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A formula is obtained for the spectral distribution of the number of transition x-ray quanta produced 
in an irregular medium consisting of randomly disposed parallel plates with arbitrary thicknesses. The 
formula takes into account the absorpti'ln of the radiation by the plates. This formula is averaged 
over the thicknesses and over the distances between the plates for random distributions of these 
quantities. In the limiting case when there is no irregularity, the general formula leads to the 
well-known formula for the transition x rays in a regular stack. In another limiting case, when the 
medium is extremely irregular (i.e., the scatters of the plate thicknesses and of the distances between 
them are much larger than the respective formation bands in the matter and in vacuum), the 
number of emission quanta produced in such a medium is the additive sum of the numbers of the 
radiation quanta formed on all the boundaries. A numerical calculation is given for a model in 
which the thicknesses of the plates and the distances between them are described by a gamma 
distribution. 

1. INTRODUCTION 

Transition radiation is produced whenever a charged 
particle passes through an inhomogeneity of a medium. 
Many papers have been devoted to theoretical and ex
perimental research on transition radiation produced in 
a medium with regularly (periodically) distributed in
homogeneities (see[l,21). Under real conditions, how
ever, various deviations from ideal regularity are un
avoidable. In addition, it is perfectly natural to raise 
the question of the appearance of transition radiation in 
an arbitrary irregular medium. A readily accessible 
medium of this type is foamed plastic, in which transi
tion radiation was recently observed in experiment[31. 

We consider a system of randomly distributed plates 
of arbitrary thickness, all parallel to one another. 
Such a system, besides being of independent interest, is 
also a good model for a theoretical description of the 
formation of x-ray transition radiation in foamed 
plastic and in similar media. Indeed, for x-ray frequen
cies the effective transverse dimensions of the electro
magnetic field of an ultrarelativistic charged particle 
are much smaller than the dimensions of the pores in 
the foamed plastic. In addition, the intensity of the 
transition x-rays is practically independent of the en
trance angle of the charge into the medium[41. 

In this formulation, a preliminary analysis of this 
problem was presented by us for the case when the 
medium is actually regarded as weakly irregular[51. In 
addition, no account was taken of the absorption of the 
radiation in the medium. In a somewhat different 
formulation, but again for a weakly-irregular medium, 
the problem was considered by Ter-Mikaelyan[61. In 
the present paper we consider this problem in the 
general case without any assumption of weak irregular
ity, and also take into account the absorption of the 
radiation in the medium itself. 

2. GENERAL THEORY 

Assume that a particle with charge e travels with 
velocity v perpendicular to N plates of identical 
matter and with thicknesses an (n is the number of the 
plate). The plates are arranged in a vacuum, the dis
tance between the n-th and (n + 1 )-st plates being bn . It 
is very difficult to find an exact solution of this problem, 
and we therefore seek immediately an approximate solu-
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tion for ultrarelativistic particles and transition 
x-rays. The approximation consists in the fact that we 
neglect reflections, i.e., we assume the condition 

I Nrd 2«1 (1) 

to be satisfied, where r 1 is the coefficient of reflection 
from the plate and is given by the formula 

rl=(8Ao-),)/(8AoO.) ; 

'.o=(w/c)cos D, 1,= (",/c) (E-sin' ())'i'. 
(2) 

Here E = 10' + iE" is the dielectric constant of the plate 
material, and " is the radiation angle. 

In the x-ray frequency region we have \ rl\ ~ W~/4W2 
(wo is the plasma frequency of the plate material), and 
consition (1) is well satisfied for a sufficiently large 
number N. The transverse Fourier component of the 
radiation field produced when the particle passes through 
the interface z = 0 between the medium and the vacuum 
is then given by 

(3) 

where K is the transverse component of the wave 
vector k, while the plus and minus signs correspond to 
passage of the particle from the vacuum to the medium 
and from the medium to the vacuum, respectively. 

Bya method described by one of us[21, or by a con
secutive solution of the equations for matching on the 
boundary, one can find that the Fourier components of 
the radiation fields in the plates and in the vacuum 
segments are superpositions of the quantities (3) with 
appropriate phase factors. In particular, the transverse 
Fourier component of the radiation field beyond the last 
(N-th) plate is given by 

E", (k) = ;~2 exp {iCPo [ r: (a, +b,,) +aN ]}. 
I<=t 

N-l 

X (AO-l_kc1 ) L [1-exp(i&m) ]exp(iAm), (4) 

X .IV 

&m=-cpam+" Am=-CP L a,-<po r, b'-I, 

00 ( w' ) 'f, cpo=-- ~_X2 , 
1) c2 

w ( 00' )'" '1'=-- -8-%' . 
V CZ 

(5) 
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The number of transition-radiation quanta beyond the 
N-th plate is determined by the formula 

dNqu 2 S I 1 1 I' 
For the second part of the sum over m in (7), Le., 

for the term m = n, we have 

2(1-Re hal. (11) 
d;;=.137nw 1-~'e+ti' 1-~'+ti' . 

x I f'exP(iAm) [1-exp(i6m ) JI' ti'dti, 

(6) For the third part, Leo, for the sum over m from 

11:=0 

where {3 = v/ c; we put K = (wi c) sin" in the quantities 
Am and Om. 

We note that, by their definition, the quantities am 
and bm in (4)-(6) are positive. In addition, in the 
derivation of these formulas (for example, by solving 
the matching equations), explicit use was made of the 
positiveness of am and bm . If am and bm are random 
quantities, then the number of transition-radiation 
quanta (6) is also a random quantity with a distribution 
determined by the distributions of am and bm . 

3. AVERAGE NUMBER OF RADIATION QUANTA 
WITHOUT ALLOWANCE FOR ABSORPTION 

Let am and bm be independent random quantities. 
We assume here that am and also bm are independent 
for different numbers m, and calculate the mean value 
of (6). To this end it suffices to calculate 

]"" < l't exP(iAm)[1-exP(i6m)]I') 
11.=0 

(7) 

= < 1:: f'exP[i(Am-A;)][ 1-exp(i6m) Hl-exp( -ill;)]) 
n=O'm"",O 

where the angle brackets denote averaging. 

For simplicity, we consider first the case when the 
absorption can be neglected, Le., when the quantity E, 
and consequently also the quantities '\, cp, and An, and 
On can be regarded as real. The allowance for absorp
tion will be considered in the next section. 

We break up the sum over m in (7) into three parts: 
into a sum from zero to n - 1, a separate term m = n, 
and a sum from n + 1 to N - 1. For the first part we 
ha ve, taking (5) into account 

11.-1 11.+1 11.+1 

< .E exp [ -i( <p .E a.+<po Lb.-I) J [1-exp(-i<pam +,)] 
m=O R=m+2 R=m+2. 

n + 1 to N - 1, in analogy with the procedure in the 
first part, we obtain 

N-t m 771+1 

<.E exp[i(<p ~>.+<po.E b._, )][exP(i<pam +,)-l] 
m_1I+l h=n-l·2 R=n+2 . 

x[ i-exP(i<jlan +,)])= .E h:m- n- , h;m-n (h;-1) (1-h;) (12) 
111=11.+1 

1-(h'h ')N-n-I 
=-'(1-h;)'h, a , . 

i-h.·h; 

Gathering all three parts (9), (11), and (12) and sum
ming over n, we get 

1=2NRe (i-ha) (i-h,) + 2 Re(l-ha)'h,(i-haNh,N) (13) 
i-hah, (l-hah,)" 

For the average number of transition x-ray quanta 
in an irregular medium we have 

< d'Nqu )_ 2 ti'l 1 1 1'1 
dw dti - 137nw 1-~'e+ti' - 1-~'+ti' ' 

< dNqu) = s < d'Nqu )dti. 
dw dw dti 

(14 ) 

We note that in the case of a weakly irregular 
medium, when the higher moments can be neglected, we 
have 

ha""exp(-i<pa) (1- 1/2<P'<lla'» , 

h'''''exp (-iqloli) (1- 1/ 2qlo'<llb'», 
(15 ) 

where a=(a),b =(b),a(6.a2 ) = «(;:-ail),(6.b2 ) 

= «(b - bil) are the corresponding mean-squared 
deviations. If at the same time 

1/2N (ql'(lla'>+qlo'(llb'» <1, 

then we readily obtain from (13) 

qla [ sin' NX 1 
]",,4 sin'- -.-- - -,-(ql'(lla')+qlo'(llb2» cos NX 

2 sm'X 2 

(16 ) 

x (N+1)sin(N-1)X- (N-1)sin(NH)X] (17) 
sin'X 

[ sin <pi! ( sin 2NX )] +ql2(lla') Ncosqli!--. - NcosX---. - , 
smX 2smX 

11.-1 11. A+l 

X[ l-exp(i<pan +,)] )= < .Eexp [ -i (<p ~>'+<P' .E b._,)] 
where X = (cpa + cp ob)/2. Substituting (17) in (14), we 

(8) obtain formula (4) of our earlier paper[51• 

m=O h=1II+2 lI=m+2 

X[1-exp(-i<pam +l)] [exP(-i<Pan +,)-1]). 

In the last expression, all the ai, and also the bi, have 
different numbers and therefore are independent. Ac
cording to a well known theorem, the mean value of the 
product of independent quantities is equal to the product 
of the mean values of these quantities. If we make the 
natural assumption that all the ai have the same distri
bution, independent of the number i (and an analogous 
assumption is made for bi), then we get in place of (8) 

.E h:-m-'h;-m (1-ha) (ha-i) =- (l-ha)'h, 1~~~a~:n 
rn=O 

(9 ) 

where 

ha=<exp( -i<jla;), h,=<exp( -i<pob;) (10) 

are independent, by assumption, of the number L 
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4. ALLOWANCE FOR ABSORPTION 

The results obtained in the preceding section can be 
easily generalized to include the case when it is neces
sary to take into account absorption in the plates; this' 
absorption is described by the imaginary part of the 
dielectric constant E. We note to this end that, say at 
n < m, we have 

N n+i 110+1 

i(Am-A;)=-2/t .E a.-iql .E a.-iqlo .E b._I, (18) 
11=11.+2 11=771+2 

where iJ. = wE"/2c "'" -1m cp is the linear coefficient of 
expansion in the field amplitude. An analogous expres
sion holds also at n < m. Proceeding as in the preceding 
section, we obtain 

]=2 1_pN Re l (Hp)/2-haJ-[p-ha(Hp)l2]h, 
1-p 1-hah, 
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R (i-h,l (p_h,)h,[pN_h,Nh,N] 
+2 e~--~~~~~~--~ 

(1-h,h,) (p-h,h,) 
(19) 

where p = (exp ( -2f..Lai ». We note that at 11 - pN I « 1, 
or, equivalently, Nf..Lil« 1, formula (19) goes over into 
(13). Substituting (19) in (14) we obtain the average num
ber of transition-radiation quanta with allowance for 
absorption. 

If the inequality 11 - pi « 1 holds (i.e., Il a « 1), 
but 1 - pN cannot be neglected in comparison with 
unity, then we obtain approximately from (19) 

1_pH (i-h.) (i-h,) (i-h.)'h,[pN_h,Nh,N] (20) 
1""2 ----Re -------+ 2 Re -----:-:--':---:-:-:---

i-p 1-h,h, (i-h,hol' 

5. DISCUSSION 

In the limiting case when the medium is ideally regu
lar (i.e., when all Aai = ai - a and Abi = bi - bare 
equal to zero) and is non-absorbing, we obtain from (17) 

rpii sin'NX 
I =Ireg=4 sin' - ---. 

2 sin'X 
(21) 

By substituting (21) in (14) we obtain the well known 
formula for transition x-radiation produced in a stack 
of regularly arranged plates (see[2 l ). The factor 
4 sin 2 (cp ill 2) in (21) then gives the radiation produced 
by one plate, and the factor sin2NX/sin2X is due to the 
presence of N regularly disposed plates. As is well 
known, at sufficiently large N the factor sin2NX/sin2X 
takes the form of a I)-function. This factor reaches its 
maximum value N2 at X = n1T, where n is an integer. 

This I)-function character of Ireg is due to the fact 
that the denominator sin2X, or equivalently 
11 - exp(-icpa - icpob) 12/4, can vanish. This I)-function 
character of I is gradually lost the more irregular the 
medium becomes. Indeed, in the presence of irregular
ity the denominator of (13) takes the form 

il-h,hb i=ii-exp (-2iX)q,qbi; 

q.=<cos 'pi'.a-i sin cpi'.a>, 

qb=<COS cpoi'.b-i sin CPoi'.b>. 

It is easy to show that I qa 12 :$ 1 and 1% 12:s 1. 
Equality is attained, generally speaking, only in the 

(22) 

case of a regular medium. In addition, the less regular 
the medium the larger the difference between I qa 12 or 
I % 12 (or both) from unity. The minimum value of the 
denominator (2) is then different from zero and becomes 
increasingly larger, and consequently I becomes less 
similar to a I)-function. A similar conclusion can be 
drawn also in the case when absorption is taken into 
account. 

Let us examine another limiting case, when the 
medium is extremely irregular. We then distinguish 
between two modifications: 

1. All the plates are of equal thickness, but they are 
arranged in extreme disorder, i.e., .6.ai = 0, but 
(cos cpoAbi) = (sin CPoAbi) = O. 

In other words ha = exp (-iCPa) and hb = O. We then 
obtain from (13) 

J=4N sin'(cpiil2). 

Substituting the last formula in (14) we find that in 
this case the number of transition-radiation quanta is 
simply the sum of the quanta from all the plates. This 
result is natural. Indeed, as noted at the end of Sec. 2, 
the quantities ai and bi are positive. This means that 
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a large scatter in these quantities makes their averages 
large. In particular, if the scatter of the distances be
tween the plates is much larger than the zone of forma
tion in vacuum, then the average values of these dis
tances are also much larger than the latter. It follows 
therefore that the interference between the radiation 
from the different plates can vanish, so that additive 
summation of the intensities (meaning also of the num
bers of the quanta) of the radiation from all the plates 
occurs. 

A similar conclusion is obtained also when absorp
tion is taken into account. Indeed, at Aai = 0 we have 
p = exp (-2f..La), where a = ai, and we obtain from (19) 

1-exp(-2J.1Na) ( ) 
T = [1+exp(-2J.1a) -2 cos rpa]. 23 

1-exp(-2J.1a) 

After substituting (23) in (14), the quantity in the square 
brackets is the number of transition-radiation quanta 
produced on one plate with allowance for the absorption 
in the plate, and the factor 

[1- cxp (-2J.1Na) ]/ [1- exp (-2J.1a)J 

appears if one sums additively the radiation quanta from 
different plates with allowance for absorption in the 
plates. 

2. Both the plate thic knesses and the distances be
tween the plates are extremely irregular, i.e., 

<cos q;i'.a>=<sin cpi'.a>=(cos rpoi'.b>=(sin rpo~b>=O. 

In other words, ha = hb = O. We then obtain from (13) 

I=2N, (24) 

and from (19) 
1_pH 

I=--(1+p). (25) 
1-p 

Expressions (24) and (25) have a simple phYSical mean
ing: when the scatter of the plate thicknesses and of the 
distances between the plates (and consequently also the 
mean values of these thicknesses and the distances) is 
much larger than the formation zone in the medium and 
in the vacuum, respectively, the number of quanta of the 
resultant radiation is simply the additive sum of the 
numbers of the radiation quanta of the 2N boundaries. 
Formula (24) does not take absorption into account, 
while formula (25) takes into account the absorption of 
the radiation and the plates. 

6. CASE OF GAMMA DISTRIBUTION 

To illustrate the applications of the derived formulas 
and conclusions, let us consider an example with con
crete distributions for ai and bi. It is most convenient 
to choose for this purpose the so-called gamma distri
bution 

fey) =~~+I y' exp (-poy)/f(a+1), (26) 

where O! and f30 are real parameters, O! > -1, f30 > 0, 
and r(x) is the gamma function. 

The mean value (mathematical expectation) y == (y ) 
and the mean-squared deviation (variance) (Ay2) 
= «(y - y l) are expressed in terms of the parameters 
O! and f30 by the respective formulas 

y=(a+1)/~o, <i'.y2>=(a+l)/~o'=y2/(a+1). (27) 

We introduce also the degree of irregularity, defined by 

~=<~y2>"'/Y= (a+1) -'I,. (28) 
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Plots of the gamma-distribution functions (26) are 
shown in Fig. 1 for a number of values of a. 

With the aid of the distribution (26) we can easily 
calculate the values of ha and hb. We obtain from (10) 
and (26) 

( 
icpa ) -0,-1 

h.= 1+-- , 
a.+1 

( icpob ) -0,-1 
h,= 1+--

a,+1 ' 
(29 ) 

where aa and ab are the parameters of the gamma 
distributions for the plate thicknesses ai and for the 
distances bi between the plates, respectively. 

We note that, for example, we have ha - exp (-icpa) 
as a a - 00 and at a = const and ha - 0 as (l a - 00 

and at ii/a a = const. These are res pecti ve ly the cases 
of identical thicknesses and of an extremely large scatte r 
of the thicknesses. Analogous limiting values hold also 
for hb' 

For convenience we present also the formulas (at 
Il = 0) 

[ ( cpii ) 2] -(',+1)/' 
ih.i= 1+ -

a.+1 
Re h,= I h.1 cos IP., Imh.= I h.1 sin IP.; 

cpa 
IP.=- (a.+1)arctg--. 

a.+1 

(30) 

Similar formulas hold also for the quantity hb. They 
can be obtained from (30) by replacing a with band cp 
with cpo. 

With the aid of (30) and the analogous formulas for 
hb' together with formula (13)or((19))and(14),we can 
calculate the angle and frequency spectra of the transi
tion x-radiation in the considered model of an irregular 
medium. 

Figures 2-6 show the angle spectra calculated by 
this method for media with different values of the 
parameters it and b and different degrees of irregu
larity ?:a and ?;t, different quantum energies and dif
fer~mt charged-particle factors y = (1 - {32 t '/2• 

All the curves were calculated for N = 50 and' Wo 

= 20 e V. Figure 7 shows also the frequency spectra for 
the corresponding regular medium (SOlid curves 
marked by the letters c). The angle spectra for the 
regular media, at the considered frequencies and parti-

f(g) 

agr~~'-"r'l~ .~,,~-n 

OJ 

9.3 

OJ 

268 

1\ 
:! 
: i 
j i 

SOD! \ 

~ 
SO]'! ~ 

/ S,· +-J' 
, ': !' 

!! 

FIG. I. Plots of the gamma 
distribution functions f(y) for 
the values a = 1,5,50, and 500 
(indicated next to the curves) at 
y = 10. The corresponding values 
oft are 7.7,40.8, 14.0, and 
4.47%. 
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cle energies, have a strong oscillatory character and 
are therefore not presented. Figure 6 does not show the 
frequency spectra for the irregular medium, since they 
almost coincide with the corresponding spectra at ?:a 
= ?:b = 4.47% (dotted curves). For comparison, Figs. 6 
and 7 show also the radiation spectra obtained.by addi
tive addition of the numbers of the quanta from all the 
plates and interfaces (solid curves labeled a and b). 

From the results of the calculations we see clearly 
that the irregularity leads mainly to a vanishing of the 
interference between the radiation produced on different 
boundaries of the plates of the irregular stack. 

When the irregularity is weak, i.e., when condition 
(16) is satisfied, the spectrum of the irregular medium 
is quite close in character to the corresponding spec
trum of the regular medium. In particular, in the angle 
spectrum of a weakly irregular medium one observes 
clearly pronounced interference maxima, which are 
characteristic of the regular medium, and whose posi
tions are determined by the equation 

X=nn (n are integers). (31) 

On the other hand, in cases when the condition (16) is 
not satisfied, the interference vanishes and the spec
trum (either frequency or angle) becomes monotonic. 

For a regular medium with a = 7 Il and b = 410 Il, 
the frequency spectrum from 4 to 100 keY has no max
ima or minima. In this case the frequency spectra of 
different irregular media with the same a and b differ 
little from the frequency spectrum of a regular medium. 
However, in the case a = 250 Il and b = 200 Il at 
y = 7500 the frequency spectrum of a regular medium 
(see[71) has a minimum in the region of 25 keY followed 
by a maximum near 30 keV, both undoubtedly of 
interference origin. A similar situation holds also at 
y = 75,000 for the same values of a and b. In these 
cases. for a medium with the same a and b but one that 

I 
b 1 

~ 
m-Z~~_~_-L_~_~ __ ~~~ __ ~--L~ 

o fl. OO! Il. 002 fl. DO] I!. DOl/. fl. flOi 
I} 

FIG. 2. Angle spectrum d2Nqu/dwd~ (quanta/keV-rad-electron) for 
an irregular stack WIth IT = 7!J. and 1) = 410!J. at 'Y = 103 and w = 4 keY 
(a) or 25 keV (b). The dotted curves correspond to the case ta = tb 
= 4.47%; the dash-dot curves to t a = tb = 14.0%; the dashed curves to 
ta = ta 40.8%; the solid curves to ta = tb 70.7%. 
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b 

\\',,--:...... -

.. , '~------ ". . 

NO-J'-_-'-_--' __ -'--_--'-__ "'--_-'-__ '--~_'_ _ _'_ _ _"'"' HO-J[L_--' __ -:'I:::-:-_ _'__~~--'-----:-:-':-::--\"-"/I.. ~ 
o o.DDI o.OOZ 0.003 0.0011 0.005 o.DD' 0.002 O.OOJ o.fl(}11 (J.OflJ 

FIG. 3. The same as Fig. 2, for "f = 104 • 

II./flZ.r------,-----,--.----..,--

I 

/fl-z~t---~~.--~I~--~~--~ o o.Ofll 1l.0flZ 1l.003 Il.OOII 
7J. 

FIG_ 5. Angle spectrum d2Nqu/dwd~ for an irregular stack with a 
= 250 11 and b = 200011 at 'Y = 7500 and w = 20 keV. The dotted curve 
corresponds to the case ra = rb = 4.47%; the dash-dot curve to ra = rb 
= 14%; the solid curve to ra = rb = 70.7%. 
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~ ~ 
FIG. 4. The same as Fig. 2, for 'Y = lOs. 

, iii iii I 

' .. ~ 
.~ 

'" ',:...: "., 
'.~ 

".\ 
' .. ~ 

FIG. 6. Frequency spectrum dNqu[dw (quanta/keV-electron) 
for an irregular stack with a = 7 11 and b = 41011. The dotted curves 
correspond to ra = rb = 4.47%; the dashed curves to ra = rb 
= 40.8%; the solid curves without letters to ra = rb = 70.7%; the 
solid curve with letter a corresponds to the spectrum obtained by 
additive addition of the numbers of the quanta from all plates; the 
solid curve labeled b corresponds to additive addition of the num
bers of quanta from all the boundaries. 
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r=7Sflfl r=7SflUfl 

FIG. 7. The same as in Fig. 6 for it = 250 and b = 200. The dash-dot 
curves correspond to the case ta = tb = 14.0%; the solid curves with 
letter c correspond to the case of aregular stack. 

is sufficiently irregular (for example, at i:a, i:b> 40%), 
the frequency spectrum becomes equalized and in the 
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region 20-50 keY it differs very appreciably from the 
spectrum of the regular medium (see Fig. 7). 

All the foregoing, of course, is in full agreement with 
the general analysis presented in the preceding section. 
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