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An analysis is reported of the self-interaction of an electromagnetic pulse in a plasma layer of finite 
thickness which is connected with stimulated scattering (parametric instability). The self-interaction 
can be seen in amplitude modulation effects and in the anomalous absorption of the original signal. 
The results are given of a numerical calculation and of some analytic estimates of the formation of 
the plasma turbulence spectra during the development of parametric instability, and of the effects of 
self-interaction in the pump wave. 

Several experiments on the sounding of the ionosphere 
with high-intensity electromagnetic waves[1-3J have es­
tablished the presence of nonlinear effects near the point 
of reflection. In particular, it was established that there 
was excitation of plasma waves and anomalous absorp­
tion of the incident electromagnetic wave, which was 
probably due to nonlinear stimulated scatterin~ (para­
metric instability) near the point of reflection. 4-7 J 1) 

In this paper, we shall be concerned with the theory of 
parametric instability in the case of an electromagnetic 
pulse of arbitrary length incident on a finite layer of 
plasma. 

In practice, the finite thickness of the plasma layer 
in which the nonlinear effects appear is due to its in­
homogeneity. In inhomogeneous plasma, the excitation 
of parametric instability is possible only in a relatively 
thin plasma layer below the point of reflection where 
weakly attenuated plasma waves with frequency close 
to the pump frequency can be present. The development 
of the parametric instability is accompanied by the exci­
tation of plasma turbulence, whose spectrum is formed 
by the nonlinear transformation of plasma waves toward 
larger scales and attenuation. The transfer of energy 
from the pump to the plasma waves may substantially 
exceed linear attenuation, and is the reason for the 
anomalous absorption of the original signal. 

The necessary condition for the appearance of effects 
associated with parametric instability is that the corre­
sponding growth rate YN should exceed the linear at­
tenuation of plasma waves yz (YN >yz) and the length T 

of the pump pulse must be greater than the instability 
development time, Le., T >YN' The nonlinear transfor­
mation of plasma waves along the spectrum through the 
individual satellites may lead to a peculiar amplitude 
modulation of the original electromagnetic pulse. 

A quantitative description of the above effects can be 
achieved by solving the set of analytic equations for the 
transverse and longitudinal waves which, in the case of 
weakly ionized plasma in which we are interested, has 
the form[SJ 

aw, a (v,W.) S 
di+--a.-=-W' w"(k"k,)W.,dk,-1,w,, (1a) 

aWk + VI aWk_~ aw. 
at a. ar ak 

=Wt/(k"k,)W.W,-1IW.-W.S Wll (k,k,)W., dk,+a., (1b) 

where Wt and Wl = fWkdk are, respectively, the en­
ergy densities in the transverse (t) and longitudinal (l) 
waves per unit volume,Vt,1 is the group velocity of the 
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waves, kt,l is the wave vector, n,l is the linear damp­
ing, and ak is the emissive power. The interaction 
kernels have the form 

(i)o.' cos'(a"a,.,) F( T.) 
Wtl,ll= (i) NeT, Xt,I;T; ; 

F (x .!..:...) = Te a, 
, T; T, (1+a,T,IT;)'+(a,T,IT,)" 

= (2) 
a,=1-2xexp{-x'} J exp{t'}dt, a,=,,;';'xexp{-x'}, 

(i),-(i) (k) (i) (k) -(i) (k,) 
XI = Ik,-klv,.;' x, = Ik-k,lvT' ' 

where VTi = (2TJM)1/2 is the thermal velocity of ions, 
Te,i is the temperature of the plasma electrons and 
ions, Woe = (41Te 2N/ me)1/2 is the electron Langmuir fre­
quency, at ,l is the polarization vector, and w(k) is 
the frequency of plasma waves which is related to k 
through the dispersion relation. The nonlinear growth 
rate is given by YN=WtlWt. 

Equations (1a) and (1b) describe the parametric in­
stability when most of the plasma wave energy is lo­
calized on the scales [aJ 

(mIM)"'k.>k> (mIM) 'I'k., 

where kd,l = vTe/v' 2woe is the Debye radius, m/M is 
the ratio of electron and ion masses, and the kinetic 
stage of instability is being realized:[lOJ 

(3) 

(4) 

In our further analysis of (1), we shall simplify the 
problem by assuming the formation of one-dimensional 
spectra of plasma waves. In fact, the kernel of (1) is 
a maximum when the electric fields of the interacting 
waves are parallel. The presence of the maximum for a 
large ratio of the plasma-wave energy density to the 
background level facilitates this Simplification. Quasi­
linear spectra (established plateau on the distribution 
function for the scattering particles) are unimportant in 
the case of scattering by ions for a sufficiently large 
number of collisions when[llJ 

( 5) 

where Aw is the width of the plasma wave spectrum 
and ko is a characteristic wave number in the spectrum. 
This inequality is satisfied with a substantial margin, 
at least under the conditions prevailing in ionospheric 
plasma. 

To elucidate the main features of the solution of (1) 
and its possible Simplification, let us begin by con-
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side ring the case of a given pump, i.e., Wt = const. 
Numerical calculations based on (1b) for uniform 
plasma show that the plasma wave spectrum produced 
as a result of nonlinear action has narrow intensity 
peaks, Wks, separated from one another by -kVTi (see 
also [6,9J). The width of the plasma wave spectrum near 
the peaks is 

(6) 

where Wko = akin is the initial plasma-wave level. 

Therefore, the plasma wave spectrum can, in the 
first approximation, be represented by individual mono­
chromatic lines (satellites) whose intensity decreases 
with increasing satellite number. This enables us to 
write (1) in the form of a set of equations for a finite 
number of satellites (see also [6J): 

ou,! O't+ou,! 06 =-Ilu,u,-u,; 

ou,/o't=1l (u,u,j(6) -u,u2 ) -u,+uo, 

ou,!O't=1l (U,U 2-U2U,) -U2+UO, (7) 

where ut=Wtvt/WtoVto, us=Ws/Wto are the normalized 
energy densities of the transverse wave and the s-th 
satellite, Uo is the emissive power, T=vt, y=yz=yt, 

S'Vdz s= --, 
v, 

Fm is the maximum value of the function F(x, Te/Ti), 
f( 0 = Vto/vt, and Wto and vto are, respectively, the 
energy density and group velocity of the pump wave 
at the beginning of the layer (~=O). 

In the set of equations given by (7), we have taken into 
account only the most rapid dependence (near the point 
of reflection) of the group velocity vt on the coor­
dinates, and have neglected the spatial transport of the 
plasma-wave energy density. A numerical solution of 
the set of equations was carried out for the homogeneous 
case [f(O = 1], subject to the initial conditions ut = 1, 
Us = Uo for T = 0, and the boundary condition ut = 1 for 
~ ,= O. The nature of the solution depends on the 
parameters Ii and Uo. Figure 1 shows the results of the 
numerical calculation for Ii = 4, Uo = 0.003. The ordi­
nate axis gives the normalized energy flux ut in the 
transverse wave and the energy density Us of the satel­
lites for a number of fixed values of the coordinate ~. 

The behavior of the transverse wave in time is charac­
terized by damped oscillations and an eventual quasi-

ro'2~ ~u, {=o,zr E:=,===f=""o,=3= E:t=Ui===f==o,=.',=..: 

1:2~~ Lc-:c tk 1= == 

!;f:JV v 01 ~~b i:::= ==--~~ 
!;fY\jVV-L/V\J~~ 
!u'21~~ ~ k=::== 
u:t~~[~t~ 

J !{/ r J !U r J !{/ r J /{/ r 

FIG. I. The intensity of the transverse wave Ut and of the plasma­
wave satellites Us (s = 1-5) as functions of time for different values of ~ 
and Ii = 4, Uo = 0.003 (result of numerical calculation). 
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stationary value. The number of oscillations decreases 
with increasing ~. The period of the oscillations is 
determined by the period of the oscillations in the first 
satellite at the beginning of the layer T = Y~ In U;l. In 
the first approximation the behavior of the satellites is 
the same as that of the satellites for a given pump: the 
period of the intensity oscillations increases with in­
creasing ~ because there is a reduction in the intensity 
of the transverse wave and, therefore, in the growth 
rate YN' Naturally, the number of satellites decreases 
with increasing ~. 

The pump-wave intensity decreases both as a result 
of linear absorption and because of the nonlinear trans­
formation of energy into plasma oscillations, One 
would expect that the damping of the transverse-wave 
oscillations and the eventual stationary state are con­
sequences of the averaging of the oscillations in space. 
In fact, at the beginning of the process, the plasma-wave 
intensity increases roughly in the same way in the en­
tire space of ~,which determines the first minimum of 
the transverse wave ut. Subsequently, because of the 
difference between the periods of satellite intensity 
oscillations for different values of ~,the phases of the 
oscillations Us become incoherent and this leads to the 
averaging of the nonlinear transformation of the trans­
verse-wave energy into plasma oscillations. This en­
ables us to conclude that the space-averaged plasma­
wave intensities and the transverse-wave intensity have 
quaSistationary values after a certain time -T. 

Thus, the stationary transverse-wave intensity for a 
sufficiently large number of satellites [liutf(~) » 1] is de­
termined by the equation [see (7) for a/aT=O]: 

ou, 
~ = -Ilf('s) u,'-u,. 

The solution of (8) with given intensity uto = 1 at the 
beginning of the layer is 

(8) 

(9) 

The values of Ut calculated from (8) for a homogeneous 
layer [f(O= 1] and those obtained from a numerical cal­
culation for Ii = 4 are shown in Fig. 2. The good agree­
ment between the results enables us to conclude that 
the stationary solutions which are readily obtainable in 
analytic form can be used to calculate the nonlinear 
damping of the transverse wave. 

We note that, in the linear approximation (Ii = 0), the 
absorption of the transverse wave is determined by the 
expression ut = e- ~. Therefore, the integral with respect 
to f in (9) determines the anomalous absorption of the 
transverse wave, which is connected with parametric 
instability. 

We now summarize the above results. During the 

FIG. 2. Numerical calculation of 
the quasistationary values of the 
intensity of the transverse wave Ut 
and the analytic function Ut(~) 
based on (8) for Ii = 4 (open circles 
correspond to Ut, solid line cor­
responds to ut). 
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developed stage of parametric instability, the plasma­
wave spectrum can be represented by a set of individual 
narrow lines (satellites). The intensity of the individual 
satellites oscillates in time with a period -yU In U~l. 
The behavior of the transverse wave in the plasma layer 
is characterized by damped intensity oscillations and an 
eventual quasistationary value of the intensity. The self­
interaction of the transverse wave in the stationary ap­
proximation appears as an anomalous absorption which, 
in weakly inhomogeneous plasma, is taken into account 
in (9). 

I)It is assumed below that Te "" Ti and, therefore, the decay interaction 
of waves is not considered. 
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