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The problem of the interaction of a relativistic electron beam with a plasma located in a weak 
(H 2 :.:;; no n magnetic field is considered. It is found that the main cause of the collective slowing 
down of the beam may be its instability against helicon excitation. It is shown that the interaction of 
the beam with the helicons is described with sufficient accuracy by a quasilinear theory (the 
nonlinear processes involving helicons are unimportant in the problem under consideration). The 
relaxation length for a beam steadily injected into the plasma, as well as the spectrum of the 
helicons excitable by the beam, is found in the framework of the quasilinear approximation. 

1. INTRODUCTION 

In the present paper we investigate the question how 
. the presence of a magnetic field in a plasma influences 

the nature of the relaxation of a relativistic electron 
beam. The formulation of the problem is connected 
with the problem of the beam heating of a dense plasma 
confined in the transverse direction by walls l ) • The 
magnetic field in this case only helps to decrease the 
thermal conductivity, and is relatively weak, being such 
that 

(1 ) 

We shall henceforth restrict ourselves to such fields. 

Let us first recall the results pertaining to the relax
ation of a beam in a plasma without a magnetic field[2). 
The relaxation mechanism is connected here with the 
excitation of Langmuir oscillations because of the beam 
instability2) . The generation of these oscillations during 
the steady injection of the beam into the plasma is 
balanced by their transfer to the long-wave part of the 
spectrum, owing to induced scattering by the plasma 
ions. The estimate for the relaxation length of the beam 
has the form 

1 __ C ~.!!!:..(~)2( Eo,,)'. 
(iJp no M T mc· 

(2) 

Here no and nb are the plasma and beam densities res
pectively, wp ",(4lTnoe2/m)1I2 is the electron plasma fre
quency, T is the plasma temperature, and Eb is the 
energy of the beam electrons. 

Let us now turn to the case when the external mag
netic field is different from zero. It is not difficult to 
verify that for (3 > 1 the magnetic field has a slight 
effect on both the dispersion law for the Langmuir osci
llations interacting with the beam and on the probabili
ty of scattering of these oscillations by the ions. There
fore, in a weak magnetic field (fl > 1) the relaxation 
pattern can change only because of the excitation of 
these oscillations, which are absent when H = 0. From 
among these OScillations, we investigate helicons in 
detail in the present paper. As will be shown, their role 
in the relaxation process can turn out to be decisive. 

It follows from the linear theory that helicons are 
excited by the beam less intensely than Langmuir 
oscillations. Nevertheless, under conditions when the 
energy density of the Langmuir oscillations is limited 
by the nonlinear processes, the helicons, and not the 
Langmuir waves, may be responsible for the relaxation 
of the beam (this circumstance was pointed out in [3). 

In conformity with the foregoing, we shall solve the 
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relaxation problem in the following fashion: we shall 
first consider the interaction of the beam with the heli
cons, completely neglecting the influence of all the 
other (including the Langmuir) oscillations, and then 
determine more accurately the conditions of applica
bility of this approach. 

In the second section of the paper we investigate 
qualitatively the formulated problem. An estimate is 
obtained there for the relaxation length of the beam in 
the plasma due to helicon excitation, and it is shown 
that the relaxation amounts mostly to the scattering of 
the beam electrons, the energy losses being relatively 
small. Furthermore, it is established that the beam
helicon interaction can be described with sufficient 
accuracy in the framework of a quasi -linear approxima
tion. In the third section we obtain an analytic solution 
to the quasi -linear problem of the steady injection of a 
beam into a plasma. In the final (fourth) section we 
formulate the conditions of applicability of the results 
of the paper. 

2. QUALITATIVE INVESTIGATION 

In a magnetic field Hz, the condition for a beam 
electron to interact with a wave is of the form 

(3 ) 

where n '" wHmc2/Eb is the cyclotron frequency for rel
ativistic electrons. This relation follows from the laws 
of conservation of energy and momentum in an elemen
tary event of emission (or absorption) of a wave by a 
particle. The quantity tlwk is then the energy of the 
emitted wave, while linn is the change in the "trans
verse" energy of the particle upon emitting the wave. 
As is evident from the dispersion relation for helicons. 

(4) 

the phase velocity of these waves in a weak magnetic 
field (wH « wp) is low compared to the velocity of light. 
Therefore, for helicons, a Cerenkov (n = 0) resonance 
with the beam electrons is impossible. If, however, n f 
0, then under the resonance condition (3) we can neglect 
the quantity Wk. In other words, the change in the "trans
verse" energy of the particle is large compared to the 
energy loss due to the emission of the wave. This means 
that the action of the helicons on the beam leads to near
elastic scattering of the particles. 

Let us derive the law of variation of the angular 
spread Ali of the particles for the case of steady injec
tion of the beam into the plasma. For this purpose, let 
us estimate the distance from the plasma boundary 
over which the energy denSity of the oscillations excited 
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by a beam with the angular spread tle attains a level 
substantially exceeding the thermal energy density: 

Here A is the Coulomb logarithm, Vgr is the component 
of the group velocity of the wave along the z axis, and 
Yb is the instability increment. For Yb, in turn, we have 
the estimate (see Sec. 3): 

Hence 

n, mc' kc 1 
1, ~ WH-;;;-E,QM' 

c no (DH 

z~A~--tl.e'. 
COp nb Wp 

(5) 

If the nonlinear wave-wave interaction is negligibly 
weak, then this relation can be simultaneously regarded 
as the dependence of the angular spread of the beam on 
the z coordinate. Thus, in the quasi-linear approxima
tion3 ) 

(6) 
where the quantity 

(7) 

is the relaxation length of the beam. 

Let us find the energy denSity Uh of the oscillations 
at a distance z from the plasma boundary from the law 
of conservation of momentum flux. At the entrance to 
the plasma, there are no oscillations, and the momentum 
flux of the beam electrons is equal to nbvbPb, where Vb 
and Pb are the electron velocity and momentum respec
tively. Taking into account the fact that the relaxation 
leads mostly to an increase in the angular spread of the 
beam, we obtain 

n,vbP,=n,v,p,[1-tl.e'(z) l+vg,k,~ 
Wk 

(wk and kz are respectively characteristic values of the 
frequency and the longitudinal component of the wave 
vector of the oscillations). It follows from this that 

(8) 

At a distance lh from the plasma boundary the energy 
denSity of the oscillations is comparable to the energy 
denSity of the beam, and the energy flux of the oscilla
tions, which is equal to v grU h' remains substantially 
less than the energy flux of the beam. i.e., the relative 
electron-energy loss tlE/(Eb - mc2) turns out to be 
small: 

tl.E ( WH)' mc' 
---~ - -%:1 
Et.-mc2 ffip Eb 

(9) 

(we have allowed for the fact that when 1::.8:::: 1 the beam 
excites oscillations with wave vector k ""a/Vb - a/c). 

Let us now estimate the effect of the nonlinear pro
cesses on the course of the relaxation. The computa
tion of the probabilities of these processes shows that 
the dominant process is the decay of the helicons: 

Wt=Wt,+Wtn "k=kl+kz, 

where wk is given by the formula (4). The increment 
Yh - h + h of the decay instability is equal in order of 
magnitude to wkUWH2 (see, for example/4l ). Using the 
expression (8), we can easily verify that Yh - h + h is 
comparable to Yb only at the final stage of the relaxa
tion (when tle - 1). Thus, we have shown that the impor
tant part of the relaxation process can indeed be describ
ed by the equations of the quasi -linear theory. The solu
tion of these equations is obtained in Sec. 3. 
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3. SOLUTION OF THE QUASI-LINEAR PROBLEM 

We shall consider the problem of the steady injec
tion of a beam into a plasma in the following formula
tion. We shall assume that the plasma, in which there 
is a uniform magnetic field Hz, occupies the half-space 
z > O. Into the plasma along the z axis is injected a 
monoenergetic relativistic (Eb - mc 2 ?: mc 2) electron 
beam of infinite extent in the transverse direction . .The 
beam-electron distribution function F(p, e, z) at the 
entrance to the plasma is specified in the form 

1 n, 
F(p, e,z) I,~o =~~I)(p-p,)lj)o(e) 

2:n; p,-
(10) 

(we shall assume, for SimpliCity, that the function <1>0(8) 
is a monotonically decreasing function - see the figure). 
Here and below we use a spherical system of coordi
nates (p, 8, cp-) in momentum space, the z axis being the 
polar axis of this system. 

We shall restrict ourselves to the investigation of 
beams with not too small angular spreads tl8, so that 
the excited instability can be regarded as a kinetic in
stability. As applied to the problem under consideration, 
this restriction can be written as follows: 

tl.8» ---"--_.1._ ( n kc)'J' 
no Q 

(11 ) 

Here kl is a characteristic value of the transverse (with 
respect to the magnetic field) component of the wave vec
tor. As will be shown below (see formula (28)), kl - ac-1 

tle- 2/3 • 

For the description of the relaxation process let us 
use the system of quaSi-linear equations: 

v cos e.!!!... = ~~ p2 (Dpp.!!!...+ ~D .. !!...) 
Bz p2 Bp Bp P Be 

1 B ( BF 1 BF) +---sin'S D .. -+--D,,- , 
p sin e Be B p p Be 

BWk BWk 
----=2"(,Wk • 

Bk, Bz 

(12) 

(13) 

We denote by Wk 0= Wk(z) the spectral energy density 
of the OScillations, and by v 0= v(p) the electron velocity. 
The components of the diffusion tensor DO'~ and the 
increment Yb of the instability are given by the following 
formulas: 

X Re A~n)'Ai") I) (wk-k,v cos e-nQ) dk, (14) 

( 1 B ) -, :; 2 2. Yb=4n e --0} eJ,lvaj.la..,lw=oo 
W Bw k 

·I)(wk-k,v cos e-nQ)dp. (15 ) 

Here a is the polarization vector of the wave and EJ1v is 
the permittivity tensor of the plasma. Furthermore, we 
introduce the notation 

1 2n (k.1.VSine ) 
Aln) =--f {awk+[v[ka]]J exp -in<p+i---sin<p d<p, 

~fuo Q 

where the angle cp in momentum space is measured from 
the direction of the vector kl. Using the explicit expres
sion for the polarization vector of the helicon, we obtain 
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( k' ) - 'j, ( nQ I k I ) A;n,= 1 + ---:-; . I n-- - +sin8J.' , 
k, k.l.v k, 

A ,n'=_A ,n,_l_~ 
oPsin e (Ok' 

(16) 

(17) 

where I n '= In(klVO-1 sine) is a Bessel function. 

Notice that the formulas (16) and (17) are valid only 
for n f 0, since in deriving them we neglected the quan
tity wk in comparison with nO. As to the terms with 
n = 0, they do not, as has already been noted in the pre
ceding section, make any contribution to the quasi
linear equations. 
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FIG. I. The dynamics of beam relaxation (the dashed curves repre
sent the initial distribution function); a) the initial phase of the relaxa
tion; b) the asymptotic phase. il80 is a characteristic value of the initial 
angular spread of the beam. 

With the aid of the formula (17) it is not difficult to 
obtain the following relations between the componen,ts 
of the diffusion tensor: 

It is evident from these relations that the angular spread 
of the beam increases much more rapidly in the course 
of the relaxation than the momentum spread. Therefore, 
the problem can be reduced to that of finding the angular 
distribution cI> (e, z) of the beam electrons: 

2 ~ 

<D ="'::I Fp'dp. (18) 
n, 0 

The equation for cI> is obtained by integrating (12) over 
p with allowance for the condition ilp/Pb « ile: 

v,coss~=-l-~sineD" I ~ (19) az p' sin e ae p~p, ae 
The boundary condition at z = 0 has the form 

<D(e, z) 1,~o=<Do(e), (20) 

The increment Yb of the instability is expressible up to 
terms of order wk/kzv in terms of the function cI> as 
follows4 ) : 

~~ In In, O<D ( k,v, ) 
X lAp 1' __ 6 --cos e+n de, 

ae Q, 
(21) 

11=_00 0 

where 0b '= O(Pb). 

To simplify the notation, it is convenient to go over 
to the dimensionless variables 

95 

1 no eWH C 
Z=----2- X' 

1t nb Wp Vb 

Q, 
k,=-~, 

Vb 
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In the new variables the system of quasi -linear equations 
assumes the form 

cos e ~ = __ 1_~_1_ 
ax sin S as sin e 

n'Q,,' IJ<D 
X ~ I -:;-:--:;---:;-::-16(~cose+n)d<'1']d1']-.-. i..J n' +1']' cos' e • de (22) 

01 ~. n'Q.' < O<D 
-= -l ~ I 6(~cosS+n)-dS (23) 
ax i..J 2n'+1']' cos's ae ' 

'1-=_<>0 () 

where 

( Tl'COS'e )'" n Qn= 1+--;;;:-- -;;In (TlSin8)+sinSJ,,'(TlSine). 

We shall obtain the solution to the system (22) and (23) at 
that stage of the relaxation where the angular spread of 
the beam is still small (ile « 1). In that case, however, 
ile may substantially exceed the initial angular spread 
ileo of the beam. 

Let us make the assumption, which will be confirmed 
by the result, that when ile « 1 the dominant contribu
tion to the right-hand sides of Eqs. (22) and (23) are 
made by the terms with n = - 1. This enables us to 
substantially simplify the basic system of equations: 

a<D 1 a 1 -I Q-.' a<D 
a;-=eaee 0 1+Tl'/TldTl ae, (24) 

!!.. = _ I Q-.' .!.... a<D (25) 
iJx 2+Tl' S ae' 

Here I is a fraction of the variables e, TI, and x, and, 
moreover, 

I(e, Tl, x)""I(~, Tl, x) II-,e."'-" 
The idea of the solution of the system (24) and (25) con
sists in the use of the large parameter A, which is equal 
to the logarithm of the ratio of the energy density of 
the oscillations excited by the beam to the thermal
noise energy denSity (see(6, 7)). As can be seen from 
Eq. (25), 

( Q-.' I 1 a<D ) I=ITexp --- --dx , 
2+1']' 0 e ae 

(26) 

where IT is the spectral energy denSity of the thermal 
noise. Since the integral occurring in the exponent is 
very large (a:A), the quantity I as a function of TI has a 
sharp peak at the point TI = TIm corresponding to the 
maximum of the function Q-f/(2 + Tl2). Thus, we can set 
with sufficient accuracy 

(27) 

For e « 1 the quantity TIm is easily found analytically: 

(28) 

Substituting the formulas (27) and (28) into Eqs. (24) and 
(25), we obtain 

a<D 1 a a<D 
-=4-'/'_-S'I'I/1-
ax e ae as' 

'al/1 1 iJ<D 
Tx=-"4 e ae-I/1. 

(29) 

(30) 

The system (29) and (30) possesses an integral that 
allows us to find the spectrum of the oscillations from 
the known distribution function cI>(e, x): 

1 a 
<D-<Do+4'I'_-S-'''I/1=o. (31) s as 

Hence 
• 

I/1=4-'I'e'/' I (<D o- <D) S de. (32) 
o 
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In order to find the function <P (B, x), we note that the Eqs.i 
(29) and (30) are similar in structure to the system of 
equations considered by Ivanov and Rudakov[7]. Using 
this similarity, we can assert that for those values of 
B at which the quantity >It substantially exceeds the 
thermal level, the derivative 1»/aB will inevitably be 
small (1)>/aB ooA- I ). Let us denote the limits of that 
region where the noise level is high by B_ and B+. Then 
for B_(x) < B < B+(x) the function <P has the form of a 
plateau. For all other values of 8, it is, as is evident 
from the formula (31), equal to <Po. Denoting the height 
of the plateau by P(x), we obtain 

{ 
11>0(8), 8<8_(x) 

11>(8,x)= P(x), 8_(x)<8<8+(x). 

11>.(8), 8>8+ (x) 
(33 ) 

The height of the plateau is determined from the condi
tion of particle-number conservation: 

2 '0 
P(x)=--JI1>08d8. (34) 

8/-8_' ._ 

With allowance for the formulas (33) and (34), the ep .es
sion (32) for the spectral function >It assumes the f. .n 

The equations for 8_ and 8+ are obtained by integrat
ing the relation (30) over the intervals 8_ - 0 < 8 < B_ + 
o and 8+ - 0 < B < 8+ + O. Taking into account the fact 
that the logarithm of the ratio of the energy denSity of 
the oscillations excited by the beam to the thermal
noise energy denSity is, to a good degree of accuracy, 
equal to A, we obtain 

dlL 1 2" 
---;;;;-= 4A 6_[8/_8_,J 11> 08d8-11>0(8_)], (36) 

,-

The boundary conditions for 8_ and 8+ have the form 

where Bo is the point at which the function 81»0/a8 has its 
minimum. 

Analysis of Eqs. (36) and (37) shows that in the course 
of the relaxation the function 8_(x) decreases, while 8 (x) 
increases. A qualitative picture of the relaxation is 
shown in the figure. At the initial stage, the behavior of 
the quantites B_ and 8+ strongly depends on the details 
of the function <P o( 8), and cannot be found analytically. 
However, the asymptotic behavior of the relaxation 
turns out to be quite simple: 

8_=8' exp (- :~O) x) , 8+ = ( ~)'" . (38) 

Here 8* is a constant depending on the specific form 
of <Po(8). The solution (38) is applicable when x » A.:l8~, 
i.e., when 8_« .:l80 and 8+» .:lBo. In the asymptotic 
regime, instead of the formula (35), we can use a simpler 
expression for the spectral function 

(39) 

Hence we obtain the following formula for the oscilla
tion-energy flux S in dimensional variables: 
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s _ 9,4'1,( OlH \' ., • '" -.20 -;; nbme vb8+ . (40) 

In conclusion, let us note that the obtained solution 
to the quasi-linear problem completely agrees with the 
qualitatiVe estimates made in Sec. 2. 

4. DISCUSSION OF THE RESULTS 

Let us enumerate the conditions which should be ful
filled before the beam-relaxation mechanism considered 
in Sec. 2 and 3 could be realized. 

We solved the problem, neglecting helicon attenua
tion by the plasma electrons and ions. The attenuation 
by the ions is exponentially weak for waves whose phase 
velocity is higher than the thermal velocity of the ions: 

Ol. OlH k,e (0 T ) 'f, -::;;;;e;c___.--> -
k Olp Olp M' 

Substituting into this expression the value kz - nb/ c, 
we obtain the following limitation on the magnitude of 
the magnetic field: 

. (Eb) '''( T) 'I. 
COH>OOp -- -- • 

me' Me' (41 ) 

Notice that helicons can be excited by the beam even in 
the case when the inverse inequality obtains. In this 
case, though, there should be a buildup of oscillations 
with large kz, which are responsible for the high-order 
resonances (kzc = nn, n > 1). The problem of beam 
relaxation in such a situation is solvable in exactly the 
same fashion as was done in Sec. 2 and 3. 

The logarithmic decrement of the attenuation by the 
electrons for helicons interacting with the beam is 
given by the following formula: 

1.=- (~)'I' Ol'~~ (.!..-)'f'. 
2 k OlH m 

Comparing I'e with the increment (5) of the beam insta
bility, we obtain the condition allowing us to neglect 
the damping by the electrons during the entire relaxa
tion process: 

~>(~)2( me' )'(3,)'" (42) 
no ffip Eb me 

(we have used the explicit expression for the wave vec-
tor of the most unstable oscillations). 

Under the conditions being considered the beam, to
gether with the helicons, of course excites in the plasma 
Langmuir oscillations as well. Let us discuss the ques
tion as to when we can neglect the influence of the Lang
muir waves on the variation of the angular spread of the 
beam and on the spectrum of the helicons excitable by 
the beam. For this influence to be negligible, it is natur
ally necessary that the relaxation length lh (see (7)) 
be less than the quantity l (see (2)): 

(43) 

Besides the condition (43), there is still a limitation on 
the initial angular spread of the beam: 

'" 80> (lhll),". 

Let us explain the meaning of the last limitation. In the 
"Langmuir" mechanism of relaxation the angular spread 
of the beam varies according to the following lawS): 

(44) 
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On the other hand, in relaxation on the helicons we have 
t.e -(z/lh)1/2 (see (6)). It can be seen from the relations 
(6) and (44) that the relaxation of a beam with a small 
angular spread (t.eo < (lh/l)1/3) takes place in two stages. 
In the first phase (right up to t.e - (lhil)1I3) the angular 
spread increases because of the interaction of the elec
trons with the Langmuir oscillations; in the second phase 
because of the interaction with the helicons. If, on the 
other hand, t.eo > (lh/l/13, then the first phase of the 
relaxation is unimportant. 

It should be noted that even in the case when the angu-
1ar spread of the beam is due to the excitation of helicons 
the relaxation with respect to energy can take place 
owing to the Langmuir oscillations. The correspond-
ing estimate for the energy losses of the beam is of 
the form 

Mo< (lhfl) 'I. 

1'180> (Zhll) 'I, • 
(45) 

This result is easily obtainable from the relation con
necting the energy loss due to the excitation of Lang
muir oscillations with the magnitude of the angular 
spread of the beam [2]: 

d "'E 
dz Eb Z "'8' 

(46) 

(The cause of the difference between this formula and 
the result obtained in [2] is indicated in the footnote to 
the formula (44).) 

Let us now show that under the conditions of inte.r
est to us we can neglect the nonlinear interaction be
tween the helicons and the Langmuir oscillations, We 
have in mind the decay process l - l + h, where the 
symbols l and h stand for Langmuir waves and helicons, 
respectively. The calculation of the probability of this 
process yields the following estimate for the increment 
of the decay instability: 

USing this estimate and the expression for the energy 
density of the Langmuir oscillations excitable by the 
beam (see[2]), 

( T )' M me' 1 
U/,,-,nbmc'l -- --

me' m Eb "'8' 

we can easily verify that the relation Yl _ i + h < Yb is 
automatically fulfilled. 

Let us make another remark about the interaction of 
the beam with the low-frequency oscillations in which 
the motion of the ions is important. As can be seen from 
the condition (3) for resonance, the z component of the 
wave vector of the wave interacting with the beam is 
bounded from below by the quantity Ob/c. Therefore, 
when 

T m ( Eb )' -:»- -
mc2 M mc2 

the inequality 

(47) 

which allows us to regard the motion of the ions in the 
oscillations as unmagnetized, is fulfilled, Furthermore, 
it is not difficult to show that for (3 > 1 the inequality 
(47) allows us to generally neglect the contribution of 
the ions to the dispersion relationS) . This means that 
under the indicated conditions, the low-frequency (ion) 
oscillations do not influence the relaxation of the beam. 
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In the present paper we have restricted ourselves 
to the investigation of the relaxation of a beam in the 
case when the magnetic field in the system is relatively 
weak ({3 < 1). It should, however, be noted that we used 
this limitation only where we discussed the possibility 
of neglecting the interaction of the beam with all the 
oscillations except the helicons. By itself, however, the 
helicon mechanism of beam relaxation may also prove 
to be important when {3 < 1, since all the limitations for
mulated by us are of the nature of sufficient conditions. 

In conclUSion, let us recall that all the results were 
obtained for the case of a beam that is unbounded in the 
transverse direction, Le., it is implied that the inequal
ity R » lh' where R is the beam radius, is fulfilled. In 
the opposite case (R < lh), the waves propagating in the 
radial direction leave the region of interaction with the 
beam before they have time to intenSify. However, the 
limitation R » lh can turn out to be unimportant if, 
because of the radial inhomogeneity in the plasma con
centration and in the magnetic field, the plasma column 
is a wave guide. For helicons, such a situation is easily 
realizable, the qualitative picture of the relaxation re
maining the same as in the case of the unbounded 
beam. 

The authors express their profound gratitude to D. D. 
Ryutov for useful discussions of the paper. 

I)The problem of dense-plasma confinement by walls has been con
sidered by Chebotaev et al. [I] 

2)To avoid any misunderstanding, let us note that we arc dealing here 
with an isothermal plasma, in which the buildup of ion sound is 
impossible 

3)Notice that the formula (6) makes sense only when t.IJ ~ t.IJ o, where 
t.IJ ° is the angular spread of the beam at the entrance to the plasma. 

4)From the formula (21) and the expression (16) for Ap(n) it follows, 
in particular, that an electron beam with a monotonically decreasing 
distribution function <I> does not excite oscillations that propagate 
strictly along the magnetic field. The situation changes if, instead of 
an electron beam, we take an ion beam. The quasi-linear relaxation of 
an ion beam has been investigated by Rowlands et al. [5] under the 
assumption that the oscillation spectrum is one-dimensional (k 1 = 0). 

S)The difference between this formula and the result 0[[2] (IlIJ-
(z/l)'!. ) is due to the fact that in [2] the spectrum of the Langmuir 
oscillations in the region k <: wp/ c is practically assumed to be iso
tropic. A more accurate investigation performed in[8] has shown that 
in fact the oscillations are concentrated in a relatively narrow region 
of k space. The estimate presented here has been written with allow
ance for this fact. 

6)Let us recall that we are dealing with an isothermal plasma, in which 
ion-sound vibrations are impossible. 
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