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The excitation of the monochromatic longitudinal oscillations of a plasma located in a magnetic field 
by a stream of oscillators-charged particles-that move through the plasma along the magnetic field 
with constant velocity, have the same Larmor radius, and are uniformly distributed over the 
azimuthal angle is considered. For "oblique" waves, the primary mechanism leading to oscillation 
saturation is the tuning out of the resonance between a wave and a particle as a result of the 
oscillation-field-induced variation of the beam-particle velocity component along the magnetic field. 
The saturation of oscillations propagating in a direction perpendicular to the magnetic field is due to 
the variation of the transverse velocity and the azimuthal angle of the beam particles. Estimates for 
the oscillation amplitude in the nonlinear regime are given for these cases. 

As is well known, various types of slow waves are 
excited during the passage through a plasma of a mono
energetic charged-particle beam of low density[1J. In 
the presence of a magnetic field, the oscillation excita
tion is most intense under the conditions of Cerenkov or 
cyclotron resonance for the beam particles. The non
resonant oscillations have a lower increment, and there
fore at the initial stage of the development of the insta
bility the monoenergetic particle beam excites a narrow 
packet of waves whose increment Y is close to the maxi
mum value: Y ~ Ymax ~ w(nb/"p}1/3 ("b and np are the 
beam- and plasma-particle densities respectively). The 
investigation of the nonlinear phase of the development 
of the instability of such a narrow wave packet requires 
a multimode treatment. However, if the initial plasma
density perturbation is chosen in the form of a near
monochromatic wave (n(r, t}l t = 0 ~ cos k' r), and the 
width of the initial wave packet is significantly narrower 
than that of the wave packet whose waves have incre
ments Y ~ Ymax' then the evolution of the plasma in
stability can be considered in the Single-mode approxi
mation. 

The nonlinear phase of the single-mode regime of 
amplification of Langmuir oscillations by an electron 
beam has been investigated in recent years by a number 
of authors [2-7J . It is shown in these papers that the os
cillations, after the linear phase of exponential growth, 
go over into a regime of nonlinear saturation, when the 
beam particles acquire in the field of the wave an oscil
lator velocity v ~ ymax/k. In this case the beam parti
cles are captured by the wave field. 

The saturation mechanism for Langmuir oscillations 
amplified by a monoenergetic electron beam is identical 
with the well-studied [8-111 saturation mechanism for 
slow waves amplified by an electron beam in a traveling
wave tube (TWT). (Notice only that the picture of the 
nonlinear beam particle-wave interaction in a TWT is 
complicated by the Coulomb repulsion of the uncompen
sated space charge of the beam particles.) 

In the present paper we investigate the nonlinear 
phase of the amplification by a monoenergetic charged
particle beam of the monochromatic longitudinal oscilla
tions of a plasma located in a magnetic field1). A system 
of equations is obtained which describes the nonlinear 
evolution of the OSCillations under the conditions of 
Cerenkov or cyclotron resonances for the beam parti-
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cles. For oscillations propagating in a direction inclined 
to the magnetic field at an angle not close to rr/2, the 
primary mechanism responsible for the saturation of 
the oscillations is, as in the absence of a magnetic field, 
the oscillation-induced variation of the longitudinal com
ponent of the beam-particle velocity. As a result of this 
variation, the phase resonance between the wave and the 
beam particles gets destroyed. The maximum amplitude 
for this case is estimated. 

For oscillations propagating in a direction perpen
dicular to the magnetic field, the oscillation saturation 
mechanism is substantially different. It is connected 
with a change in the transverse velocity of the beam 
particles by a value of the order of the phase velocity of 
the wave. 

The consideration of the single-mode regime is some
times linked with the discreteness of the wave-number 
spectrum in a plasma of finite dimensions, when kzn 
= 2rrn/L, n = 1, 2, ... (kz is the component of the wave 
vector and L is the length of the system in the direction 
of motion of the beam). However, the condition that the 
neighboring harmonics should have an increment signifi
cantly less than Ymax' i.e., that 

I 'u-k, "" Vo I =2JtVo/L~I"'~ (konVo"'w) , 

leads to a situation in which the beam particles traverse 
the plasma in a time t.t =- L/Vo shorter than the time 
required by the oscillations to reach the nonlinear phase 
(Ymaxt.t « 1). In this case the amplification of the os
cillations of the confined plasma is due to particles 
which are successively injected into the plasma and 
which amplify the oscillations during the time of inter
action by a small amount. The nonlinear saturation of 
the oscillations occurs when the field increases to such 
a value that in the time taken by a particle to traverse 
the distance L the hf field induces a phase shift of the 
order of rr between the wave and the particle. A non
linear theory for this problem has been developed by 
Kurilko [13J . 

1. THE MOTION OF A CHARGED PARTICLE IN THE 
FIELD OF A PLANE WAVE AND IN A CONSTANT 
MAGNETIC FIELD 

In order to derive the basic equations that describe 
the nonlinear phase of the interaction of the monoener
getic beam with the longitudinal plasma oscillations, we 
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must determine the flux's volume charge density pertur
bation, which can be computed by integrating the kinetic 
equation over the trajectories. For this purpose it is 
necessary to solve the problem of the motion of a 
charged particle in the electric field of a plane wave 

E=- V <p=-Re [ik<p,e'(b-.,+a)] 

and in a constant magnetic field Bo. In (1), cpo is the 
amplitude, (}' is the initial phase, and wand k are the 
frequency and wave vector of the longitudinal oscilla
tions. 

The equation of motion of the particle 
dv e 

m-=eE+-[vXBo] 
dt c 

(1) 

(2) 

can be integrated approximately in the case of a weak 
electric field, when the characteristic drift velocity v d 
= ckcpo/Bo of the particle motion is considerably less 
than the wave's phase velocity vph = w/k and the particle 
transverse velocity v l' In this case the method of aver
ages [14, 15J can be used to solve Eq. (2). 

Let us choose a system of coordinates with the z axis 
directed parallel to Bo and the x axis lying in the plane 
of the vectors k and Bo. Then, introducing the variables 
v l' 8, Land TJ: 

Vx=V.l cos 8, vll =v.L sin 8, 

x=:;-~sinO, Y=T)+2cosl:}, 
(3) 

(UB WB 

where wB = eBo/mc, we rewrite (2) in the form 

du, ek,<po 6 
-. =-- J 1,(a)sin(<D.+a), 

nt m.-.l 

du.. ekx<po ~ s '. a;-=----;;;- L. -;-1.(a)slll(<D,+a), (4) 

df) ekx<po n , 
-=-Olo---, I, (a)cos(<D.+a), 
dt mu .. ,:::"~ 

where 

Ill,=k,z+kx~-sf)-oot, 

Js(a) is a Bessel function, and a = k,ev l/wB' (Notice that 
the coordinate ~ is an integral of the motion.) 

In Eqs. (4), 81 = 8 and 82 = wt - kzz are rapidly rotat
ing phases. Further, let us consider only the resonant 
particles whose velocity v z along the constant magnetic 
field Bo is close to the resonance velocity, so that the 
condition 

Ol-k,u,""nOlo (n=O, ±1, ±2, ... ). (5) 

is fulfilled. Retaining in (4) the resonance terms, we ob
tain for the averaged quantities vZ' v1' and 7f, upon the 
fulfillment of the condition (5), the following equations: 

dv, ek,<po -
-=--In{ii)sin(llln+a), 

dt m 

dB ekx<po ,_ -
-at =·-000--_-1" (a)coS(<Dn+a). 

mv .. 

(6) 

(7) 

(8) 

It is convenient to introduce in place of Eq. (8) an 
equation for the "spiral" phase ~n == kzz - wt - nB + kxf: 

diD. ekx<po ,_ -
-=nOlo-oo+k,u,+-_-nln (a)cos(iD.+a). (9) 

dt mv .. 
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Further, to simplify the notation, we shall drop the bar 
over the averages. 

For a constant value of the wave amplitude cpo, Eqs. 
(6)-(9) have the solutions: 

(10) 

(11) 

where 
, k 2 

=(c _ oo-nOlO)~ Q=~ 
C 1 1 2.' 2. 2 OlB ne<pokx 2kx n e<po 

Equations (10) and (11) determine the particle trajector
ies in the phase plane (a, cI>n)' Analysis of these solu
tions shows that the motion of the particles in the phase 
plane can be bounded or unbounded. Then for n f. 0 (and 
for a given Cl), several centers of motion can exist in the 
region O:s cI>n:s 217 in the phase plane. 

From (7), (9), and (10) we obtain the following equa
tion: 

dWn c,a+Qa"+I,.'(a)cos(<Dn+a) 

da In(a)sin(W.+a) 
(12) 

whence the coordinates of the Singular pOints ac and cI>nc 
in the a-cI>n phase plane can be determined. We shall 
not consider the special types of singular pOints for 
which In(ac ) = O. Then we obtain for the "spiral" phase 
of the singular point the following values: 

Ill,,,=in-a (1=0, ±1, ±2, ... ) 

and ac is found from the equation 

c,a,+Qa/+( -1)'1 :(a,) =0. 

(13) 

(14) 

For a particle moving along a trajectory, the velocity 
changes 1:. v .l and 1:. v z are of the order of, or less than, 
(ecpo/m)I/2 if kz ~ ~. Taking into account the fact that 
1:. V 1 «v l' we obtain from (6)-(9) for the trajectories 
lying near the singular point the equation 

d'(<Dn-<D n,) _ ek/<po In (a,) (-1) I (<Dn-<Dn,) =0. (15) 
dt' m 

As follows from (15), the entrapped particles execute 
about the center oscillatory motion with frequency 

I ek.'<po "j, 16) Q = ----;;;:-1 n (a,) . ( 

The particle motion is of a different nature when kz = O. 
Restricting ourselves to the case when w = nWB, we ob
tain for the motion near the Singular point 

kxv.LC I 

fDnc=ln-a, ac = -- = pn .. , 
Olo 

where P~1I is a root of the function J~, the following equa
tion: 

d'(<Dn-<D.,) +Q 2(<D -Ill )=0 
dt' .. n n, • 

(17) 

Here n l' the frequency of oscillation of the entrapped 
particle, is equal to 

Q .. = ek.'<po I n'I.(a)/,."(a)!", . 
moon a2 <l=P~v 

(18) 

In contrast to the case kz ~ kx, when n "" ~ the fre
quency n 1 is proportional to cpo when kz = O. 

2. THE BASIC EQUATIONS 

Let us derive the equation for the time variation of 
the amplitude cpo(t) and phase QI(t) of the wave being 
amplified, taking into account the nonlinear character of 
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the motion of the beam particles under the resonance 
conditions (5). The plasma oscillations in the case under 
consideration can be described in the linear approxima
tion [2-7J. Let the wave being amplified have a frequency 
W and a growth rate y. Averaging the Poisson equation 
over the time interval T (y -1 »T »w-1) and over 
space (kL »1), we obtain 

k'e,(w,k)ljl(t)+k'~i dljl(t) 
Ow dt 

(19) 
8 +L/2 +T/2 

~ ~7; 5 dx dy dz 5 dt exp (iwt-ikr) (5 tb dv-nb) , 
_L12 _T/2 " 

where EZ (w, k) is the permittivity of the plasma, cp (t) 

= cpo(t)eiQl(t), fb is the beam-particle distribution func
tion, and nb is the mean value of the beam-particle den
sity. The space charge of the beam particles is assumed 
to be compensated in the absence of oscillations. 

We shall assume that in the absence of oscillations 
(at t = 0) the beam particles move with constant velocity 
Vz = vzO' have the same Larmor radius, and are uni
formly distributed over the azimuthal angle 8, i.e., their 
distribution function at t = 0 has the form 

nb 
tb(rO,vO,O)=-:;---v o (v-,-o-V-,-o) 0 (v,o--V,o). (20) 

... Jt -.LO 

Such particles are sometimes called oscillators. A 
linear theory of longitudinal plasma oscillation excitation 
by an oscillator stream has been developed in [16, 17J • 

We shall assume that the frequency w is close to the 
frequency w(k) of the natural oscillations of the plasma. 
Using the Liouville theorem (drdv = drodvo and fb(r, V, t) 
= fb(ro, Vo, 0)), and going over in (19) to the variables 
",[,1), Z, v1, vZ ' and if, we obtain 

, .Oe, dljl +n 
k e, (w,k)ljl(t)+k 2-i- ~ 4enb 5 d<IJno'.(a)e-''"' (21) 

iJw dt· , 

where the integration is over the values of the spiral 
phase at t = O. We are considering the excitation of only 
the resonance frequencies for which the condition (5) is 
fulfilled. The excitation of oscillations with frequencies 
that are integral multiples of the fundamental frequency 
of the wave being amplified can be disregarded, since 
their amplitude is w/y times smaller than that of the 
fundamental harmonic. 

Equations (6), (7), (9), and (21) determine the non
linear evolution of the monochromatic plasma wave being 
amplified by the spiral beam. Let us write the basic 
system of equations in dimensionless variables: 

de Y. 

a;~ 5 In(a)sin(2n~+a)d~o, (22) 
-'I, 

'I. 
e (~~ - Ll) ~ 51n(a)cos(2n;+a)d;o, (23) 

-'1. 
dv 
~~-e/n(a)sin(2,,~+a), (24) 

da k/ 10 nl.(a) . 
a;~-ek/-;:;;-a-sm(2,,;+a), (25) 

d~ v e k x' 10 nl,.' (a) 
a:;-~z;-- 2n k7-;;;--a-cos(2n~+a), (26) 

where 

\,~ ;n, v~~(v,- w-nwB ), 

10 k, 

Ll ~ w-w(k) 

10 ' 
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w(k) is the frequency of the natural plasma oscillations, 
and wb is the Langmuir frequency of the beam particles. 

3. THE DEVELOPMENT OF THE OSCILLATIONS 

In the linear phase of the development of the oscilla
tions, we shall seek the solution to the system of equa
tions (22)- (26) in the form E (T) = E ~rT and QI(T) = QI ° 
+ aT. Considering the terms linear in the field, we ob
tain from (24)-(26) the solutions 

a~ao+Lla, (27) 

where ao = ~ v 10 /wB' 

;~a~-eoer, ~~ nln (ao) ~ [. cxp{i(2n~0+voT+ao+aT)} _ c.c.,), 
k,- WB ao 2, f+,(vo+a) 

,' __ ~ r'l ( ) 1 [exp{i(2n~o+voT+ao+aT)} ) (28) L.}~- e n ao - -c.c., 
2n 2i (f+i(vo+a», 

_ . .".'. er, ~.1'- nl: (ao) r exp{i(2"\,o+vo1:+ao+a2lL __ c.c"l 
2n k,' WB 2ao l r+i(\'o+a) .. 

Using Eqs. (22), (23), and (27), we obtain 

oe'l' k,' Wb' - (w -w(k»~-In'(ao)----'----
iJw nlk) k' (w'-k,V,,-nwR)' 

2kx' '() ( ) Wb' (29) 
+-,-nln ao In ao , 1 

k W.(W -k,\ ,,-nw.) 

where w' = w + yo(ir - a). 

Equation (29) is, in the presence of an oscillator 
stream with the distribution functiop. (20), a dispersion 
equation for the longitudinal plasma oscillations, an 
equation which has been investigated in [16, 17J. Since 
the flux density nb is assumed to be low in comparison 
with the plasma density, an instability develops only 
under resonance conditions (w' ~ kz V zO + nwB ), If 
kz ~ ~ and ao is not close to a root Pnv of the Bessel 
function, or, more exactly, if the inequality 

..1~ kx'._nl,: (a) «: 1 (30) 
WB k,' I,.'" (a) , 

is fulfilled, then the second term on the right-hand side 
of (29) can be neglected. Then, assuming that the fre
quency kz V zO + nWB is close to the frequency w(k) of the 
natural oscillations of the plasma, we find that 

w-w (k) ~ (i-:,-") 1/., (31) 

where 

(32) 

If, in particular, the velocity V zO is considerably 
higher than the thermal velocity of the plasma electrons, 
then there get excited those electronic oscillations of the 
"cold" plasma having the frequencies 

w(k)~±w±(it), 
(33) 

(where cos ,J = k /k) and the maximum growth rate z 
Y31 cos'ttWb'W+(W. '-w 2) 1'/' _ - ± 8, I '( ) 

IL -~. W+2_W_2 11 ao , • (34) 

The increment (34) for wpe ~ wBe' kz ~ ~, and 
ao ~ 1 has the same order of magnitude as the incre
ment of the Langmuir oscillations excited by a beam 
when Bo = O. 

In analyzing the nonlinear oscillation regime, let us 
first consider the case when the quantity k is large 
enough for the inequality (30) to be fulfillecf and the quan
tity a is not close to Pnv' Then in the linear phase the 
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oscillations grow with the increment (34). If the inequal
ity 

k.' I 10 n, I -, --In (a) ~ 1, 
kz (08 a 

(35) 

is valid, then the second term on the right-hand side of 
Eq. (26) can be neglected. Furthermore, we can dis
regard in Eqs. (22)-(24) the time variation of the quan
titya, and set a = ao. 

Then setting 

e'=ge, T'=g-'., v'=g'v, !1'=g-'!1, (36) 

where g = J;li3(ao), we obtain for the quantities E', a, v', 
and!; the "universal" system of equations 

de' 'I. 
T = f sin(2rr~+ct)d~0, 

't _'I. 

,(dct ,)'J. 
8 d?-!1 =Lcos(2rr~+ct)d~0, (37) 

dv' . . d~ v' 
---,=-e slfl(2rr~+ct), -, =-. 
dT dT 2rr 

These equations coincide with the equations that de
termine the development of the Langmuir oscillations 
excitable by a monoenergetic electron beam when Bo = 0, 
equations which have been derived and thoroughly inves
tigated before [2 ,3-6J. As in the isotropic plasma, when 
the conditions (35) are fulfilled, the dominant nonlinear 
effect limiting the growth of the amplitude of the longi
tudinal oscillations excited in a magneto active plasma by 
an oscillator stream is the phase shift between the wave 
and the stream particles that results from the oscilla
tion-field induced change in the longitudinal component 
of the stream -particle velOcity. As follows from the 
results of[2,3-a], the saturation of-the oscillations occurs 
at T' ~ 5-10, when the quantity E' oscillates about the 
value E' ~ 1. It follows from this that the amplitude of 
the electric field of the oscillations in the nonlinear 
phase is equal to 

k 1 ' E=krpo-[4rrnbm V.O'l'" L (38) 
k. UlbIUl(k)-nUlBl/n(ao) 

This estimate for the quantity E is easy to obtain if we 
take into account the fact that the saturation of the os
cillations sets in when the frequency of oscillation of the 
entrapped particles of the stream becomes equal in order 
of magnitude to the linear increment (i.e., when ~ ~ YL)' 

When wpe ~ wBe and kz ~ kx' we have 

(39) 

It follows from this that for Bo f 0,. and under the 
resonance conditions (5), the maximum amplitude de
creases by a factor of I n-1i3 (ao). This is due to the fact 
that when Bo f 0 the linear increment (YL lV J~3) de
creases, and although the oscillation fre~uency ~ of the 
entrapped particles is proportional to J12, the condition 
y L ~ n is fulfilled at smaller values of the field ampli
tUCle. 

If kz « kx, then the quantity (38) increases, in com
parison with the Bo = 0 case, by a factor of (k/kz )2/3. 
This is connected with the fact that the disappearance 
of the phase resonance is due to the field component Ez 
= kz'Po, which in this case is not only Significantly less 
than E, but is (k/kZ )1/3 times lower than the maximum 
intensity of the electric field in the isotropic case (the 
latter is due to the fact that Y L ~ k~3). 
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It follows from the results of[3-6J that under the ac
tion of the oscillation field the particles group them
selves in the phase plane (vz' 4>n) into bunches, which 
are captured by the wave field in the nonlinear phase 
and made to execute a complicated spiral motion with a 
characteristic frequency equal to n. 

Alternatively, there occurs a buildup of oscillations 
propagating in a direction perpendicular to the magnetic 
field. For kz = 0 the linear increment is equal to 

V=Ul.[- 2nln(aO}J;(ao)] "', (40) 
Ul B8e,/8Ul 

where W = w(k) = uwB and In(ao)Jn/(ao) < O. In particu
lar, for the oscillations of a cold plasma, we have 

Ul (k) = (W,/+Ol".,') "'=m~R" 
1= (nb/ n ,.) '''[ - (n'-1 )/" (ao) J n' (ao) ]"'1 w,,, I. (41) 

In contrast to the case kz ~ k." for kz = 0, only oscilla
tions with sufficiently large values of ao, i.e., with 
y ~ Jiib> are excited. 

An estimate for the maximum amplitude of the oscil
lations can be obtained from the condition Y ~ n l' 
where the quantities Y and n 1 are given by the formulas 
(41) and (18). Assuming, for Simplicity, that ao ~ 1 and 
n ~ 1, we obtain 

E - [ 4rrnbm y',-o' 1 'I,. (42) 

This estimate can be obtained from the equations 
which describe the evolution of the oscillations at the 
resonance w(k) = nWB in the nonlinear phase, and which 
are similar to the Eqs. (37) for the "oblique" propaga
tion: 

de 1 n 

- = - -'f diIlno/n(a)sin(iIln+ct) , 
dT 2rr _" 

d 1 n 

~!1 - -.-c:) e = - fdlDno/n (a) cos (iIln+ct), 
\' dT 2n_n 

da nln(a) 
(43) 

d. = e-a-sin(iIln+ct), 

dlD n nl; (a) 
d-; = e --a- cos (iIln+ct), 

where 

It fOllows from (43) that the oscillation saturation begins 
when E ~ 1. The quantity a, the spiral phase 4>n' and the 
azimuthal angle e' then change in value in a time ~nll 
by the amounts Doa ~ 1, Do 4>n ~ 1[, and Do e ~ 1[. Thus, in 
spite of the fact that the linear increment for kz = 0 is 
less than for k ~~, because for k~ = 0 the Doppler 
effect does not 1ead ill the nonrelativlstic case to a 
change in the phase resonance between the wave and a 
particle, the nonlinear effects turn out in the kz = 0 case 
to be important only for the oscillation amplitude (42), 
which can be appreciably larger than the oscillation 
amplitude (39) for the kz ~ kx case. Thus, according to 
(42), for kz = 0, the energy transferred by the electron 
beam to the plasma oscillations is of the same order of 
magnitude as the beam energy. 

In conclusion, the authors express their profound 
gratitude to V. L. Sizonenko, V. D. Shapiro, and V. I. 
Shevchenko for a discussion of the results of the paper 
and for useful advice. 
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OWe note that the damping of a monochromatic wave propagating in a 
direction perpendicular to a weak magnetic field has been investigated 
by Sagdeev and Shapiro [12]. 
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