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A two-dimensional Ising lattice with interaction between nearest neighbors and without a magnetic 
field is considered. It is shown that, in the correlation function <S,S, + ,) for spins located in a 
given row, the terms following the leading term <S,S'+r)~r-1I4 are of the orderofr-3/4 +r-5/4 

+r -7/4 at the phase transition point T=(T - T,)IT, =0 for large r. A correction is found to the 
susceptibility in a weak magnetic field on the assumption that the correlation length is r, ~T-'. The 
correction is.:\X ~ T- 1I4 +T-3/4 + T-5/4 . 

1. INTRODUCTION 

The Ising model, in the form of a plane square array 
of dipoles, each of which can occupy only one of two 
positions, is a unique example of a system which under­
goes a nontrivial second-order phase transition and ad­
mits of an exact solution. [1] There are good reasons to 
suppose [2] that the behavior of real materials such as 
binary alloys and ferroelectrics of the order-disorder 
type can be qualitatively described by the ISing model 
near the critical point. 

The behavior of the most important parameters of 
this model near the phase transition point is known to 
within terms which are small in the parameter 
7=(T-Tc)/Tc . One of these is the correlation function 
(SoSr) - r- 1/4 (correlation radius rc - 7- 1). There is also 
considerable interest in calculations of these parameters 
(and, particularly, of the correlation function) with a 
high degree of accuracy. This is connected, firstly, 
with the possibility of deriving corrections to thermo­
dynamic quantities for the system, such as suscepti­
bility and specific heat. Secondly, the terms following 
the leading term provide information about the struc­
ture of the set of highly fluctuating quantities Ai. [3] 

Near the critical point, all the singular quantities, for 
example, S, can be written in the form of a superpo­
sition:[4] 

S= .Ea,A,. , 

Assuming that 

we have 

(S(r)S(r'»= ~ a,'lr-r' 1-"'; 

(1) 

(2) 

2. FORMULATION OF THE PROBLEM. 
MATRIX ELEMENTS 

Consider a plane square lattice on which the spin 
variable Smn = ±1 [11 is assigned to each lattice point 
n, m. It is well known [6-8] that the row correlation 
function (SlSl+r) is 

(-i)'(SISIH>=a, ch' B'-a_, sh' B', 

where a.r and a._ r are determinants consisting of the 
matrix elements Lr as follows: 

1:,1:2 , •• 1:, 1:-1 , •• 1:_, 

a, = ~o~,.·· ~,-, , ,1_, = ~o ... ~-'+l 

where 
1 • 

~,=-Scos[rw+6(w) jdw. 
n. 

(3) 

(4) 

(5) 

The temperature parameters are: 2H* = In coth H, 
H=(kTt 1 J, H'=(kT)-lJ' (J and J' are, respectively, 
the interaction energies between neighboring spins in a 
given column and a given row). The phase transition 
occurs at the temperature H' = H*. The function o(w) is 
the internal angle of the hyperbolic triangle and can be 
expressed in terms of the sides 2H* and 2H' by the 
formulas of hyperbolic trigonometry. [6,8] 

The simplest form of o(w) is found at the phase 
transition pOints [6,8,9] 1) for the correlation spins lo­
cated in a row: 

6( ) 1'2 sin (00/2) . 6( ) cos (00/2) 
cos 00 = (1 +sin' (00/2)],'" 8m 00 = [1 +sin' (00/2) ]'/' ' 

and, on the diagonal 

. 00 
cos 05 (00) =slIlT' sin 6(00) =C08~. 

2 

(6) 

(7) 
The existence of this set forms the basis of the simi-
1arity theory developed by Patashinski'i and Pokrovski'i. [5] Accordingly, the matrix elements are given by 

The aim of this work was to evaluate the row corre­
lation function (SlSl+r) for a plane Ising lattice to within 
terms beyond the leading term which is of the order of 
r- 1/4 • It will be shown that, to within terms which are 
exponentially small at large distances, these terms are 
of the form 

It is natural to expect that the correction to the sus­
ceptibility in a weak magnetic field, i.e., a.X = X - Xp 
(Xp- 7- 7/4 ), is of the form 

,1)(-,;-'/' (1+<"'!'+,;-1) . 
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2 ." dOl -
~, = - J -:---".,--,,:-:-:-;,7"'1 (1'2 cos 2rw sin w-sin 2rw cos 00), 

n 0' [1+sin2 (w/2) j • 

~,=_2,'C' (2r-1) -I. 

Onsager and Kaufman [6] evaluate the determinant 
(4) with the elements given by (9) and show that the 
correlation along the diagonal at the transition point 
decreases with distance r in accordance with a power 
law: 

(8) 

(9) 

(S S ) - 2 n' r' (8+1) -'I 
10' '+',1+. -;- r(s+I/,)r(s+'/,) -r '. (10) 

.-, 
The next term in r in (10) is of the order of r- 9/4 [10] 

and can be neglected. However, the evaluation of the 
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matrix elements ~S) corresponding to row correlation 
is carried out in 6] only for 1 r 1 :s 3. It was subsequently 
shown/U] using the expansion of (S) for large values 
of r, 

(11) 

that the row correlation decays at the phase transition 
point, again in accordance with the law r- 1/4 + r- 9/4 • On 
the other hand, (4) contains both large and small r, for 
which the expression given by (11) is unsuitable. It will 
be shown below that this approximation can be regarded 
as reasonable only to the extent to which it leads to the 
smallest term _r- 1/4 in the asymptotic expression for 
the row correlation function. 

To evaluate (S), let us expand (1 + sin2 W)-1/2 into a 
series in powers of sin2 W, and use the reduction formula 
given in [12]. The result is 

~ =J.../_~_o +~+~( _~l _+_a1_)) () 
, n 2r-1 2r+ 1 ~ 2r-21-1 2r+21+1 12 

where the coefficients ai, i3i are given by 

and 

Since 

a o=(1'2-1) (1 + LA (k,O. 0) ) -(12+1) 1: A(k, 0,1), 

• 
~o=(1'2-i) LA(k,O, 1)-(1'2+1) (1+ LA(k,O,O»), 

h h 

a!=(1'2+1) LA(k,l,l)-(1'i-l) LA(k,l-i,I), 

~!=(1'2+1) LA (k, 1-1, l)-(1'i-l) ~A(k,l, 1) 

(-1) h (2k+21-1) IIC~;;', 
(2k+21) !!2''+21-' A(k,l,m). 

(13) 

(14) 

~ 2r'(l+'/,) ( 3 3 ) 
..:::...A(k, I, 1)= - nr(21+3) F 1+ 2 , I+Z' 21+3,-1 =-B(l), 

h~ (1~ 

{"1 2r'(l+'/,) (1 1 ) 
","A(k,l-l,l)=- nr(21+1) F I+T,l+T,21+1,-1 =-E(l), 
k=l 

where F(a, b, c, x) is the hypergeometric function, [12] 
we obtain the final expression for the matrix element 
in the form 

a!=n-' [ (1'i=-1)E (I) - (1'2+ 1) B (I)], 

~!=n-'[ (12-1)B(I) -(i2+1)E(l)]. 

(16) 

(17) 

The figure shows the values of aZ and i3z for Z = 0, 1, 2, 
3, ... (the discrete set of points is joined by the solid 
curve for az and by the broken curve for i3Z). It is clear 
from the figure that i3Z < 0, az > 0, az «1 for all values 
of Z. 

3. EVALUATION OF THE DETERMINANTS 
.1r AND .1-r 

To evaluate .:lr and .:l-r' which determine the row 
correlation function (SlSl+r), we shall substitute (16) in 
(4). If we represent this determinant as a sum of de­
terminants/13] and take out the common factors az, i3Z 
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Il,OZ 

Il,S 
/ 

I 
I 

/ 
/ 

,; 

... -.,. ... 

from each row, we obtain (the expression for .:l_ r is 
obtained by substituting r --r) 

11,= [ (~,) 'Ic,,-,I + (~I) 'ic,,-,I + ... + (ao)' Ic,,-,I + (a,) 'ic,,+,I+ .. ] 

+{ao(~o)'-I I Co.+! I +(ao)'(~,)'-'I c,,+, I (lS) 
CZr-1 CZr-3 

... +(ao)'-·(~o)21 c.,_, I + ... }, 
C2r+t 

where the symbol 1 ... 1 represents a determinant. In 
(lS), we use the notation 

[2r±(21+1) ]-I=C,,±(21+I), 1=0,1,2, ... (19) 

The expression in square brackets in (lS) contains the 
Toeplitz determinants[14] 

1 1 
2±(21+1) 2r±(21+1) 

1 1 
Ic',±(21+tll = ±(21 + 1) 2(r-l)±(21 + 1) . (20) 

1 1 
2(-r+2)±(21+1)'" 2±(21+1) 

The determinants in the braces form all the possible 
combinations of determinants of the form given by (20). 
For example, the first term in the braces in (lS) is 
constructed as follows: the first row of the determinant 
1 C2r-11 is replaced by the first row of 1 C2r+1! and the 
remaining r-1 rows are left without change. In the 
second term, the first and second rows of 1 C2r- 31 are 
replaced by the first and second rows of 1 c2r+11 and the 
remaining r- 2 rows are left unaltered, and so on. We 
shall use m to label the row and n the column of a 
determinant, where m, n = 1, 2, 3, ... , r. The Toeplitz 
determinants (20) can then be rewritten in the form 

I C,,_21_1 I = I C,(m-n)-(2!_1) I, 'c,,+21HI =, C'(n-m)+2!+',' (21) 

Determinants of this type can be evaluated with the aid 
of the following formula:[15,16] 

Ic:~I= II (an-am) (bn-bm)f/ IT (an+bm) , 
tC;m<nCr m,n=1 (22) 

where 1 c~n 1 vanishes if an = am or bn = bm for m ;" n. 

Since 

I C2n-2m+21+i 1= (_1)T I CZn -2m-21-i I, 

we find the contribution of the Toeplitz determinants 
(20) to the row correlation function: 

where 

2eo=(i2+1) ~o'- <i2-1)aN (-1)'[ (i2+1) ~I'- (iZ-1)a,'], 

V. E. ShneYder 
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In the last two expressions, we have taken into account 
the fact that (al)r = af, ({31)r = (-1)r{3f. 

If we evaluate the determinants in (24) with the aid 
of (20) (see Appendix), we find that each of them is equal 
to the product of the corresponding gamma functions 
r(r) and the function 

G(r) =1'-'2'-'3'-' ... (r-2)'(r-1). 

Using the asymptotic expansion for G(r) for large 
r [101 

i 1 1 1 3 
In G(r) - --InA + -In 2n+(-r' - --)Inr - -r' 

12 2 2 12 4 

+ ~ (-1)' B'+I r-2. 4 2n(2n+2) , 

where Bn is the Bernoulli numbers and A - 1.282, we 
find that 

Since, moreover, al« 1, (3l - 0.4, and therefore 
terms of the order of aT = exp(-r/rc), rc « 1, can be 
neglected, we finally obtain 

<S,S!+,> = [Co'-C, (-1)' exp (-rln 2,25) ]r-'''+O(r-'I,), 

(26) 

(27) 

(28) 

. 
1,'=~ a,~". (33) 

Formula (22) for Arl assumes the following form: 
, 
II (an-dt') II (an-am) II (bn-bm) 

2<;m<n";r tC;;;;m<n<;r 

x [IT IT (am+bn) IT (bm+dt') ] -I , 

(34) 

n_2 m=1 m_t 

where d{=al+21, an=-2n+1, bm =2m. 

We now evaluate (34) for each determinant .Arl, use 
the asymptotic value for the function G(r) given by (27), 
and substitute the resulting Arl in (33). Evaluation of 
this sum yields 

(35) 

The coefficients Ck are given in the table. 

Proceeding in the same way for all the other deter­
minants in which only one row is replaced, we can show 
that each depends on r as in (35). The coefficients in 
front of equal powers of r in each term are positive 
and of the same order. We note that the number of such 

(29) terms is 2r (r terms from 1 cm-2m+2Z+11 and r from 
1 C2n-2m-2Z- 11), so that 

The formula given be;; (29) is identical with the On­
sager-Kaufman result 6] to within the exponentially 
small term. 

We must now evaluate the determinants in the braces 
in (18). These determinants form all the possible com­
binations made up of the rows of the Toeplitz deter­
minants in (20). Their contribution to Ar is 

~,=(~.) '-'1.'+ (~.) '-'f,'+ ... +(~l) '_l<p.'+ ... + (a.) '-'00.'+.... (30) 

where f~ is obtained by replacing one row in 1 C2r-ll by 
any row in 1 C2r±(21+1) I, f} is obtained by replacing two 
rows from 1 C2r-11 by 1 C2r±(21+1)1, <p~ by replacing one of 
the rows in 1 C2r-31, and so on. For example, con-
sider f~: 

1.'=a.~,,+a, (~"+~,/) +a2(~'2+~','+~'2") + . . . (31) 

Thus, it is clear from (31) that Aro consists of r-1 
rows of 1 C2r-11 and the first row of 1 C2r+ll , Arl , AI-l' 
consist of r- 1 rows of 1 C2r-ll and the first and sec­
ond rows taken from 1 c2r+31, and so on. In setting up 
(31), we used the fact that the determinant is zero when 
two rows are identical. 

It is instructive to write out the full expression for 
.Ari: 

1 1 1 
1 3" 5' 2r-1 

1 1 1 1 
3' 5' 7 2r+ 1 

Ilr1' = 1 1 1 1 (32) 
-3" -1 1 2r -- 5 

1 1 1 
-2r +3 -2r +5 1 

Determinants of this kind can be expressed in terms of 
the general element cmn=am+bm. However, following 
Akhiezer,[lS] we can obtain a formula analogous to (22) 
for each particular determinant. For example, let us 
consider the contribution to (31) of determinants in 
which only the first row from 1 Cm-2m+11 is replaced by 
the rows 1Cm_2m 21+11, 1=1, 2,3, •... We have 
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We now carry out similar steps for determinants in 
which two rows are replaced 

jr2"",C2,°r-'I'+CZi r-"" 

three rows are replaced 

(36) 

(37) 

(38) 

and so on, so that we obtain the final contribution of 
determinants of the mixed type (30) to the row correla­
tion function 

We note that (35) and (39) do not include terms of 
the order of 

(39) 

which can be neglected for r »rc. Combining (29) and 
(39), and using the expression for A-r given by (4), we 
have 

<S,S!+,> -Co'r-'''+C,lr-'I,+C,'r-'IO+C,'r-'I,+O (r-'I.). (40) 

Thus, the row correlation function given by (40) dif­
fers from the diagonal correlation [6] by the presence 
of the intermediate terms of the order of r- 3/4 , r- S/4 , 
r-7/4 • 

As already noted, the additional terms in the diagonal 
correlation begin only with r- 9/4 • Therefore, the next 
terms after the leading term r- l/4 in the Ising model 
are anisotropic. This can be seen in the fact that the 

coefficients Ck in (40) depend on the polar angle 8: 
on a diagonal Ck( 8) = 0, whilst along a row or column 

Table of coefficients Cl:. 

I I · I 
o 0.8 0.28 0.22 0.012 
1 0.23 0.003 0.002 
2 0.09 0.004 
3 0.007 0.0006 
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Ck(l~) ~ 0 (this property is exhibited, for example, by 

the function dd e) - sin2 2e). 

Near a phase transition point, the gradual reduction 
in the correlation function for small 7 becomes ex­
ponentially small. It would seem that we have justified 
the proposition that the correlation length rc for the 
above terms in (40) includes the same power of 7 

(rc - .,-1) as for the main term r- 1/4 • The correction to 
the susceptibility in a weak magnetic field ~X = X - Xp 
assumes the form (Xp - 7-7/4 ) 

ilX-,-'I. (1 +,-'1,+,-'). (41) 

This expression was obtained on the assumption that 

J C.'(e)de"'O. 

We must now consider a hypothesis in the operator 
algebra introduced by Kadanoff and Ceva [17) in the 
case of the two-dimensional Ising lattice. According 
to this hypothesis, which appears to be valid for the 
general case of a phase transition,[4) all singular quan­
tities can be written in the form of a superposition of 
irreducible operators of different scale dimensions. In 
particular, Kadanoff and Ceva obtain a complete set for 
the spin correlator consisting of operators which differ 
only by a power of two: r- 1/4 , r- 9/4 • However, the ac­
curacy with which the correlation function was found 
in [17) is the same as in the case of the paper by Onsager 
and Kaufman. [6) In particular, using the initial equation 
(7), Kadanoff and Ceva continue to evaluate the Toeplitz 
determinants (20) [see [17), Appendix B, where I}>(Py) 
corresponds to our eio(w) and h(z, z') to ~r]. Thus, the 
terms r- 3/\ r- S/4 , r- 7/4 which follow the leading term 
r- 1/\ were not taken into account by these authors in 
constructing the operator algebra. 

I am indebted to A. Z. PatashinskiI for formulating 
the problem and many useful diSCUSSions, and to V. G. 
Yaks, N. V. Vdovichenko, V. L. PokrovskiI, and S. D. 
Mushinskil for their criticisms and advice. Finally, 
I am greatly indebted to Corresponding Member of 
the Academy of Sciences of the USSR K. S. Aleksandrov 
for his constant support in this work. 

APPENDIX 

We shall now evaluate the determinants (20) 

I C2Tl~2m+21+11, 1=0, 1, 2, 3, ... 

According to (22) 
, 

IC'n-'m+2,+\I= II (2n-2m) (2m-2n) I II (2n-2m+21+1). (A.1) 
ll11i;m<n~r m,n=l 

It is clear from (A.1) that the numerator of I C2n-2m+2l+11 
is independent of l and has the form 

4,,'-1)/' (-1) ",-1)12 [1 '-'2'-'3'-' ... (r-1) ]'=2,,'-1) (-1) "'-I)12G' (r), 

(A.2) 

where G(r) is given by (26). Evaluating the double 
product in the denominator of (A.1), we have (for the 
sake of convenience we arrange these products in 
columns) 
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(21+1) (21-1) (21-3) ... (21+3-2r), 

(21+3) (21+1) (21-1) '" (21+5-2r), 

(A.3) 

(21+2r-1) (21+2r-3) ... (21+3-2r). 

From (A.1) and (A.3), it follows that the determinant 
with l = 0 gives the highest power of r in I C211-2m+2l+11. 
Using (27), we have 

(A.4) 

Apart from constant factors, (A.4) is identical with the 
corresponding expression given by Onsager and Kauf­
man. [6 When l = 1, the expression given by (A.1) is 
proportional to r- 9/4 , and when l = 2, it is proportional 
to r- 2S/4 . Therefore, the additional terms in the row 
correlation function given by the Toeplitz determinants 
(20) begin only with r- 9/4 and can be neglected, just as 
in the case of the diagonal correlation. [6] 

I)The relation between the function eS( w) and the V dovichenko func­
tion few) [9] is few) = eieS(w). 
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