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The parametric excitation of electron cyclotron oscillations in a plasma is studied in a wide range of 
pump-field strengths when the growth rate of the oscillations significantly exceeds the ion cyclotron 
frequency. The dependence of the maximum growth rate on the pump·field amplitude is determined. 
The effective collision rate at which saturation of the parametric instability occurs is found. 

1. INTRODUCTION 

As is well known, the oscillations of the electrons 
relative to the ions of a plasma located in an alternating 
electric field lead to numerous parametriC instabilities 
in the plasma[1-3]. If the pumping electric field is per
pendicular to the magnetic field, then parametric ex
citation of electrostatic electron cyclotron waves turns 
out to be possible. This possibility has been pointed 
out before[4,5]. The thresholds and regions of these in
stabilities were determined in [4-7], where the growth 
rates in certain limiting cases were also found. The 
phenomenon of anomalous pump-wave absorption ac
companied by the acceleration of the plasma electrons 
and a strong epithermal plasma radiation, which can be 
related to the parametriC excitation of the electron 
cyclotron harmonics, was discovered in experimental 
investigations [8-10], while the decay of the pump wave 
into an electron cyclotron wave and ion sound was ex
perimentally discovered in [11]. 

In the present paper we undertake a theoretical study 
of the parametriC excitation of electron cyclotron 
oscillations in a wide range of pump-field strengths 
when the amplitude of the electron oscillations relative 
to the ions lies between the electron and ion thermal 
velocities (and the ion-sound velocity). In this region 
the growth rate of the oscillations is considerably 
greater than the ion cyclotron frequency. In the region 
of weak fields, when Ti ~ T e, this instability is kinetic: 
the oscillations are built up by the individual resonant 
ions. If, however, Te »Ti, then there occurs at low 
field strengths a coherent excitation of coupled ion
acoustic and electron-cyclotron oscillations. In the 
region of high field strengths the electron cyclotron 
oscillations are excited coherently. The maximum 
growth rate of the oscillations under consideration in-
creases monotonically with increasing amplitude of the 

We shall conSider the oscillations propagating per
pendicularly to the magnetic field. In this case the 
contribution of the electrons to the longitudinal per
mittivity is given by 

00." [ I:~ " 00 ] &e,(w)=-k' ,1- A.(k p. )--- , 
UT. a=-oo tJ)-SU>B. 

(1.1) 

where 
W p ,= (4ne'no/m,) "', VT.= (T,/m,) "', 

p,=V"/WB,, wB,=eBo/m,c (WB'>O) , A.=e-zI. (x), 

and Is(x) is the modified Bessel function. The exponen
tially small term 

[ ( W-SWB')'] -exp - -_-- , 
l' 2kuv .. 

which is responsible for the Cerenkov and cyclotron ab
sorption of the waves by the electrons, will be neglected 
(k ll -0). Since y»wBi=eBo/mic and, furthermore, 
kPi »i(Pi = VTi/ wBi), the contribution of the ions to the 
longitudinal permittivity is determined by its expression 
at Bo=O: 

(1.2) 

where 

( 2"') W W(z,)=e-'" 1+~J e"dt, z,=-_--. 
l'no l'2kvTI 

The development of the oscillations in the presence 
of an alternating electric field E = Eo sin wot that was 
adiabatically switched on at t = to --00 is determined by 
the equation [14,15] 

[1+6e.(w, k)]<p(w) + I: an(w)<p(W-nwo)=Q(w), (1.3) 

current velocity. Only in a dense plasma, when wpe where 
»wBe, does it attain a maximum value at u - VTeWBe/ wpe, 
and then slowly decrease as U- 1I3 . 

Assuming that the scattering of the electrons and 
ions by the growing unstable fluctuations in the electric 
field is small-angle scattering that is determined by 
the Fokker-Planck equation, we consider the nonlinear 
phase of the instabilities under consideration, and de
termine the effective collision rate at which saturation 
of the parametric instability occurs. The obtained re
sults are very similar to the results obtained in the 
case of a purely beam excitation of electron cyclotron 
oscillations in a plasma with a transverse current, when 
the pump field has a frequency significantly less than 
the growth rate of the oscillations (see [12-13] and the 
li te rature cited the re) . 
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(1.4) 

<p(W) is a quantity proportional to the Fourier transform 
of the oscillation potential, and Q(w) is a quantity pro
portional to the initial perturbation of the electron and 
ion distribution function. For wBi.$ wo;S wBe we obtain 
from (1.5) the following estimate: aE-ku/wo, where 

Eo roBe 
U""C---

Bo WO-ffiB~ 

is the amplitude of the drift velocity of the particles in 
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the crossed Eo and Bo fields. We shall assume that 
vTi «u« VTe. 

It follows from (1.3) that the dispersion equation de
termining the complex frequency W has the form of an 
infinite determinant 

detillimn+ an_m(w-mwo) 11=0. 
, 1+lica(w- nw o) 

Below we shall investigate Eq. (1.6) in a number of 
limiting cases. 

2. THE KINETIC INSTABILITY (Tj:P Tel 

(1.6) 

Let us consider a plasma with hot ions and cold elec
trons (Ti »Te). If the velocity u is sufficiently small 
(see below), then the generated parametric instability 
is, as in the adiabatic case (wo «1'), a kinetic instability, 
and the oscillations are built up by resonant ions. 

Since Ti »Te, the terms -an(w) -oq in Eq. (1.3) are 
small, and we can retain in the sum over n in (1.3) only 
the term with n=O. Then we obtain the following dis
persion equation: 

1 +lie, (w) +ao (Cd) =0. (2.1) 

In the zeroth apprOXimation 1 + OEe(W) = O. This equa
tion determines the frequencies of the electron cyclotron 
oscillations with w = w(k) lying in the interval lWBe 
< w(l) < (l + 1)wBe (the Bernstein modes). In [16,17J, w(l)(k) 
versus kPe plots obtained by means of a numerical so
lution of the equation 1 + OEl(w) = 0 are given for differ
ent values of the ratio wpe!wBe. 

If the frequency w(k) is close to nWBe, then 

An(k'p,') 
w (k) ""nWB, ( 1 + Hk'A' ), (2.2) 

D· 

where ADe= VTe/wpe. The formula (2.2) is valid for 
arbitrary values of n if kPe« 1 or kPe » 1, and for 
arbitrary kPe if n» 1. 

Setting w=w(k)+Aw +iY, where Aw «kvTi and 
I' «kVTi, and taking the small term ao in (2.1) into 
account, we obtain 

~w=-.E k~pi',Jm'(aE) (1-2zme-,m' fe"dt) ( dlie, I )-', (2.3) 
m=_oo UTI 0 dw w=w<O 

)-' 
(I) , (2.4) 

Since kVTi «wo, wBe, we need consider in the sum 
over m in the expression (2.4) only the term with the 
resonance value of m, when w(k) "='-mwo (m<O). The in
stability develops if zm < O. Then for I Zm I ,$ 1 we find, 
using the expression (2.2), that 

(k)- T, A,,(k'p,')/m'(aE ) w . 
1 T, (Hk2A~y fl' 

(2.5) 

The magnitude of the growth rate (2.5) depends in a 
complicated manner on the quantities k, m, and n. Let 
us estimate the maximum value of the expression (2.5) 
and the value of k at which this maximum value is at
tained for different values of the numbers m and n. If 
m = 1 and wpe.:s WBe, then 

1 T'(Wp,)'(U)' 
-;-: -- Ti ~ UTe 

(kp,-l). (2.6) 
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If m=1,n'?1,and Wpe~WBe,then 

If m=2 and wBe.:swpe,then 

If m = 2 and wBe'? wpe, then 

1 T, ( w" )' ( U )' 
ffi lM -- r: -;:- ~ 

(2.7) 

(2.8) 

(kp,-l). (2.9) 

If m~ 3, and also if m= 1,2 and n~1 when wpe »wBe 
and uwpe/VTewBe ~ 1, then 

(2.10) 

It should be noted that the numerical coefficients that 
were dropped in the derivation of these formulas are 
very sensitive to the choice of the numbers m and n. 
The quantities (2.6)-(2.11) increase with the velocity 
u. However, the applicability of these expressions at 
large values of u is restricted by the condition 
y<kVTi. This condition leads to the following inequali
ties, which determine the condition of applicability of 
the estimates (2.6)-(2.11): 

where ~ = (T/Te)vTiVTe. 

(2.6a) 

(2.7a) 

(2.8a) 

(2.9a) 

(2.10a) 

(2.11a) 

The expressions obtained for Y(k) decrease with the 
velocity, so that the quantity y(k) quickly becomes 
smaller than WBi. The quantity u is bounded from 
below by the condition I' > WBi and, furthermore, by 
the condition Wo > kVTi, which allows us to separate out 
from the sum (2.4) the resonance term. The latter con
dition for m - 1 is easily fulfilled, and can prove to be 
important only when Wo« WBe (m »1). 

If the frequency of the binary Coulomb collisions is 
sufficiently high, then the influence of the collisions on 
the development of the instability being studied will have 
to be taken into account before the violation of the con
dition I' > wBi. 

Let us find the value u = Ucr that determines the 
threshold for the appearance of the instability being 
studied. To take the Coulomb collisions into account, 
we must, when w"='nwBe, add to the expression (1.1) a 
term equal to (see [13J) 

(2.12) 

where 

'1= ~ (1+~n), 
8l'2n 2 3l'm,T;' 
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Allowance for the collisions leads to a growth rate 
equal to Y= y(k)-Yst, where r(k) is given by the for
mula (2.4) and 

'(.,=v,,(kp,)'1'2n·1'j (kp,~I), 

'( "-V,, (kp.s;:; 1). 

(2.13) 

The condition y(k) = Yst determines the magnitude of the 
critical velocity above which the oscillations with the 
given values of k, m, and n are excited. Determining 
from this condition the maximum value of the quantity 

formulas (2.14)-(2.18), in which !Jei should be replaced 
by !Jeff. 

These expressions allow us to estimate the rate of 
damping of the pump wave and the rate of turbulent 
heating of the plasma. 

In conclusion, let us note that the estimates obtained 
in this section are also valid for Ti -Te. However, to 
obtain exact expressions for the growth rate in this 
case, the dispersion equation (1.6) must be solved 
numerically. 

v., T, A.(k'p.')J .. '(~) 
00;;: - T, (kp.)'(I+k'A.D.')' , (2.14) 3. HYDRODYNAMIC INSTABILITY (u > u t ) 

we find the threshold value of u. 

Fixing the values of m, n, and "'pe/"'Be, we find 
from this that the maximum value of (2.14) -and the 
values of k at which this maximum is attained are given 
by the following formulas. 

If m= 1, then 

(2.15) 

If m=2, 3 and "'Be >"'pe, then 

v., T, (W p , )'( a ) 2m-' 

WBe - r; ~ -v;:- (kp,-I) . (2.16) 

If m = 2, 3 and "'pe > "'Be, then for u"'pe/VTe"'Be < 1 

In the region of high velocities, when the inequalities 
(2.6a)-(2.11a) are replaced by the inverse inequalities, 
the instability under consideration becomes hydrody
namic. Assuming in this case that zi» 1, and taking 
into account the fact that '" «"'0, "'Be, we obtain the 
following dispersion equation[6J: 

o. (3.1) 

We shall assume that the frequency m",o is close to the 
natural frequency ",(k). Then, considering in (3.1) only 
the terms with m'=m and m'=-m 1), we obtain the fol
lowing expression for ",2: 

(3.2) 

V., T.(wpo)'m_'( a)'"' 
--- -, - (kA.D,-I). 
(OBe Ti WBe UTe 

where 6 = m",o - ",(k) and 
(2.17) 

If m=-= 4, then 

T 3 2 2 -, ( ) 'I, ( V) -~-~(..!!:-.) (1+~~) ~ kp.--[!-. (2.18) w.. T, v,,' a' W • .' WB. 

The formula (2.18) is also applicable when m=2, 3, 
"'pe »"'Be, and u"'pe >VTe"'Be. 

The development of parametric instability leads to 
the appearance of intense pulsations in the intensity of 
the electric field of the electron cyclotron oscillations. 
We shall assume that the saturation of the growth of 
these oscillations is due to their nonlinear interaction 
as a result of the appearance of a strong nonlinearity in 
the kinetic equation for the electrons. The scattering of 
the electrons by the turbulent pulsations leads to the 
appearance of an effective scattering frequency !Jeff. 
Assuming that this scattering leads to the deflection of 
the electrons through small angles, we can describe it 
with the aid of a Fokker- Planck type of collision inte
gral. Therefore, there will arise in the nonlinear phase 
of the development of the oscillations an effective tur
bulent collision rate !Jeff, whose presence will lead to 
the decrease of the growth rate. The growth rate will 
be determined by the expression YNL = y(k)-Yst, where 
y(k) is determined by the expression (2.4) and Yst by 
the formula (2.13) in which !Jei should be replaced by 
!Jeff . 

As the amplitude of the oscillations grows, the quan
tity !Jeff will grow. The condition y(k) = !Jeffk2 p~ deter
mines the value of !Jeff for which the oscillations with 
a growth rate less than y(k) will attain saturation. The 
maximum of the expression !Jeff = Y(k)/k2p~ determines 
the value of !Jeff for which all the oscillations reach the 
stationary turbulent level. Using for y(k) the expression 
(2.5), we find that the quantity !Jeff is determined for a 
given value of the magnitude of the velocity u by the 
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For ",(k) '" n"'Be, we have 

(3.3) 

For 6 < 0, the generated instability is aperiodic. For 
6 > 0, the instability develops if 63 > 4yg. A characteris
tic value of the growth rate is equal to 

(3.4) 

The maximum value of Yo(k) and the value of k for 
which this maximum is attained are determined by the 
following estimates. 

If m = 1 and "'Be~ "'pe, then 

'( ( m, ) 'f, ( wP' ) 'I, ( a ) 'I. 
W Bc nLj WBe U re 

(kp.-I). (3.5) 

If m = 1 and "'Be'::: "'pe, then for u"'pe/vTe"'Be < 1 

(3.6) 

If m=-= 2, then 

~ (m v ) 'I. ( v' ') -'I, I "Tc , Te WEe 
-- -- 1+----
mEe m j U U 2 W p / 

( v" ) kp,--;- . (3.7) 

The estimate (3.7) is also valid for m = 1 and "'Be« "'pe 
when u"'pe/vTe"'Be > 1. 

If m» 1 ("'0 «"'Be), then 

_1_(~~)'I'(1+ VT;' wB':)-'I'(~)'I. (kp,- VaT'). (3.8) 
(UBe mi U U (Ope (OBe 

The growth rates (3.5)-(3.8) increase monotonically 
with increaSing u; it is only in the region u"'f:e/VTe"'Be 
> 1 that they begin to decrease slowly as u- 1 3 

The obtained expressions are applicable if y» kVTi. 
This condition limits the applicability of the estimates 
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(3.5)-(3.8) with sufficiently large values of u >Ul: 

Ut2'-'U02(ffisJWpe)\ 

U12.-..UO Z,. 

, '( VTe2 WB/)' u1 -uo 1+-,---,- , 
U Wpe 

, '(1+ vT.' roB.' )'( roB. )'1. 
U t """Uo -'---2 -- . 

U Wpe 000 

Furthermore, for the formulas (3.2)-(3.8) to be ap
plicable, it is necessary that the inequality 

I I roB.An(k'p.') 
ro(k)-nroB' - +k' , ~"{, 

1 f..D' 

(3.5a) 

(3.6a) 

(3.7a:) 

(3.8a) 

(3.9) 

which also imposes limitations on the value of u, be 
fulfilled. Substituting in place of y in (3.9) the estimates 
(3.5)-(3.8), we obtain 

, 
, m, ( ro •• ) , u<- -- VTe, 

m. Wall 

2 m, ( roB')' , 
U<- -- UTI! 

m. (;)pOl 

m. ( ro., )'(1+ Vr.' roB.') 
U> - VT• -- --,---" 

mi WBe U Wpe 

m. ( ro •• )'( 1+ VT.' roB.') ( roo )'1' 
U>-Vr. -- --,---, - • 

mi WBe U W pe (UB. 

(3.5b) 

(3.6b) 

(3.7b) 

(3.8b) 

In the nonlinear phase of the development of the hy
drodynamic instability there appears effective electron 
scattering by the turbulent pulsations in the growing 
oscillations. We take this effect into account by intro
ducing into the resonance denominators in BEe an 
effective collision rate lieU: 

(3.10) 

When the quantity k2P~lIeff exceeds the growth rate (3.3), 
the hydrodynamic instability does not become saturated, 
and the growth of the oscillations in this (nonlinear) 
phase continues, although with a significantly smaller 
growth rate. Taking the substitution (3.10) into account, 
we obtain for the nonlinear growth rate in this case the 
estimate 

(3.11) 

where Yo is given by the formula (3.3). In this phase, 
the parametric instability is dissipative. Saturation of 
the nonlinear dissipative instability sets in when the 
growth rate (3.11) decreases so much so that it becomes 
of the order of kvTi. In this case there develops strong 
ion-induced damping of the oscillations, which leads to 
the saturation of the oscillations. The value of the ef
fective scattering frequency, which is determined from 
the condition 'YNL -kVTi, coincides literally with the 
quantity lIeff, (2.14), determined for the case of kinetic 
instability in the preceding section. 

If there are suffiCiently frequent Coulomb collisions, 
so that k2p~lIei >Yo, then the hydrodynamic instability 
with the growth rate (3.3) is not excited. In this case 
the growth rate is determined by the formula (3.11), in 
which lIeff should be replaced by lIei. 

4. ION-SOUND INSTABILITY (u < u\) 

The hydrodynamic instability investigated in the 
preceding section develops if the oscillation velocity u 
is sufficiently high (u >Ul) both when Ti >Te and when 
Ti <Te. If TiZTe, then this instability develops into a 
kinetic instability in the low-velocity region (see Sec. 
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2). If, however, Ti «Te, then ion-acoustic oscillations 
are parametrically excited in the region of small u. 
The excitation of these oscillations is due to the fact 
that they are resonantly coupled to the electron cyclo
tron oscillations, and it occurs coherently. Let us 
represent Eq. (1.3) in the form 

e(ro)<p(ro)+ L, bn(ro)ql(ro-nroo)=Q(ro), 

where 

We shall assume that kPe is so large that even when 
Iw+mwol"'swBe the quantity bn(w) in (4.1) can be 
conSidered to be smalL Then, discarding in (4.1) the 
terms with n"" 0, we obtain the following dispersion 
equation: 

e(ro)+bo(ro)=O. 

(4.1) 

(4.2) 

(4.3) 

In the zeroth apprOXimation E( w) = 0, whence we find the 
frequency of the oscillations: 

kv. ( T. ) '1. 
ro=ro.(k) = , v.=\- . 

l'l+k''''D.' m, 
(4.4) 

The term bo(w) in (4.3) proves to be important only at 
the resonance 

ro, (k) +mroo=-nro ... (4.5) 

Setting in this case w=ws+iy (y«ws), and taking ir..to 
account in bo(w) only the resonance terms, we obtain 

"(=t(k) (m.lm.)"·roB., (4.6) 

where 

k _ [nkP.An(k'p.')lm'(a,,) ]'1. 
f( )- 2 (1+k'f..D.'),/. (n>O). 

The maximum value of the growth rate (4.6) and the 
values of k at which this maximum occurs are deter
mined by the following expressions. 

If m = 1 and WBe >wpe, then 

(4.7) 

If m = 1 and WBe < wpe, then for uwpe/VTeWBe < 1 

(4.8) 

If m 2: 2 and n - 1, then for mwo - mWBe 

__ 1 __ fiI 1+~~ _0 v (m )"'( v' ro ')-'1'( ro )'" 
(UBe mi u2 ro pe2 WB6 

(a.-l). (4.9) 

As the velocity u increases, the growth rates (4.7)
(4.9) increase, but these expressions are applicable for 
u less than some value U-U2' The condition of appli
cability of the approximate dispersion equation (4.3) 
and of the expression (4.6) for y has the form 

1m' (a,,)A n (k'p.') ( nroB.An1m' )1/• 
----.:.....'-nroB.- <1. 

y (1 +k'f..D.') kv, l' 1 +k'f..v.' 
( 4.10) 

The cutoff velocity u = U2 is determined by this condi
tion. In particular, for the expressions (4.7)-(4.9) we 
find from this inequality that 
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(m)'I' (ID )'/. U,- -It UTe ~ , 
mi <Ope 

(4.7a) 

'I. 
U,- (.::!::..) UTe, 

m, (4.8a) 

( m, ) 'I. ( VTo' IDS.') '10 U,- - UTe 1+-,---, . 
nt, U <OPII 

(4.9a) 

In the nonlinear phase of the development of the ion
sound instability under consideration, when electron 
scattering by the ion-sound vibrations appears, the 
nonlinear growth rate is determined from Eq. (4.3), 
in which W should be replaced by W + ik2 p~ lIeff. Taking 
the resonance term into account in the expression for 
bo(w) , we obtain 2) 

't'(k) 

where Y(k) is determined by the formula (4.6). When 
the quantity lIeff becomes larger than Y(k)/k2p~, the 
growth of the oscillations is slowed down: 

(4.12) 

When the quantity YNL becomes of the order of kVTi, 
the oscillations become stabilized. The effective scat
tering frequency of the stabilized oscillations is equal to 

(4.13) 

We find from this that if m = 1, then 

~_(~)'( 1+1.1;: ID!:)-"'(~)'I'. 
lllBe D Te U (Upe Ti 

(4.14) 

If m = 2, 3 and wBe > wpe, then 

V,II (OJ,,), ( U) 2m ( T') 'I. 
WBe ......., -;:- UTe T,' (4.15) 

If m = 2, 3 and wpe > wBe, then for uwpe/vTewBe < 1 

If m 2: 4 and mwo - WBe, and also when m = 2, 3 
"-'pe »wBe, and uwpe/VTewBe > 1, we have 

(4.16) 

The formulas (4.13)-(4.17) are valid only if the quan
tity lIeffk2p~ is smaller than WBe. In the opposite case 
the development of the oscillations in the nonlinear phase 
proceeds differently. After the quantity lIeffk2 p~ has 
become greater than y(k), the development of the os
cillations proceeds more slowly with the nonlinear 
growth rate (4.12). When the quantity lIeffk2p~ attains 
a value of the order of wBe, the separation of the in
dividual harmonics in the sum over s in the expression 
for bo(w) becomes impossible, since the individual 
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cyclotron harmonics overlap and the spectrum of the 
oscillations becomes continuous, and the instability un
der consideration develops in this phase into a nonlinear 
ion-sound instability for which the magnetization of the 
electrons is unimportant (see [13,lB]). 

I) In the case when mwo "" nWBe and the difference I w(k) - nWBel ';;;"1, 
we must take into account in the sums over m' and s entering into (3.1) 
an infinite number of terms with m' = rm and s = m (r = ± I, ±2, ...... ); 
the expression for w in this case was obtained in [6]. 

2) If the Columb-collision rate is sufficiently high (veik2pe2 > "I(k», then 
in the nonlinear phase the growth rate is determined by the relation 
(4.11), in which /Jeff should be replaced by vei' 
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