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The high frequency properties of thin metallic plates located in a strong magnetic field parallel to 
their surface are investigated (the curvature of the electron trajectory r is much smaller than the 
mean free path I. It is shown that new cyclotron resonance frequencies appear in place of the 
"cutoff' resonant frequencies at d < 2r. These new frequencies correspond to the frequency of 
revolution of electrons in orbits with a diameter equal to the plate thickness d. The impedance has 
a logarithmic singularity at these frequencies. The magnetic field dependence of the impedance is 
investigated at various plate thicknesses. This yields a relation between the electron revolution period 
and the diameter of its orbit over the entire Fermi surface. 

1. In a magnetic field parallel to the surface of a 
conductor, under conditions of the anomalous skin ef­
fect, the interaction of the conduction electrons with 
the electromagnetic field is a multiple of the frequency 
of revolution of the electron in the magnetic field n. [ll 

For conduction electrons with an anisotropic, nonquad­
ratic dispersion law, n turns out to be different for 
different values of the projection of the momentum pz 
on the direction of the magnetic field. Therefore, only 
small groups of carriers can take part in cyclotron 
resonance, namely, electrons with the extremal fre­
quency of revolution n~, electrons near a limiting point 
of the Fermi surface [1 , and electrons the diameters 
of whose orbits are extremal. [2) Knowing the frequency 
of cyclotron resonance, we can determine the effective 
masses of the indicated conduction electrons. To obtain 
sharp resonance lines, it is necessary that the carriers 
be in the narrow skin layer many times during the time 
of free flight to, i.e., the radius of curvature r of the 
trajectory of the conduction electron in the magnetic 
field should be much smaller than the free path length Z, 
and the thickness of the conductor placed in the resona­
tor should exceed the diameter of the largest orbit of 
the electron. Upon decrease in the thickness of the 
sample d, the orbits of the "resonance" electrons 
cannot fit in the cross section of the conductor, and, 
due to scattering of the carriers by the boundaries of 
the sample (in the case of nonspecular reflection), a 
cutoff takes place of the resonance frequencies first ob­
served by Khaik'ln. [3) The method of cutting off of the 
resonant frequencies allows us to determine not only the 
extremal frequency of revolution of the electron in orbit 
in a magnetic field, but also the diameter of this orbit. 

The investigation of cyclotron resonance in thin con­
ductors allows us, as will be shown below, to determine 
the connection between the frequency of revolution and 
the diameter of the orbit for any cross section of the 
Fermi surface. We imagine that none of the orbits of 
the electrons with extremal effective mass is contained 
any longer in the cross section of the conductor. Then 
the frequency of revolution of the carriers that do not 
collide with the sample boundaries is a monotonic func­
tion of pz. In this case, electrons moving along the 
orbit with the least and the greatest diameters are "iso­
lated," and, in addition to the electrons close to a 
limiting point of the Fermi surface at resonance, elec­
trons will take part whose orbit diameter is equal to 
the thickness of the conductor, i.e., 

2r(p,) I p.~p,=d, 2r(p,) escD(p.)/eH, ( 1) 

where e is the electron charge, c the velocity of light, 
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H the magnetic field, and D(pz) the diameter in the 
direction of the Px axis of the cross section of the 
Fermi surface cut by the plane pz = const. The yaxis 
is directed along the normal to the surface of the plate. 

The impedance will have a singularity of the log­
arithmic type if the condition 

(j)=nQ(p,) (2) 

is satisfied, i.e., the cyclotron resonance at the new 
frequencies will have exactly the same character as the 
resonance due to electrons near the ltmiting point of the 
Fermi surface at w = nno. 

The resonance frequencies corresponding to the fre­
quency n 1 == n(Pl) and the frequency of revolution of the 
electrons near the turning point of the Fermi surface 
no will be separated if their difference on exceeds 
the collision frequency of the electron, i.e., 

DQ I 10612""1 0 - (Po-p,) »1. 
a p, p,~p, 

The condition of solvability of the resonance fre­
quencies can be represented in another way if we 
recognize that 

and the difference between PI and the value of the mo­
mentum at the limiting point Po can be set equal to 
Pl(d/r? in order of magnitude, where 2r=cDmax/eH. 
Then the condition toon »1 is equivalent to the condi­
tion r« d2 / 3Z1 / 3 and the resonance at the frequencies 
w = nn 1 will have the observed Singularity if 

d<2r<d'Iol"'. (3) 

For the determination of the connection of n(Pl) and 
D(Pl), it is necessary to obtain the set of curves Z(H) 
experimentally at various values of the plate thickness d. 
It is expedient to plot the resonance curves by fixing the 
value of the diameter D(Pl), i.e., at Hd=const. Then 
the resonance frequencies determine the frequency of 
revolution of the electron n(pz) in the orbit whose 
diameter is equal to D(pz)=eHd/c. Inasmuch as the 
quantity eHd/ c can take on arbitrary values, we can 
in principle determine all possible frequencies of 
revolution of the electrons on the Fermi surface in a 
magnetic field and find their connection with the di­
ameter of the orbit. 

The appearance of a new frequency of cyclotron res­
onance instead of the "cut-off" frequency occurs when a 
part of the orbits of the electrons with ne is still con-
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tained in the cross section of the conductor. However, 
cyclotron resonance at w = nne leads to the appearance 
in the impedance of a fractional-power-law singularity 
and not a logarithmic one, which complicates the sepa­
ration of the resonance frequencies corresponding to 
n l . For interpretation of the resonance curves, it is 
necessary to compare them with the experimental data 
obtained on bulk conductors. If the reflection of the elec­
trons from the boundary of the sample is close to specu­
lar, then the analysis of the experimental resonance 
curves becomes still more complicated, since the reso­
nance frequencies corresponding to ne do not disappear 
with decrease in d but are shifted and depend on the 
thickness of the conductor. [4,5J 

2. The complete set of equations for the determina­
tion of the surface impedance tensor that connects the 
electric field on the surface of a metal with the total 
current 

• 
E,(O)=Z .. S l.(y)dy, ( 4) 

o 

consists of the Maxwell equations 

f)2E" = _ 4nioo I ) 
ay' c2" f.l=(x,y, (5) 

p'=O (6) 

and the Boltzmann equation, which allows us to deter­
mine the electron distribution function f(y, p) and the 
electric current density J, assuming the high-frequency 
field E to be given. The electromagnetic field is as­
sumed to be monochromatic, and in Eqs. (4) and (5) and 
everywhere below, we mean by E and J the amplitudes 
of the field and the current. Using the condition of elec­
tric neutrality (6), we can find the electric field 
at any depth of the conductor and eliminate it from the 
expression for the electric current. 

In the linear approximation in terms of a weak elec­
tric field, the current density is determined by the 
value of the nonequilibrium contribution to the distribu­
tion function on the Fermi surface: 

J=(v'¥), 2e'H J 
(g) 50 -- g dt dp" 

, ch' (7) 
8=eo 

since the conduction electrons in the metal form a 
strongly degenerate Fermi gas. Here e(8fo/8E)>I!=f(y, p) 
- fa( E), fo( E) is the equilibrium distribution function of 
the carriers, Eo is the Fermi energy, and h is Planck's 
constant. 

The kinetic equation, linearized in terms of the weak 
alternating field E(y), 

f)'¥ (j,¥ 
(-ioo+llto) '¥ +v, --+ -~- = vE 

{jy vt 
(8) 

must be supplemented by the boundary conditions which 
take into account the character of the reflection of the 
electron from the boundary of the metal: 

'¥ (0; t', p,') <,>o=q, (t, p,) '¥ (0; t, p,) I,,<o+x[, (9) 

'¥,(d; t, p,) l,y<0=q2(t', p,')'l'(d; t', p,') l,y>0+x2, (9') 

where ql and q2 are the specularity parameters of scat­
tering of electrons by the boundaries y = 0 and y = d of 
the sample (these generally depend also on the angle of 
incidence of the electron on the surface of the conduc­
tor), and t is the time of motion of the carriers in the 
magnetic field, i.e., the phase on the orbit E=const, 
pz = const. The specific form of the collision integral 
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for the considered effects does not playa significant 
role and, for convenience in calculation, we have used 
the relaxation time approximation in Eq. (8). 

The change in the chemical potential of the reflected 
electrons Xl and X2 can be expressed in terms of the 
distribution function of the incident electrons, making 
use of the condition of vanishing of the normal com­
ponent of the current at the boundary of the conductor: 

«l-q, (t, p,» v. '¥ (0; t, p,) (l-S (v,»> 
Xt = (v,(l-S(v,»> 

X2= 
«l-g, (t', P:» vy'¥ (d; t', P:) S(v,» 

<v,S(vy ) > 

S(x)"" {1, x>O. 
0, x<O 

Under conditions of the limiting anomalous skin ef­
fect, an important contribution to the current is made by 
electrons which have a turning point in the skin layer 
(the point at which the component of the velocity normal 
to the surface vanishes). Therefore, the electrons 
which collide with both surfaces of the plate are unim­
portant, and we shall not take such electrons into ac­
count in the calculation of the electric field 

1,(Y)=(V,(t) qI,':.T(y,p,,+xexp{(A.{y,t)-t) (llto-ioo)J) 
l-q exp{T (y, p,) UUl-llto)l 

• 
lAB"", S dt' exp{(t'-t) (llto-ioo)}v(t')E(y+y(t')-y(t», 

A 

q"" {qt, q2}, X"" {x" X2}, 

(10) 

where T(y, pz) is the period of motion of the electron, 
and X(y, t) is the instant of reflection of the electron 
from the boundary of the sample. 

In what follows, it is very important that the electric 
field and the current are rapidly damped in the interior 
of the plate (away from the surface y = 0) and are sig­
nificantly different from zero only in a layer of small 
thickness o. This makes it possible to replace the up­
per limit of the integral in Eq. (4) by infinity and, ex­
tending E(y) and J(y) in even fashion along the negative 
semiaxis y < 0, we change over to the Fourier transform 

- ~ 

i,(k)=2 f1,(y)coSkydy, 
o 

e,(k)=2 SE,(y)coskydy. 
o 

We note that the analysis that follows is applicable 
only in the fundamental approximation in old. In this 
approximation, the Maxwell equation (5), after the 
transformation (11), takes the form 

(11) 

k' (k)+2 f)E,(O) - 4nioo. (k) (12) e, -----;;y- - -c2- I , .' 

Small terms proportional to EIl(d) and 8E Il (d)/8y are 
omitted. Therefore, in the calculation of the impedance 
with the help of Eqs. (7), (11) and (12), we should limit 
ourselves only to the asymptotic expression when the 
ratio of the skin layer depth 0 to the conductor thick­
ness d tends to zero, and retention of the next terms of 
the expansion in the parameter o/d is an exaggeration 
of the accuracy. 

Separating out the components in (10) whose change 
with the magnetic field has a resonance character, we 
obtain the local connection of the Fourier components 
of the electric current and field: 

i,(k) =a .. (k)ev(k). (13) 
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It must be noted that the exact account of the boundary 
conditions (9) and (9') leads to an integral connection 
between ~J..I.(k) and EII(k). Azbel' and Kaner have 
shown[I,6 that in the solution of the problem of finding 
the shape of the cyclotron resonance lines in the case 
when the reflection of the electrons from the surface 
of the sample is not close to specular, account of the 
integral term in the formula for the electric field 
leads to the appearance only of an unimportant factor 
of the order of unity in the expression for the surface 
impedance. The exact solution of the corresponding 
integral equation, obtained by Hartmann and Luttinger ,[7] 

and by Melerovich,[S] completely confirmed this result. 
Thus, in the analysis of the shape of the cyclotron res­
onance line, when the scattering by the surface of the 
plate y = 0 is almost specular, we can limit ourselves 
to the local connection between the Fourier components 
of the electric current and field, which simplifies the 
problem considerably.1) 

The asymptotic expression for aJ..l.II(k) for kr» 1, can 
be represented in the following fashion: 

k 2ne'H {+SP'd d q,(p,)A • .(p,) 
0.,( )=-h'k p,e(2r(p,)- ) 1 () C'T ( » 

C _Po -q2 P: exp w} 1-. Pl 

+S" ) ) A., (p,) } 
+ dp,e (d-2r(p, 1-exp (iw'T (p.» . 

-p, 

(14) 

Here T(pz) = 21T/n(pz)' Tx(Pz) is the period of motion 
of the electron along the open orbit broken up by specu­
lar reflections from the surface of the plate: 

A ( )= v.(p"O)v,(p"O) 
., p, tv.'(p"O)t (15) 

the prime indicates differentiation with respect to t and 
the start of the measurement of t is placed at the point 
of stationary phase, i.e., Vy(Pz, 0) = O. 

The second term in Eq. (14) takes into account the 
contribution to aJ..l.II(k) of electrons which do not collide 
with the boundaries of the sample and which are re­
turned many times to the skin laye r by the magnetic 
field; the first term, which is sensitive to the character 
of the reflection of the carriers by the surface of the 
conductor, takes into consideration the contribution 
made to the electric conductivity by electrons which 
collide with the boundaries of the sample y = d and 
which return many times to the skin layer at almost 
specular reflection. 

It is easy to find the Fourier component of the electric 
field EJ..I.(k) from Eq. (12) for the case of a local coupling 
between jJ..l.(k) and EJ..I.(k) and then, making use of the 
definition (4), we obtain the following expression for 
the impedance: 

8iw" 
z.,= ---I B., -I (k)dk, 

c' o 

• 4niw 
B.,(k)=k 6 •• - --;;Z0.' (k). 

(16) 

Reducing the tensor kaJ..l.II(k)=wJ..l.II=const(k) to the 
principal axes and carrying out integration over k, we 
obtain an explicit expression for the diagonal com­
ponents of the impedance: 

Z = _ 16niw (_ 4niw w ) -'/. 
~ - ~, 

3)'3 c' c' 
(17) 

where wJ..l. are the prinCipal values of the tensor WJ..l.II' 
the determination of which is clear from Eq. (14); the 
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choice of the cube root in Eq. (17) is determined by the 
requirement that the real part of ZJ..I. be positive. 

3. We shall now make clear the character of the 
resonance singularity of the impedance, which is due to 
electrons whose orbit diameter is equal to the thickness 
of the plate. Assuming the condition (3) to be satisfied 
and using the central symmetry of the Fermi surface, we 
transform the Fourier components of the tensor aJ..l.v(k) 
to the following form: . 

o.,(k)= 2n:'H { S' a.,(p,)q,(p,)dp, 
ch k p,_'p 1-q,(p.)exp(iw·T,(p,» (18) 

711+6;, 
+ S a,,, (p,) dp, \ 

p, 1-exp(iw'T(p.» j' a,,, (p.)=A.,(p.)+A.,(-p.). 

If the magnetic field H is close to the resonant value 
HI, for which the relations (1) and (2) are satisfied, then, 
in the' calculation of aJ..l.v(k) , one can use the saddle-
point method. Here, as it is not difficult to see, a log­
arithmic singularity develops in the second component 
of the expression for aJ..l.v(k) at W=nnl and to- oo • The 
first component in the formula (18) can have a singu­
larity when to- 00 only as q2 - 1. However, this singu­
larity can arise only under purely random circumstances 
if nn l for some number n is a multiple of the extremal 
frequency of revolution of the electron, n X == 21T/Tx. 
Consequently, this singularity is not connected with the 
contribution to the first component of aJ..l.v(k) in the im­
mediate neighborhood of the upper limit of integration, 
and the first term in the expression for (18) gives a 
finite contribution to aJ..l. v(k) at w = nn l for arbitrary to. 
It is easy to establish this fact by representing the 
period of motion of the electrons Tx(pz), for cross 
sections with a diameter close to the thickness of the 
plate, in the form of a function T(pz) and orbit diame­
ter 2r(pz) of these electrons in the bulk sample: 

T,(p,)=T(p,) {1-2. [1 __ d_]"'}. (19) 
n 2r(p,) 

Expanding T(pz) and r(pz) in this expression in power 
series in PZ-PI, we obtain 

{ 2 1 2 8r(p,) 1 'f, '/ } T,(p.) ""T(p,) 1--;- dap:- tp.-p,t', 

i.e., the period Tx(Pz) changes very rapidly near the 
point PI, so that the derivative oTVopz is proportional 
to Ipz-PI I-1/2. 

Thus the electrons which collide with the boundaries 
of the sample do not make a contribution to the con­
sidered resonance and the specularity parameter q2 
drops out of the final formulas. For the resonant part 
of aJ..l.II(k) , we have 

ie' H a .. (P,) [( a ) ] 
o.,(k)=- ch'k -w:;-ln T- 1 tl+i1 , 

1 T(p,) 1 d 
1=--·-----

2nn to n I' 

H-H, 
tl=-­

H, 

(20) 

If the symmetric tensor aJ..l.II is reduced to diagonal 
form and Eq. (17) is used, we get the following expres­
sion for the impedance: 

\ 

4'I'n'l, b h (nw') 'I, ( a ) 'I, 2-'1 a,. (P,) > 0 

31'3 .--; 11 a.(p,) "a 

R.= 4'I'n'I, h (nw') '1'1 a 1'/' _'I, au(p,) (21) 
--- - -- 2 --<0 

3 ec H a.(p,) , a 
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X ~--A-- - -- p n'/' h (nO)') 'I, I a I 'I. -'f,. 

• 3J13 ec H a.(p.) , 

P~ln[ (a/~-1)'il'+1']-"', O<b.-1. 
(22) 

a.(p.)/a>O 

a.(p.)/a<O· 

The impedance is minimal at 6.= 0; the phase relations 
(relation between the real part of the impedance Rj.L 
and its imaginary part Xj.L) at resonance, as is seen 
from the expressions (21) and (22), depend significantly 
on the sign2 ) of aj.L(P1)/a. 

If we construct resonance curves with fixed D(P1), 
then the shape of the curve Z(d) close to resonance is 
also described by Eqs. (21) and (22), in which we must 
replace a/f3-1 by unit, and take 6. to mean 
(d-dres)/dres, by virtue of the condition Hd= const. 

It is interesting to consider the case in which two 
resonant fre9.uencies 0 1 and O2 , are close, so that 
€1 = (01-02)/01 is small in comparison with unity. Here 
the shape of the resonance curve is determined not only 
by the mean free path of the electrons but also by the 
parameter €1. In a thin plate, such a situation is realized 
if the cross section PZ=P1 determined by Eqs. (1) and 
(2) is close to the cross section with the extremal effec­
tive mass for some resonance number n, or is close 
to the limiting point of the Fermi surface. 

In weak magnetic fields l > r »d, when the frequency 
0 1 is close to the frequency 0 0 , of revolution of elec­
trons near the turning point, the expression for the' high­
frequency conductivity tensor takes the following form:3 ) 

ie'll a, (Po) 1 { T-9!! . (d/r) '+T+9!!} 
(J,(k)~----=-- In +In--'----'----

2ch'k nYx(po) 9!! (d/r)'+r-9!! T+9!! (23) 

where 
1 f}'T(po) 

x(Po)~-2T( ) -f}-'-' p, p, 

1 f}T(po) / -­
T ~-T --- 2¥x(po), 

o f}p, 

2nn(1-il) ~O)T(po) 

and, for definiteness, we assume K(Po) >0, T>O. 

The effective mass of the conduction electrons 
m*(pz) generally does not have an extremum at the 
limiting point of the Fermi surface and the resonance 
at frequencies that are multiples of 0 has a logarith­
mic character. However, at certain orientations of the 
magnetic field, vanishing of 8m* /8pz is possible in 
principle for pz = po and instead of a logarithmic singu­
larity in the impedance, there is a fraction-power-Iaw 
singularity, as is usual for resonance with electrons 
having an extremal effective mass. Therefore, in the 
case of expansion of the period of revolution of the elec­
tron in a magnetic field, T(pz)' in a power series in 
Pz-Po, the linear and quadratic terms are retained, i.e., 

T(p,) ""T(po) [1+2Tl'X(Po) (p,-Po)+x(Po) (p,-Po)'], (24) 

The shape of the resonance curves, as is seen from 
Fig. 1, depends in significant fashion on the parameter 
T, which takes into account how slowly the effective mass 
of the charge carrier changes with pz near the limiting 
point of the Fermi surface.4 ) 

If the principal term in the expansion (24) over the 
entire interval (P1' Po) is the linear term, Le., 

T::t>(d/r)', 
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(25) 

b 

12 13 I, 12 

I, IJ 
0 0 

H,/H Rz/IRol 

'11 j 
.do 

OL------'~--'-----Ll---_ 

FIG.!. Dependence of the real part of the impedance Rz' referred to 
IRo I, on the magnetic field in the region of magnetic fields I > r »d. a) 
Total width of the resonance peak /::"0 "" T (d/r)2 , in the middle of it the 
relative value of the impedance is of the order 12 "" T'/ 3. The width of the 
deeper of the minima near the frequencies n, and n° is of the order 
12 "" T'/3 . The width of the deeper of the minima near the frequencies 
n, and no is of the order /::,., "" /::"2 "" 'Y and their depth is I, "" T'/3. 
1n-4/3 b -, T (d/4)2], 12 "" T'/31n- Yz b -, r (d/r)2]. b) The resonance 
curve has a more complicated structure in this case. The total width of 
the peak /::"0 "" (d/r)4 , for H,/H "" I + /::"0/2; the ratio Rz/ IRo I is of the 
order 12 "" (d/r)2/3. In the region of order /::,., "" r2 close to the frequency 
n" the ratio Rz/ IRo I"" I., < 12 , where I, "" (d/r)8/3, In-4/3 (1/ T). The 
width of the peak /::"2 near the frequency no is also of the order of T2 , 
and its height is 13 "" T '/3. The additional narrow peak of width /::"3 "" 'Y 
has the height 14"" r'/3, In-'/3 (r2 /'Y). c) The symmetry of the fine struc­
ture of the peak is opposite to what is shown in Fig. I a. The total width 
of the resonance peak /::"0 "" (d/r)4 at H, /H "" I + /::,. 0/2; the impedance 
takes on the value 12 "" (d/r)8/3 . The shape of the additional minimum 
near the frequency no actually does not depend on the presence of a 
neighboring resonance frequency n" i.e., its width is /::"2 "" 'Y Yz, and its 
depth 13 'Y4/ 9 . The minimum near the frequency n ,is deeper than in 
the case when n, is not close to no, its depth is I "" (d/r)8/ 3 , In-'/3 
X [(d/r)4/-y] and its width /::,., "" 'Y. 

then the relative change in the frequency (01-00 )/00 is 
of the order T(d/r)2 and to be able to obtain the reso­
nance frequencies 0 1 and 0 0 , the condition 

T(d/r)'::t>1 (26) 

must be satisfied. For T- 1, this expression is identical 
with the condition (3). 

Substituting the expression (23) for the conductivity 
in Eq. (17), we can easily calculate the impedance, 
which is determined by the following expression: 

16n'/' h (nO)') 'I, (JlX(P ) ) 'I. 
Z,~-.;;..--- __ _ __ 0_ ""11']1-'" 

3J13·2'1. ec H a.(po) 

X (1+~)exp[i(-~+~(1-S))] (27) 
311']1 2 6 ' 

{ il'+1' }'{' 
l']=ln [2Tfd/r)'-il]'+1' ' s~signl']. 

Analysis of this formula shows that the resonance peak 
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has a fine structure: in the middle of the interval (nl' 
no) the relative depth of the minimum of the impedance 
Zz/I Zo I is of the order of -,1/3 (here Z is the impedance 
in the absence of the magnetic field) and there are deep 
minima of the impedance in narrow regions with relative 
width of the order of y, close to each of the frequencies 
n 1 and no. The shape of the resonance curve Rz(H} is 
shown schematically in Fig. 1a. 

This curve can be realized only when the parameters 
T and d/Z satisfy the condition 

T;}> (d/I) ''', 

which becomes evident if we rewrite the inequalities 
(25) and (26) in the following equivalent form: 

d/r:t,=,r2~r~rl "" (Tid') 'I,. 

(28) 

We now trace out how the shape of the curve varies 
with increase in the magnetic field, assuming the in­
equality (28) to be satisfied. For r- rl, when the linear 
term in the expansion of the period (24) becomes of the 
order of the quadratic, the qualitative form of the curve 
Zz(H} does not change. With further increase in the 
field, Le., for r« r2, the square-law term becomes 
fundamental in the expansion (24); this term also de­
termines the total width of the resonance curve, which 
is of the order of E=(d/r)4. 

Omitting the cumbersome term for the impedance, 
we show the schematic form of the dependence Rz(H} 
in Fig. lb. In contrast with the preceding case, the 
width of the resonance peaks close to the frequencies 
n 1 and no is determined by the parameter r, and 
not T. There is still one more narrow peak with width 
of the order of y inside the resonance peak, close to 
the frequency no. 

If the parameter T is so small that the inequality (28) 
is reversed, Le., if 

(eq) 

then the linear term in the expansion of the period (24) 
does not play any significant role and the parameter 
falls out of the formula for the impedance everywhere: 

z, = 16~'~ (l''''(Po) ) '10 (nw') "1),/'(£'+1;')-'1. 
3l'3 ~ ~(pJ H 

{ i ( £l'6-~-1;l'0+~)} Xexp -.- n+Arctg ; 
3 £l'Il+~+1;l'6-~+o,n6' 

8 
0<0,-1, 6=l'~'+l', £=n+2Arctg 1+llIe' 

=ln I 1+6le-8 I. 
I; 1+6le+8 

8=2( (0+~)/2e]"', Arctg(x/y)'='arg(y+ix) 

(29) 

Figure 1c shows qualitatively the resultant dependence 
of Rz on the magnetic field. As is seen from the figure, 
the resonant frequencies n 1 and no are resolvable 
upon satisfaction of the condition E »y, which is equiva­
lent to the following: 

d~r~ (d'l) '1,. (30) 

In the region of stronger magnetic fields, when r-d, 
the cross section pz = PI can be as close as desired to 
the cross section on which n(pz} has an extremum. For 
0< [2r(Pe)-dVd« 1, the electron orbits with diameters 
greater than 2r(Pl) do not fit within the thickness of the 
conductor. However, when w is a multiple of n e , reso­
nance does take place, since the frequency is very close 
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o 
. FIG. 2. The resonance peak of the real part of the impedance in the 

region of magnetic fields 0 < [2r(Pel - d] /d «I. The total width of the 
peak is D.o "" (n[ - nel/ne and its depth is 12 "" D.o 2/3. The depth of the 
minimum of the impedance near the frequency n[ is of the order of 
1 [ "" D.o 2/3 In -4/3 D.o /"( and its depth is D.[ "" "(. The absence of an addi­
tional minimum close to the frequency ne is connected with the fact the 
electrons with diameter of orbit 2r(Pel are not contained in the thickness 
of the sample. 

to the frequency of electrons moving along orbits with a 
diameter of the order of the thickness of the plate. The 
formula which describes the behavior of the impedance 
close to resonance under the condition Hd = const is 
identical with the formula (27) if we make the following 
substitutions in the latter: 

z, .... z., a,(po) .... a,(p,), 
'" (po) .... '" (p,), 

e .... I(Qi-Q,)/Q,I, £ .... £-n, 

~ is determined by the relation 21Tn(1-~)=wT(Pe)' 

If I nl-ne/nel «y, the form of the resonance curve 
is identical with the form of the curve at resonance at 
the extremal frequency in bulk samples, i.e., at 
2r(Pe) < d. The resonance curves corresponding to 
I (n1-ne)/ne I »y are shown in Fig. 2. 

4. In addition to the electrons that do not collide 
with the boundaries of the sample, those electrons can 
also take part in cyclotron resonance which are re­
flected in almost specular fashion from the surface 
y=d, the period of motion of which TA is extremal.[5l 
It is easy to establish this fact by analyzing the first 
component in the expression (14) for O'iJ. lJ , which is a 
resonant one if the condition 

wT, (p,') =2nn, {)T,(p,) 1/' --0 
apz pz=pOz 

(31) 

is satisfied. It is also easy to calculate the resonant 
part of the impedance Z J1. by using the saddle-point 
method. The expression for Z iJ. turns out to be the 
same as in the case of resonance in bulk samPrles with 
electrons having an extremal effective mass: Il 

16n h ( l'"" )'" {i ( Y6-s~ )} z.=-=- -- 6'I'exp -- n+sal'ctg _ ;(32) 
3l'3 ec a.(p,O) 3 l'6+s~+b,n6 

1 {)'T,(p,O) 
0<0.-1, x,= 2 op,' / T,(po), 

6= Y ~'+y', wT,(p,O) =2nn(1-~), (33) 

_ 1 (T,(P'O) +(1 ») 'Y- -- --- -q, . 
2nn to 

However, the shape of the resonance curve in thin plates 
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is determined not only by the mean free path of the elec­
trons, but also by the specularity parameter q2 and the 
thickness of the sample, inasmuch as TA(P~) depends 
on the relation between d and the radius of curvature 
of the orbit of the electron in the magnetic field r(p~). 

In conductors with the number of conduction elec­
trons of the order of one per atom, almost specular re­
flection of the charge carriers should be expected if the 
angle of incidence on the surface of the sample is small, 
i.e., where r(p~) »d for resonant electrons or 

0< 2r(p,') -d ¢:1 
d . (eq) 

For r(p~) »d, the period of motion of the .carriers 
along an open orbit, broken by specular reflections from 
the surface of the plate TA(pz), is connected with the 
period of motion along this same cross section of the 
Fermi surface in the bulk sample T(pz) by the follow­
ing relation: 

1 ( 2d ) 'I, 
T,(p,)=--;;: r(p,) T(p,). (34) 

. The expression for the parameter y, which character­
izes the form of the resonance curve, takes the form 
(after consideration of the relation (34)): 

'Y=_1_[ T(p,') (~)'I' + (1-q2) ]".. "rd +(1-q,), 
2nn nt, r(p,") I (35) 

For observation of cyclotron resonance, the satisfaction 
of the condition 

pr:tJ/H (i-g,) ] ¢:1. (36) 

is necessary. In this case, cyclotron resonance already 
occurs in the weak field region, when the radius of 
curvature of the trajectory of the electron r exceeds 
not only the thickness of the sample, but also the free 
path length Z; however, it is less than the quantity 
Z2/d.[SJ The relations (31) and (34) determine the reso­
nance values of the magnetic field. 

In the region of magnetic fields [2r(p~)-d]/d«1, 
when the diameter of the orbit of the resonance elec­
trons is close to the thickness of the sample, we can 
use the expression (19) for TA(pz) and for y we have 

1 [ r ] 'Y=- -+(1-q,) , 
2nn I 

(37) 

i.e., the condition for observation of cyclotron resonance 
is of the form 

[r/I+(l-q,) ]¢:i, (38) 

and the resonance frequencies and resonant values of 
the magnetic field are determined by the relations (31) 
and (19). Here the values of pz for which TA(pz) and 
T(pz) have an extremum are generally different, and if 
the orbit of the electron with extremal T(pz) no longer 
fits in the plate, then the given resonance frequency is 
cut off. Both TA(pz) and T(pz) reach their extremal 
values only on the central section pz = 0 of the Fermi 
surface. The shift of the resonant value of the magnetic 
field Hres relative to its value in the bulk sample H;'es 
can be determined with the help of the formula (19): 

(eq) 

Here the shape of the resonance curve at frequencies 
that depend on the thickness of the plate will be de­
scribed by the expression (32) if its width is much less 
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than the shift of the resonance frequency, i.e., 

[r(0)/I+(1-q,) ]¢:[ (2r(0)-d)/dJ"'. 

We note that ,the phase relations are essentially 
different, depending on whether there is a maximum of 
a minimum in the period of the motion of the resonance 
electrons. In a thin plate at 0 < [2r(O)-d]/d« 1, the 
second term in the expression (19) for TA(pz) changes 
much more rapidly than the first and we have, with a 
sufficient degree of accuracy: 

1 8'r(0)18p,' 
x,,;:::: - n [d(2r(O) -d) r'J 

i.e., the form of the extremum TA(O) is determined 
only by the character of the change in the diameter of 
the Fermi surface near the c'entral cross section, while 
the relations between Rj..L and Xj..L in the bulk sample 
depend on the sign of a2m*(pz)/ap~ on the central cross 
section of the Fermi surface. 

KhaTkin and Edel'man[4J, observing the cyclotron 
resonance in a bismuth film, discovered that with de­
creasing the magnetic field, when the maximum diame­
ter of the orbit of the electron exceeds the thickness of 
the film, the resonance frequencies were not cut off but 
were shifted, depending on the relation of rmax and d, 
i.e., the resonance occurred on electrons of the central 
cross section, which were reflected almost specularly 
by the surface of the film. The deviation of the parame­
ter of specularity q2 from unity leads, as we have shown, 
to a broadening of the resonance peaks of the impedance, 
which is also observed experimentally. 

In a recently published paper by Volodin, Edel'man and 
KhaTkin,[lOJ cyclotron resonance was observed in a thin 
plate of bismuth at nonextremal cross sections of the 
Fermi surface. As the authors observed, the amplitude 
of the resonance peaks of the impedance is approxi­
mately an order of magnitude smaller than in the case 
of resonance on electrons of the central cross section 
of the Fermi surface. This result is in complete agree­
ment with ours. As is seen from Eq. (21) and (22), the 
cyclotron resonance on electrons of the central cross 
section, in which case the fractional-power-law singu­
larity is observed in the dependence of the sample 
impedance on the magnetic field. 

The experimental study of the shape of the resonance 
curve at "cutoff" of the resonance frequency, and also 
the study of cyclotron resonance at the frequencies men­
tioned above, is obviously a laborious problem. However, 
the obtaining of the non-extremal characteristics of 
the conduction electrons with the help of these investiga­
tions is very important for selecting the model of the 
electron electric spectrum and as a check on the as­
sumptions lying at the basis of this model. This applies 
primarily to the transition metals, for which the as­
sumed model of the Fermi surface is quite specific.[12,13J 

I)The case of almost specular scattering of the electrons by the surface 
y = 0 is a special one. Here the principal contribution to the current is 
made by electrons which collide with the surface of the sample, as a 
result of which the resonant component has the form of a small addition 
to the impedance. The solution of this problem in the case of considera­
tion of cyclotron resonance in bulk specimens under different limiting 
conditions is given in the work of Meierovich ["] and Zherebchevskii 
and Kaner. [9] Corresponding consideration of the dependence of Z(H) 
in a plate, which was studied in the present paper, can be carried out 
completely analogously (see Footnote 2). 
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2)lf the scattering of the electrons by the surface of the plate y = 0 is 
nearly specular, then calculations similar to those given in [S ;9] show 
that upon satisfaction of the inequalityyoTr« (I - q,)« I In nto, 
the resonant contribution /:; Zres to the impedance is proportionai to 
In2!3 [(OI/Jl- I) /:; + i ')']; if the scattering is still closer to specular, then 
(1- q,) «yOTi, then /:; Zres -In [(OI/Jl- I) /:; + i ')']. Thus the 
result in this case is not qualitatively changed - the resonance, just as 
for nonspecular reflection, has a logarithmic character. The length of 
this paper does not permit us to consider this problem in any further 
detail. 

3)The velocity of an electron at a limiting point is parallel to the magnetic 
field and therefore only the components of the conductivity tensor 
0ik) and the impedance Zz have a resonant character. 

4)For brevity, we only give the curves Rz(H). Making use of Eqs. (17) 
and (23), we can easily obtain similar relations for XiH). The statement 
made in certain publications (see [I,ll ]) that the impedance has a frac­
tional-power-Iaw singularity at cyclotron resonance with the electrons 
close to the limiting point of the Fermi surface is the result of a misun­
derstanding, inasmuch as the vanishing of the Jacobian of the transfor­
mation to spherical coordinates p, 0, '" at '" = 0 was not taken into con­
sideration. 
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