
Excitation of paramagnetic impurities by a tunneling electron 

Yu. M. Ivanchenko and A. A. Lisyanskil 

Danets Physico-technical Institute. Ukrainian Academy of Sciences 

(Submitted June 25, 1973) 
Zh. Eksp. Teor. Fiz. 66, 293-305 (January 1974) 

The additional current produced in a metal-dielectric-metal system by interaction of the electrons 
with a disordered system of paramagnetic impurities is calculated. It is shown that the specific 
constants of this interaction can be determined by investigating the singularities in the dependence of 
the differential conductivity on the voltage. The self-energy contributions connected with the inelastic 
tunneling are analyzed. 

Study of the interaction of electrons with paramag­
netic impurities has led to an explanation of the nature of 
the zero-point anomalies in tunnel junctions (see, 
e,g., [1,2]). It is typical that in all the studies devoted to 
this question they considered the case of an isolated im­
purity, A very interesting result is that the contribution 
to the tunnel current from the paramagnetic impurity 
depends in oscillating fashion on its location in the junc­
tion[3]. The fact that the period of the oscillations is 
close to the atomic period is cause for some suspicion, 
inasmuch as in the real situation the impurities have a 
random distribution and this raises the question whether 
their averaging over the distribution leads to a signifi­
cant change in the order of magnitude of the quantities. 
We therefore consider here the case when the impurities 
are randomly distributed in one of the junctions of the 
electrode and in the region located in the immediate 
vicinity of this electrode. In addition, we assume that 
the impurity concentration is large enough to establish 
ferro- or antiferromagnetic ordering between the im­
purities via indirect exchange. This case has not been 
considered in the past (with the exception of the case of 
ferromagnetic metals[4]). It appears that the reason is 
that ordering removes the characteristic temperature 
logarithm. Nonetheless, as will be shown below, tunnel­
ing also makes it possible to obtain sufficiently detailed 
information in this case on the interaction of the elec­
trons with the impurities and on the specific constants of 
this interaction, 

The action of impurities on a tunneling electron 
proceeds via two channels: 1) "dressing" of the elec­
trons (the current connected with this channel makes it 
possible to investigate the dependence of the electron 
self-energy part on the frequency); 2) inelastic tunneling 
with excitation of the impurity; this tunneling has a 
threshold character (it appears at ev > u, where v is the 
voltage on the junction and u is the internal field). 

It is important to emphasize that the impurities inside 
the metal and in the barrier region play different roles. 
The impurities inside the metal "prepare" the electronic 
states, i.e., they lead to the "dressing" of the electrons. 
The role of impurities inside the barrier, on the other 
hand, reduces to the possibility of acquiring magnetic 
moment and energy from the tunneling electrons, so that 
the total spin moment and energy in the electron-plus­
impurity system remain the same before and after the 
tunneling. 

It is interesting to note that the different contributions 
to the current, connected with the "dressing" and with 
inelastic tunneling, can be separated by investigating the 
conductivity components that are even and odd in ev. 
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GENERAL RELATIONS 

We assume that the conduction electrons in a tunnel 
junction consisting of two bulky metals and an insulating 
interlayer interact in exchange fashion with the para­
magnetic impurities. It is easy to write out the Hamil­
tonian for such a system in the approximation of Zener's 
"s-d exchange" model [5] : 

[ p' I ] H~ S dr¢,+(r) 2m 6 .. ·+U(r)/) ... --;: .Ea"'Sj/) (r-rj) ¢,.(r), (1) 
J 

where I/!~(r) and <ps(r) are respectively the operators for 
the creation and annihilation of a particle with spin s at 
the point r, U (r) is the potential of the barrier, J is the 
exchange-interaction constant of the spin S of the impur­
ity and of the electron spin, a are Pauli matrices, and n 
is the electron concentration. 

Following the method used in [6 ,7], we break up the 
Hamiltonian into a Hamiltonian for the left-hand and 
right-hand electrons and the interaction Hamiltonian. 
In addition to the usual interaction term HTo = AO + Ail 
of [8], there appears here an additional term connected 
with the tunneling due to the paramagnetic impurities: 

HTl~A,+A,+~- ~ .ES dr¢,,+ (r)a,,,Sj/) (r-rJ)¢ •. ,(r)+H.c. 

The operators <PsI and <Psr are those parts of the total 
operator <P s which are responsible for the annihilation of 
the electrons in the left-hand and right-hand metals. 

Just as in [6], we obtain for the tunnel current from 
the left-hand metal to the right-hand one: 

~ 

I~-2elm S dtc i"'i8(t)<[AT+(t),AT(O)]_). (2) 

here the angle brackets denote averaging over the equili­
brium ensemble of the noninteracting subsystems, AT(t) 
is the operator A.;, = A~ + Ar in the interaction represen­
tation, and 8(t) is the Heaviside function. 

Let us examine in greater detail the kernel of the 
integrand in (2). We express it as a sum of three terms: 

i8(t)([AT+(t), AT(O) l->~Koo(t)+[Kto(t)+K01(t) ]+K II (t). (3) 

The term with Koo leads here to the usual tunnel current 
loa. The increments containing KIa and KOl are due to the 
imposition of different tunneling mechanisms (elastiC and 
inelastic), The contribution made to the current by these 
terms will be designated 1100 Finally, the last term in 
(3) leads to a purely inelastic contribution to the tunnel 
current with excitation of the impurity (II)' The currents 
110 and III are due to taking the interaction of the elec­
tron spins with the impurity spin system into account. 
For a direct calculation of all these currents it is useful 
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to make use of the possibility of constructing the Fourier 
component of the function K(t) by analytically continuing, 
into the upper half-plane, the temperature Green's {unc­
tion KC (wo) (see, e.g., [6J), considered on the imaginary 
time axis from i{:l to -i{:l (wo runs through a discrete set 
of values Wo = i· 2rrn/{:l, where {:l is the reciprocal tem­
perature). With this in mind, we determine the expansion 
of the Green's function ~(t) in a Fourier series: 

K'(t) ~ W' Le-iw"K'(wo)~ +<TA T+(t)A7(0) >, 

-iii 

K' (000) ~ J dt e'··'K' (t). 

" 
Here T is the operator of ordering along the imaginary 
axis -{:l :::: it :::: {:l. The current I is now given by 
1= -2eImKc (ev + iii), where 6 = +0. 

Calculating K~o(wo), we obtain 

K,"'(wo)~ LIT,.I' LSpG,(q, wo')GI(p, 000'+000)' (4) 
p" 

Here GZ(p, wo) and Gr(q, wo) are the single-particle 
electron Green's functions of the right-hand and left­
hand metals in the absence of tunnel interaction between 
them; the trace is taken over the spin variables; the 
frequency Wo takes on only the odd values i(2n + 1)1T/{:l; 
the matrix element is 

The wave functions {x~} are the single-particle elec­
tronic states with the aid of which the breakdown into 
left-hand (-) and right-hand (+) electrons is made possi­
bleo 

We consider below the case of an asymmetrical tunnel 
junction, which is realized, as a rule, in experiment. 
The point is that even if the junction consists of identical 
metals, present-day technology results in considerable 
asymmetryo It is therefore of interest to consider the 
extremely asymmetrical case when the impurities are 
located in only one of the metals (for the sake of argu­
ment, in the left-hand metal) and in the insulator region' 
directly adjacent to this metal. The Green's function for 
the right-hand metal is therefore independent of the spin 
variables, and the Green's function of the left-hand elec­
trons can be conveniently subdivided into two parts, one 
spin-dependent and another spin-independent: 

(5) 

where T is the direction of ordering of the impurities. 
For the functions Go(p, wS) and GI(p, wo) there exists a 
spectral representation [9 

G ( )-J dOl Ao,,(p,w) 
0,1 p, (Uo - 2n tllo-(t) , 

(6) 

where the integration is carried out along the real axis 
and the spectral intensities Ao and Al on the integration 
contour satisfy the inequalities Ao > Al > O. 

Carrying out the summation with respect to Wo and 
with respect to the spin orientations in (4), with the 
representations (5) and (6) taken into account, we obtain 
for 100 the expression 

lco~2e ))Tp,l' J~: A,(q,w)Ao(p,w+ev)[f(w)-f(w+ev)]. (7) 

Here f(w) is the Fermi distribution function and Ar(q, w) 
is the spectral intensity of the Green's function of the 
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right-hand metal. It is important that the self-energy 
effects are contained in the spectral intensity Ao(p, w)o 

Before we calculate the quantities Ao, let us consider 
the interference and inelastic contributions to the tunnel 
current. For the calculation it is necessary to use the 
easily proved relation 

KOI"(w+ili) ~K,,'(w-ill), (8) 

which enables us to consider only the term with KI~' It is 
easy to find that 

K" (000) = ~-' LAp, Sp G, (q, 00: -000) ~(p, w:)G, (p, 00:), 
p q Wu 

where 

The function ~(p, w~) is the self-energy part of the elec­
trons in the left-hand metal and is determined by the 
equation 

~ J d~dl~(r, t; ~.l)G,(~ t; r', t'), 
(9) 

where the double angle brackets denote averaging over 
the impurity disposition. 

After summing over the frequencies and spin orienta­
tions in the expression for Kro(wo) and after analytic con­
tinuation to real frequencies with allowance for (8), we 
obtain the following relation for the interference contri­
bution to the tunnel current: 

(10) 

Here ~ 0 and ~ I are connected with ~ by the relation 

To calculate the inelastic contribution III to the tunnel 
current, it is necessary to calculate KI , for which we 
can obtain the expression 

J 2 1 
K,,(t)~(-;) i(EJ dr,dr,ll(r,-rJIl(r,-r,.) 

j,l'l. 

XSp<TSj(t) as,hp(r" t) 1jJ+ (r2, 0) >, ~a'G, (r" 0; r" t). 

This relation can be greatly simplified by expressing Kll 
in terms of the spectral intensities and the self-energy 
parts of the electrons. To this end it is necessary to 
generalize the definition of the Green's function in the 
following manner: 

G,(l1', U) ~-i<TPIjJ,(r, t) ~'..(r', t')/<TP). (11) 

The operator P is determined by the equation 

P~exp {-i[S(1)U(1)]}, (12) 

where summation or integration is carried out with 
respect to the repeated variables (j, r, t) over the entire 
range of variation of these quantities (from 0 to -i{:l with 
respect to time), ioeo, 

S°(1)~s,"(t), ua(1)~ Ut(t); 
-iii 

S(1)U(1)= LJ dtSj(t)Uj(t), 
, 0 

u0' (t) is an arbitrary vector function of the time and of 
J 

the number of the impurity. 
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Using the definitions (11) and (12), we can easily re­
duce Kll to he form 

K!I(t,t')=-iSPVW-2)[M(2)+i W<5(2) ]~(1I)G,(H')oG,(1'1). (13) 

In this relation it is not necessary to integrate with 
respect to the times t and t', and the quantity V(1 - 2) is 
given by 

J 
V (1-2) = - - <5 (t-I,) <5 (r-rj) ; 

n 

The self-energy part ~ (11) is taken prior to averaging 
over the impurity distribution, and M(2) is determined 
with the aid of the variation derivative 

<5 
M(2) = i ,m (2) In<TP>. 

The functional ~, which enters in (13), satisfies the 
equation 

i(11') = <5{1-1') V(i-2)M(2)0 + i <5~(1I) G,(I1')oV(2-1'). 
W(2) 

Using this relation and the equation for the Green's func­
tion Gl , we obtain the following expression for Kll after 
averaging over the disposition of the impurities;l) 

K!I(t, t')=-i Sp~(1IlC,iI2)C",-1(2t')C,(1'1). (14) 

Here, as in (22), the times t and t' are free, GOl is the 
Green's function of the left-hand metal without allowance 
for the interaction with the paramagnetic impurities, and 
~ is given by (9), i.e., it is taken after averaging over 
the disposition of the impurities. 

The relation for Kll can be further simplified by using 
an approximation customarily employed in tunneling 
theory, wherein the Green's function of the semi-bounded 
metal is replaced by the corresponding Green's function 
of the bulky metal2 ) 0 This procedure must be carried out 
after changing over to the p, q representation with the 
aid of the states Xp and xq. We actually arrive in this 
case at the picture of an interaction between two metals 
that are on different "sheets" of three-dimensional 
space. This circumstance was first noted by Kulik and 
Yanson [10]. As a result of this approximation we obtain 
for Ku the relation 

il" (filo) = ~-I ~. ICp.I' Sp C,(p, filo')L(q. fil o+"'.,') ....... 
w,,' ,Il,q 

x[ 1 +C, (q, filo+filc') L (q, filo+filo') J. 
(15) 

Summing over the frequencies in (15) and continuing 
this expression analytically to the real axis from the 
upper half of the complex Wo plane, we reduce the ex­
pression for III to the form 

11\=-2e L,ICp.I'S ~:I A,(p,fill)[/(fill)-j(fill+ev)] 
P •• 

, { . S dfil, [L(q, fil,+ev+i<5)A,(q, fil,)L(q, fill+ev+io) 
x~p Im~(q, fill+ev+!/) -- -L.' 

2n fill ' eV-ul,-hll 

-m5(fil,+ev-fil,) 1m ~«I, fil,+i6)A, «I, fil,) 1m ~(q, fil,+i6) ]}. 
(16) 

SPECTRAL INTENSITIES AND ELECTRONIC SELF­
ENERGY PART 

In the calculation of the spectral intensities one should 
distinguish between two cases: 1) ferromagnetic order­
ing of the impurity spins, 2) antiferromagnetic ordering, 
In the first case. the spectral intensities are connected 
with the self-energy parts by the relations 
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Im~+(q,fil) 

Ao.,(q, fil)= - ( "1'" ( ))'+(1" ( ). (tl-b-·le..;:...J+ ql(i) lli..:;..J-t- Q,(U -

ImL(q,fil) 

«"-s-l\eL(q,fil)r+(Im~_(q, fil)" 

where ~± = ~o ± ~1' 

(17) 

The second case can be obtained from the first by 
putting ~1 = 0 in (17). The reason is that we confine our­
selves below to an impurity antiferromagnet model in 
which the impurities are located, with equal probability, 
on arbitrary lattice sites of the main metal. It is as­
sumed here that the effective magnetic moment at each 
impurity site has a definite direction, but there is no 
correlation between the directions of the magnetic mo­
ments at different sites, so that the average value of the 
macroscopic magnetization without the magnetic field is 
equal to zero. More complicated models, which take into 
account the correlation of the directions of the magnetic 
moments of different impurity sites (and which usually 
lead to nontrivial structures, for example of the helical 
or umbrella-shaped type), call for a special investiga­
tion. Preliminary results show that the main contribu­
tion to the tunnel current is not sensitive to the type of 
antiferromagnetic ordering. 

The influence of ordering on the self-energy of elec­
trons was considered by Kondo [11], He has shown that in 
the case of antiferromagnetic ordering the effective mass 
of the electron on the Fermi surface is increased by 
several times (in comparison with the case of free elec­
trons) as a result of interaction with the impurities, As 
noted by Abrikosov [12] the correction to the electron 
energy considered by Kondo is the first large term of a 
certain series containing powers of IN(O) (In u/D)/n, 
where N(O) is the state density on the Fermi surface, 
u is the energy of the impurity in the effective molecular 
field due to the indirect exchange, and D is a cutoff en­
ergy (D - J.l, where J.l is the Fermi energy). We shall 
therefore present below an expression for ~ in which 
are summed all the terms containing, in each given 
order in the constant J, the highest degree of the large 
logarithm In(u;D). It is assumed here that the inequali­
ties 1/j3 « u« D are satisfied, The calculation of ~ can 
be formally carried out in two stages. In the first stage, 
account is taken of all the large terms without averaging 
over the random disposition of the impurities. As a re­
sult we get 

i:(r, r', u,o) = L,Ui(r,r',filo)=o(r-r') L:0(r-r')~i(filO), (18) 

with 
J [1+0't, (/'t,-1] 

~,(filo)= --1If + . 
211 l-Ag(ll+filo) l-Ag(ll-fil.) 

(19) 

Here A = 2JN(0)/n = 3J/2Il, M is the modulus of the 
average value of the impurity spin (8i ) = TiM, Tf = 1), 
and the function g(u + wo) is given by 

':: /(fil)+V(ll) 
g(ll+fil,) = J dfil , 

~"'" (J}-ll--Wo 
(20) 

where v(u) is the Bose distribution function. Since it is 
assumed that j3u » 1, we can put v(u) = 0 in (20). The 
logarithmic divergence in (20) is cut off in the usual 
manner at w = D. 

During the second stage of the calculations it is 
necessary to carry out averaging over the random dis­
tribution of the impurities. In this case it is assumed 
for the case of ferromagnetic ordering that the mean 
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values of the magnetic moments of the impurities are 

~r:~~:d::u~:t~:: ~~~~~i~~: ~fe~o~~ls~~et;j :~:U:~~~n 
that they are oriented with predominant probability in a 
certain direction 'r, but such a generalization does not 
lead to qualitative differences, and the small quantitative 
differences are immaterial to us. As to the antiferro­
magnetic ordering, in this case averaging will also be 
carried out over the directions of the vectors 'ri' When 
averaging over the impurities, we sum all the diagrams 
(except the intersecting ones) that make a relative con­
tribution of the order of (polr1 (po is the Fermi radius 
and l is the mean free path, see t 13]). The result for ~ 
can then be represented in the form 

~(11')=c f dT; W. f dri R i (11'), (21) 

where c is the impurity concentration, Wi is the probabil­
ity of orientation of the magnetic moment of the i-th .im­
purity in a certain direction, and the quantity Ri(ll') 
satisfies the equation 

Ri(11') =Ui(11') +ui(H)G(I2)R(21'). (22) 

Here G(ll') is the averaged Green's function. 

Inasmuch as in this case, as seen from (18), Ui con­
tains two /) functions as factors, the equation can be 
solved relative to Ri' This circumstance is connected 
essentially with the choice of a local-type HamiltOnian 
(1) for the s-d interaction model. The solution for Ri is 

Ri(r, r', wo)=o(r-l)6(r-ri)~i(wo)[1-~i(WO)G(O, wo)]-'. (23) 

Using relations (19), (21), and (23), we obtain after sim­
ple transformations an expression for ~ on the real w 
axis: 

~o (w+io) =F (w) -P' (-w), ~,(w+io) ~F(w) +F' (-w). (24) 

The function F(w) is equal to 

F(w) = - /LS[ 1-Ag(U+W)- inA(f(u+w) +S/2) ]-', (25) 
2 

where L is the number of impurities per electron 
(L = c/n). In the derivation of (25) we used the fact that 
M = S when {3u »1. 

It is seen from (25) and (24) that at w < u the quantity 
Re ~ leads to a significant renormalization of the elec­
tron spectrum, and the damping is due entirely to the 
potential scattering by the impurities. When w > u, the 
renormalization of the electron energy decreases with 
increasing w, and an additional contribution appears in 
the damping due to the inelastic scattering, inasmuch as 
in this frequency region the excess energy is already 
sufficient for the excitation of the impurity. 

CONDUCTIVITY OF TUNNEL JUNCTION 

The relations for the spectral intensities and for the 
self-energy make it possible to calculate the dependence 
of the differential conductivity of the junction (a = dI/dv) 
on the applied voltage. Substituting all the necessary 
quantities in expression (7), we obtain after simple 
calculations the correction LW 00 that must be introduced 
in the conductivity as a result of the "dressing" of the 
electrons in the left-hand electrode: 

a f of(y) 
i'l.aoo=ao- dy-.-Re~o(ev+y), ,l rly 

where ao is the conductivity without allowance for the 
influence of the self-energy effects (aoo = ao + LWoo). 

(26) 

In the derivation of (26) we used the approximation 
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proposed by Herman and Schmid[14] for the matrix ele­
ment Tpq: 

ITp.12=ITI'(1+a £P:£.), 
where a = dpo"'J-L14w; d is the width of the barrier; w is 
the energy height; ITI2 is the square of the matrix ele­
ment IT pq 12 averaged over the angles of the vectors p 
and q taken on the Fermi surface, and ~ is the electron 
energy reckoned from the Fermi surface. The integral 
in (26) can be determined by an interpolation procedure 
that takes into account the smooth variation of the 
logarithm. The result for t!t.a 00 can be then expressed in 
the form 

L'l.a,o(ev) aLi.S 
---= --.,-[ II', (ev) - II', (-ev)], 

00 oJ 

(27) 

{[ A (ev+n)'+1'8']' [ S ]'}-' 
X 1-Z-ln D' +n').' /(ev+u)+Z- ' 

where E> is the temperature and y is a constant (y ~ i). 

The interference contribution to the conductivity can 
be calculated by using relation (10). Without going into 
details of this calculation, we note only that the result, 
from the point of view of the dependence of t!t.ao on ev, 
coincides with expression (27) accurate to terms of 
order u/D. The contribution t!t.a10 turns out to be of the 
same order as t!t.aoOo However, t!t.a10 is of opposite sign, 
so that the interference contribution cancels out the self­
energy effects. This equality of form and the cancellation 
of t!t.aoo and t!t.alO always occurs when the momentum de­
pendence can be neglected in the electronic self-energy 
part, i.e., when this dependence is very weak in the 
vicinity of the Fermi surface. The cancellation is only 
partial, so that the order of magnitude remains the same 
as in (27), but a case of overcompensation is possible, 
and then the resultant sign is the opposite of that of t!t.aoo. 

The result depends essentially on a comparison of two 
quantities of the same order, alJ-L and ~q/lTpql2 (~q 
and ITpq 12 are averaged over the angles on the Fermi 
surface). This phenomenon seems to explain the poor 
reproducibility of the antisymmetrical part of the con­
ductivity t!t.aa(ev) with respect to voltage in different 
samples made from the same experimental batch. As 
seen from the foregoing, slight changes in the shape of 
the barrier can lead to noticeable changes of t!t.aa(ev). 
We emphasize that the antisymmetrical part of the 
conductivity t!t.aa is the same, accurate to terms of 
order u/D, for ferromagnetic and antiferromagnetic 
ordering. 

Figure 1 shows a plot of t!t.aa against the relative 
variable x = ev/u at the different E> for u/D = 10-2, 
A = ± 0.2, S = 1, and S = 5. As seen from the figure, t!t.a a 
has a rather sharp anomaly in its behavior in the vicinity 
of the pOint x = 1. In addition, the anomaly has a rather 
complicated variation with changing S. At small S, as 
seen from (27), the anomaly is proportional to S. On the 
other hand, if S >>In (D/E», it decreases in proportion 
to S-1. The curves plotted in Fig. 1 for S = 1 satisfy the 
condition that S be small, but S = 5 falls in a region 
intermediate between the two limiting cases. It is also 
important to note that the sign of t!t.a a changes with the 
sign of the interaction constant, and it is typical that the 
effect becomes more strongly pronounced (other condi­
tions being equal) for the antiferromagnetic constant of 
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FIG. I. Dependence of /';aa (in relative units) on x: curves: I) A 
= -0.2, S = I; 2) A = -0.2, S = 5; 3) A = 0.2, S = I; 4) A = 0.2, S = 5. The 
symbols a, b, and c on this and all other figures correspond to aiD of 
IO-S , 10-4 , and 10-3 , respectively. 

the interaction between the impurities and the elec­
trons3 ) • 

Let us estimate now the contribution made to the 
conductivity by the term Ill' This term produces a cOn­
ductivity increment ~a s which is symmetrical in the 
voltage. It is convenient to carry out the analysis in two 
limiting cases, weak localization of the d electrons, such 
that the quantity D, which has the meaning of the width of 
the d-band, satisfies the inequality D »LSJ. We can 
then neglect in (16) the term containing the double inte­
gration with respect to the frequencies, and the result 
for ~a s takes the form 

L\,as(ev) 4Da' J of(y) 
---"'-- dy--Im~,(ev+y). 

a, nit' () Y 
(28) 

Since the quantity ~as is connected only with ~o, 
which is the same for any type of ordering, ~a s is in­
sensitive to the character of the ordering in this limiting 
case, as is also ~aa' The integral in (28) can be evalua­
ted with the same accuracy with which formula (27) was 
derived, i,e" 

L\,as(ev) 4Da' 
---'" --LSA['V,(ev) + 'V,(-ev)], 

a, 3nlt 

where 

[ S]{[ I-.. (ev+U)'+1'8']' 'V,(ev)=n" f(ev+u)+T i-TIn D' 

+:It',,' [I (ev+u) + : n -'. 
We note that the existence of known dispersion rela­

tions between the imaginary and real parts of ~ leads in 
this case to an integral relation of the same type between 
the symmetrical and antisymmetrical parts of the con­
ductivity. From (28) and (26) we easily obtain 

J dQL\,as(Q) 
L\,a,(ev) = X Q-ev' 

where I X I ~ 1J./4Q1D. As to the sign of the coefficient X, 
it depends on whether the interference term overcom­
pensates for the self-energy term or not. If not, then 
X> O. 

Figure 2 shows a plot of ~a s against the relative var­
iable x at different temperatures, for u/D = 10-2, 
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FIG. 2. Dependence of 6.as (relative units) on x (0 ~ JLS); curves: 
I-A = -0.2, S = I; 2-A = -0.2, S =5; 3-A = 0.2, S = 5; 4-A = 0.2, S = I 
(the values of this function are magnified 10 times). 

A = ± 0.2, S = 1 and S = 5, As seen from this figure, the 
region where ~a s changes substantially is located near 
the same values of the voltage at which an essential non­
monotonicity appears also in ~aa' However, since ~aa 
has different signs at opposite current directions, it will 
add up with ~a s in one case and be subtracted from it in 
the other, and consequently one of the quantities can be 
readily distinguished from the other in experiment. 
Another characteristic feature of this case is that the 
effect is much weaker for the ferromagnetic coupling 
constant. 

We consider now the case of strong localization of the 
d electrons, when the inequality D « LSJ is satisfied. In 
this limit, the principal term is the one containing the 
double integration with respect to the frequencies. After 
a number of transformations, we obtain 

L\,as(ev) '" 2 a' JdY (- a/(Y») {[Rc ~+(y+ev) 1'+[Re ~_(y-ev) I'}. (29) 
0 0 ~l2 rl y 

It is easily seen that in this limit the function ~as(ev) 
is sensitive to the type of ordering, For ferromagnetic 
ordering, after an approximate calculation of the integral 
in (29), we get the expression 

L\,as(ev)/o''''(aLS,,)'['V,'{ev)+'V,'(-ev) I. (30) 

For antiferromagnetic ordering we have 

L\,os(ev) /0,,,,,1/, (aLS,,) '[ 'V, (ev) - ,¥, (-ev) 1'. (31) 

Figure 3 shows, for comparison, plots of (30) and (31) 
for A = -0,2. Similar plots are shown in Fig, 4 for 
A=+0.2. 

In conclusion, we estimate the orders of magnitude of 
the obtained quantities, For typical tunnel junctions, 
QI reaches 30, The limiting impurity concentration at 
which ordering usually sets in is on the order of several 
percent, so that the product QlL reaches values on the 
order of unity, and consequently the corresponding con­
tributions to the conductivity can reach several percent. 
With modern techniques for the study of tunnel conduc­
tivity, one can register junction-conductivity changes on 
the order of ~ 10-3_10-4 of the main conductivity. Thus, 
observation of the considered effects entails no notice­
able difficulty. Much more important is a clear-cut dis­
crimination between the even and odd parts of the con­
ductivity, The point is that the derived expressions also 
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FIG. 3. Plot of !;,.as (relative units) against x (D ~ JLS) at A = -0.2: 
I, 2-at S = I; 3, 4-at S = 5. Curves I and 3 are for ferromagnetic order­
ing and curves 2 and 4 for antiferrorriagnetic ordering. 
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FIG. 4. Dependence of !;,.as (relative units) on x (D ~ JLS) at A = 0.2; 
I; 3-at S = I, 2, 4-at S = 5. Curves 3, 4 are for ferromagnetic ordering 
and curves I, 2 are for antiferromagnetic ordering. The values of the 
function 4 are decreased by a factor 10. 

contain admixtures of a certain independence of the con­
ductivity on the voltage, owing to the change in the trans­
parency of the barrier with changing voltage. In all the 
calculations presented we have disregarded this depen­
dence in view of its monotonic character and very smooth 
variation, A characteristic scale for this dependence is 
a voltage on the order of J1./e. 

As seen from the derived expressions, the investiga­
tion of 60a and 60S enables us to measure the exchange-

144 Sov. Phys.-JETP, Vol. 39, No.1, July 1974 

interaction constant, the impurity spin, the energy con­
nected with the internal field, and the character of the 
ordering. 

The authors are grateful to V, G, Bar' yakhtar for 
useful discussions and interesting remarks, 

I)It is necessary to put U = 0 in (14), inasmuch as all the intermediate 
transformations have already been carried out, and U does not enter 
in the initial relation for K ll . 

2)This approximation was also used to obtain the corresponding ex­
pressions for 100 and 110 , 

3)The character of the ordering of the impurities in the metal is not de­
termined uniquely by the sign of the constant J, i.e., either ferromag­
netic or antiferromagnetic ordering is possible at either sign. The type 
of ordering is connected with more profound causes (for details see [12 J). 
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