 
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