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The propagation of weakly damped electromagnetic waves in metals located in a magnetic field is 
investigated. It is shown that in a thin plate, for which 2R > d (R is the maximum cyclotron 
radius and d is the plate thickness). electromagnetic waves can propagate under conditions of strong 
spatial dispersion k R > 1 (k is the wave vector). The wave spectrum. the damping. and the 
polarization are found. The dependence of the surface impedance of a bounded sample on the 
magnetic field strength is obtained. The possibility of experimental observation of the effect is 
discussed. 

It is known that in metals placed in a strong magnetic 
field n T» 1, weakly damped electromagnetic oscilla­
tions can be propagated under conditions of weak spatial 
dispersion kR< 1.1) In uncompensated metals (number 
of conduction electrons not equal to the number of 
holes), these excitations are helicons, and in compen­
sated metals they are magnetohydrodynamic waves.[1,2J 

Under conditions in which the spatial dispersion is 
significant, cyclotron damping, a mechanism of col­
lisionless absorption of the wave, comes into play and 
makes propagation of the wave impossible for kR~ 1. 
Electrons partiCipate effectively in wave absorption 
if they are close to isolated cross sections of the Fermi 
surface, namely, those cross sections which are per­
pendicular to the magnetic field and on which ("H> = 0, 
where (VH> is the projection, averaged over the cross 
section, of electron velocity onto the direction of the 
magnetic field. 

It will be shown below that electromagnetic oscilla­
tions of the helicon type can exist in thin plates even in 
the case of strong spatial dispersion, kR» 1. The 
physical reason for this phenomenon lies in the pOSSi­
bility of a cutoff of the cyclotron orbits responsible for 
collisionless absorption by the boundaries of the sample. 

Let the magnetic field (see the figure) extend paral­
lel to one of the surfaces of the plate. Then, under the 
condition 

2r(p,'»d (1 ) 

(2r=cD(pz)/eH, where D(pz) is the maximum dimension 
of the orbit of electrons in a magnetic field in momentum 
space), the electron orbits pertaining to cross sections 
with (vz(p~» = 0 do not fit into the thickness d of the 
plate. Cutoff of these electron orbits takes place be­
cause of scattering from the boundaries of the sample 
(for nonspecular reflection). This means that, upon sat­
isfaction of the inequality (1), coUisionless damping is 
suppressed and the electromagnetic wave can be prop­
agated in the metal under conditions of strong spatial 
dispersion. 

We now consider the case in which a monochromatic, 
circularly polarized electromagnetic wave of frequency 
w is excited from the lateral surface of the plate and is 
propagated parallel to the magnetic field k II H. It is 
evidently necessary that kz »kx in order to satisfy the 
condition k II H (the choice of the coordinate axes is 
clear from the figure) and, inasmuch as k ~ kz - A -1, 
kx-d-t, the wavelength A should be much smaller than 
the thickness d of the sample: 

kd:»1. (2) 
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Since it is necessary for observation of the effect 
that 2R >d, the inequality (2) means automatically that 
kR »1 and the weakly damped electromagnetic excita­
tions produced here are naturally called helicons in the 
limiting nonlocal propagation mode. 

The expression which allows us to find the spectrum 
and the damping of the helicon in an unbounded metal has 
the form[2J 

lJl=k'c'/4ncr±(k, 00), (3) 
where the Fourier component of the conductivity u± is 
determined by the relation 

o±(k, 1Jl)=±ox.(k, 1Jl)+io=(k, 00). 

The possibility of application of Eq. (3) to considera­
tion of boundary problems is based on the "indifference" 
of electrons, under conditions of strong spatial disper­
sion (kR» 1), to the boundary conditions when the mag­
netic field H is perpendicular to the skin layer. [3,4J 
The physical nature of the insensitivity of the effect to 
the boundary conditions is connected with the fact that 
the basic contribution to the current is made by elec­
trons which slide parallel to the skin layer and conse­
quently do not collide with the surface of the conductor. 

Inasmuch as the dependence of the impedance of the 
sample on the magnetic field in the case of propagation 
of a helicon in the metal depends weakly on the form of 
the dispersion law of the charge carriers, there is no 
necessity of taking the anisotropy of the Fermi surface 
into account.2 ) In the case of a quadratic isotropic dis­
persion law, the expression for the Fourier component 
of the conductivity can be written in the following form: 

2e2v3 m.Z 1 

o±(k,lJl,d) = i-(2nli)'Q Ld/l8(/l'-!1,,) (1-/l') 

2.. i x S dcp cos cp S dcp' exd =Ficp' + -(-r-'-ilJl+ikv/l) (cp' -cp) l 
o _0<>;1 f' Q 

(5) 
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Here 6(x) is a unit step function, v the Fermi velocity 
of the electron, and 

/t.= (1- (d/2R)·)"'. (6) 

The expression (5) differs from the corresponding 
formula (111) from [2J for O'± in a bulky sample by the 
presence of the step function 6( j.L2 - j.L~) under the in­
tegral over dj.L. Here, the fact that the effective con­
tribution to the high-frequency current in the case of 
nonspecular reflection is made by electrons which do 
not collide with the boundaries of the sample is auto­
matically taken into account. 

Carrying out the elementary integration, we get, 
for the condition kR» 1, the following formula for O'±: 

3Ne' [ ~I"') I (~I"'))} o",(k,cu,d)",,-- =FlnI1-- +iarg 1-- , 
m'kv Ito Ito 

(7) 

where 

1 ( CU+i'C') 61",)=- 1±-- . 
kR Q 

Since the expression in the logarithmic term is less 
than unity, we have Re 0' _ < 0 and Re 0' + > 0, and in the 
limiting nonlocal regime the helicon with k II H also 
represents a circularly polarized wave, but the direction 
of rotation of the vector of the high-frequency electric 
field is opposite to that which is the case for helicons in 
the local regime. As is seen from Eq. (7), for ~(+) < j.Lo, 
the imaginary part is small because of the smallness of 
the quantity ~ rr l , As a consequence of this, Re 0'+ 

»Im 0'+, i.e., the Hall conductivity O'xy is much greater 
than the dissipative O'xx, and consequently electromag­
netic waves can propagate in the sample. 

As has already been noted, everything that has been 
said above can easily be transferred to the case of a 
metal with a complicated dispersion law for the charge 
carriers. We note here that, inasmuch as the high­
frequency Hall conductivity, in contrast with the static 
case, and for the condition kR» 1, is not determined 
by the difference in the concentrations of electrons and 
holes, the given result applies in equal measure both to 
noncompensated and compensated metals. 

For the value of the magnetic field H = Ho, when the 
equality 

(8) 

is satisfied, the real part of the conductivity 0'+ has a 
logarithmic Singularity. Taking into account that J.Io is 
determined by the formula 2r = 2R( 1- j.L 2)1/2 = d, we find 
that Eq. (8) is equivalent to the following two equations: 

kv,(p,)-cu=Q(Ho), v,(p,) =v/to (Ifo) , (9) 

from which it is seen that the singularity in the conduc­
tivity for H = Ho is connected with the Doppler-shifted 
cyclotron resonance on the cross section pz = Pl' Thus, 
the threshold of the helicon spectrum in the limiting non­
local regime has a resonance character, which is analo­
gous to the situation which takes place when kR < 1. We 
shall limit ourselves below to the range of frequencies 
w which are less than or of the order of the cyclotron 
frequency O. Then ~(+) so: l/kR and, solving Eq, (8) for 
the magnetic field, we obtain the following expression 
for Ho: 

2CP7 ( 2) 
H'''''7 l-{kd)" ( 10) 

Inasmuch as kd» 1, the value of the magnetiC field 
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Ho is very close to that for which 2R = d, and the cross 
section pz = Pl is close to the central cross section of 
the Fermi surface. 

The expression for the spectrum of the spiral wave 
that is determined by Eqs. (3) and (7) is simplified con­
siderably on a decrease in the magnetic field intensity, 
when ~(+) becomes much less than j.Lo: 

k'c'l'/t 
cu=--r.-· [1-i/t.(Q't)-'], 

121lo ... 't 
(11) 

here O'o=Ne2 rlm* is the static conductivity of the un­
bounded sample in the absence of a magnetic field and 
l is the free path. 

Upon excitation of a Circularly polarized electromag­
netic wave in a plate, the frequency w of the external 
excitation is fixed and Eq. (10) should be solved for 
the wave number k: 

( 12) 

where ko = (41TWO'ol j.Loc2lR)1/4 and r is the relative damp­
ing decrement 

r=/t.(Q't)-'<1. (13) 

The quantity k;l determines the characteristic length 
of the weakly damped electromagnetic wave in the metal, 
having the order of A so: (li2 lR)1/4. Taking into account that 
2R~d, the inequality (2), which is necessary for observa­
tion of the effect, takes the form 

d"» (6'1) '1'''''6., (14) 

where lia is the penetration depth of the electromag­
netic wave into the metal for the case of the anomalous 
skin effect, and Ii so: (c2 I WO')1/2 is the thickness of the 
normal skin layer. 

Using the expression for the conductivity (7) for 
~(+) « j.Lo, it is easy to compute the distribution of the 
electromagnetic field of the wave in the sample, which 
is determined by the following considerations :[2J 

2 oE+(O) ( ) 
E+(z)=--;-T+(z)--a;-' 15 

J~ cos (kz) (16) 
T + (z) = dk k'-41lcuc-'o+ (k, cu) 

o 

Carrying out the integration, we obtain an expression 
for T+(z): 

T+(z)=- :,.i (exp{-ikoz- ~ k.z}-texP{-k.Z+ik. ~ z}) (17) 

It ~s seen from Eq. (17) that T+(z) contains a weakly 
damped component with the characteristic damping 
length lo so: ko l( 0 r), which is 0 T so: lid times greater than 
the wavelength A. 

An experimentally measured quantity is the surface 
impedance of the plate, the expression for which in the 
case L» lo is determined by the value of the function 
T+(z) at z=O: 

It is of interest to note that the relation between the 
real part of the impedance & and its imaginary part 
X+ has the form ~=-X+, while for excitation of heli­
cons in the local regime, R_ »X _ . 

( 18) 

For experimental detection of the effect considered 
above, it is necessary that the length of the plate L be 
less than the damping length lo. Here the impedance of 

M. A. Lur'e and A. S. Rozhavskil 320 



the plate is a nonmonotonic function of the magnetic 
field and has a singularity when an integral number of 
wavelengths fits into the length of the sample. As is 
seen from the expression for the length of the helicon 
wave (12), the Z(H) dependence is not periodic in the 
magnetic field H or in its powers HO!, in contrast to 
the case in which helicons propagate in the sample in 
the local regime and Z(H) depends periodically on H- 1/ 2 • 

Following [5) , it is easy to show, using the conduc­
tivity formula (7) in the case ~(+)« /J.o, that, close to 
resonance, ko(w, Hn, L)L=1Tn, the behavior of the im­
pedance as a function of the magnetic field is described 
by the formula 

z,n)= 2nw {'/,nnr+'/'icxnLLl (k'L )} 
+ - c'k, ('/,nnl')'+('/,cxnLLl)' if -2- , 

( 19) 

where 

( Ok,) H-H. 
cx = H- Ll=--

n oH H-H" , H •• 

(.!!i:..) = { cth (k,Ll2), n=2m 
j 2 -th (k,Ll2), n=2mH' 

It is seen from (19) that at resonance, the maxima of the 
real and imaginary parts of the impedance have the 
order 

and decrease with the number in proportion with n2 , 

while satisfaction of the inequality L« 10 is necessary 
to obtain a clear resonance peak. 

For experimental observation of the given effect, 
it is necessary to choose the dimensions of the sample 
by starting from the inequalities A« L «1o, A« d« 1. 
The magnetic field here is determined by the condition 
2R~d, and the choice of frequency for the external 
electromagnetic excitation is dictated by the inequality 
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d »( 0"l)1/3. The surfaces of the sample x = 0 and x = d 
should reflect the electrons in a nonspecular way. 

In pure samples, at liquid-helium temperatures, 
when the free path of the charge carriers can reach 
1 cm, with plate dimensions d ~ 10-2 cm, L ~ 10-2 cm 
and a frequency range W ~ 107 - 8 sec- 1 , the effect should 
be observed in magnetic fields of the order of 103 Oe. 

In conclusion, the authors consider it their pleasant 
duty to thank G. E. Zil'berman, E. A. Kaner and V. G. 
Peschanski'i for attention to the work and useful dis­
cussions. 

l)Here we introduce the following notation: n = lei H/m*c is the 
cyclotron frequency, m* the effective mass of the charge carriers, 
c the velocity of light, lei the absolute value of the charge on the 
electron, R = cPF/eH the cyclotron radius, PF the Fermi momentum 
of the charge carriers, r their free path time, and k the wave number. 

2)For electrons with an anisotropic dispersion law, the .:onsidered effect 
will take place in the case of cutoff of all cross sections with <vz) = O. 
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