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A nonlinear theory is developed for the excitation of a one-dimensional plasma wave with a fixed 
phase by a highly relativistic high-density beam under the conditions of beam-plasma instability. It is 
shown that, as a result of the relativistic increase in the mass of the electrons, the phase bunching 
effects are substantially reduced ,and do not lead to nonlinear stabilization of the instability for low 
field amplitudes. The Cerenkov resonance between the beam and the field, which is a wave with 
variable phase velocity, is therefore maintained throughout the instability process so that the beam 
loses a significant fraction of the energy associated with directed motion through the excitation of 
plasma oscillations. The electron-ion instability (excitation of low-frequency oscillations by relativistic 
electron beams) and the instability of an oscillator beam under the conditions of the anomalous 
Doppler effect (generation of an electromagnetic wave by a relativistic electron beam moving parallel 
to an external magnetic field) are investigated in the nonlinear approximation. The maximum field 
energy is found for both cases. 

1. INTRODUCTION 

One of the basic problems in the practical utilization 
of beam instabilities is to find methods of increasing the 
efficiency of interaction between a charged-particle beam 
and plasma. [1-3J This is so because even in the case of 
a small thermal spread (Im W »kvT' k is the wave vec­
tor, vT is the thermal velocity) the increase in the am­
plitude of the field excited by the beam is stabilized by 
effects associated with the capture of the beam particles 
by the wave. 1) The result of this is that the fraction of 
energy lost by the low-density beam (Yolllh < 1, 
II = nb /~; % and ~ are the densities of the beam and 
plasma, respectively, and Yo is the beam energy in units 
of mc2 ) through the excitation of oscillations turns out to 
be relatively small C 6J 

E'/Sn=nbmvo'1o' (v/2) 'I,. (1) 
The energy density of the field excited by the beam in 

the plasma increases with increasing beam energy and 
when Yollih ~ 1 it turns out to be comparable with the 
initial energy density of the beam. [12 ,13J At the same 
time, as a result of the relativistic increase in mass, 
the phase bunchin~ effect in the particle beam which was 
investigated inC?-9 by numerical integration of the equa­
tions of motion is substantially reduced and, as shown 
below, when the condition 

(2) 

is satisfied, it does not lead to the nonlinear stabilization 
of the instability at low field amplitude. The beam par­
ticles are in phase with the wave for a sufficiently long 
interval of time t ~ y~l2/wb (~ is the Langmuir fre­
quency of the beam) and do not succeed in transferring 
to the field an energy comparable with the initial beam 
energy. The directed slowing down of the beam is ac­
companied by a change in the phase velocity of the wave, 
which is determined by the beam velocity v(t): 

E(t,z)= ~E.(t)exp [ik j V ('t)d't-ikz ]. 
• 0 

The relative effectiveness of nonlinear phase bunching 
and directed slowing down of electrons as functions of 
the beam and plasma parameters is used in Sec. 2 to 
estimate the instability of a relativistic beam in the form 
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of a sequence of charged bunches. The results are gen­
eralized to the case of a continuous beam in Sec. 3. 

The same process of directed slowing down of the 
beam governs the electron energy loss due to instability, 
which appears during the passage of the relativistic 
beam through the ion core (Sec. 4)., The energy density 
of the electromagnetic wave excited by a beam of oscilla­
tors moving at a velocity in excess of the velocity of 
light (under conditions of the anomalous Doppler effect) 
is determined in Sec. 5. The results established in Sec. 
5 generalize the nonrelativistic formulas reported previ­
ously in C 4J • 

2. EXCITATION OF A PLASMA WAVE BY A SEQUENCE 
OF RELATIVISTIC BUNCHES 

Consider the excitation of a one-dimensional plasma 
wave by an electron beam in the form of a sequence of 
charged planes (surface charge density ae) moving 
through plasma with velocity Vo and separated by a dis­
tance l. The set of equations describing the motion of 
the beam particles in the self-consistent field E(t, z) 
is[6J 

a a'E i)' ~ -(--+0) 'E) =-41toe- ~ 6(z-sl-z (t))· 
az at' P at' ~ " 

d . e 
-[z,(th.(t) l=--ReE[t, z,(t)], 
dt m 

(3) 

where Zs and Ys = (1- Zs /c 2 rll2 are the coordinate and 
energy (in units of mc2 ) of the s-th bunch, and wp is the 
plasma frequency. 

We shall consider slowly varying amplitude and phase 
by substituting2 ) 

E(t, z) =e(t) exp [iw p t-ikz+i1't(t) 1 (4) 

and take an average of the equation for the field over the 
space period, so that we obtain 

d. e 
Tt(Z1) =- --;;; e cos \D, 

(5) 
e=2nen,v cos <D, 

where nb = a/I is the effective beam density, cI>(t) = kz(t) 
- wpt - J(t), k = 27T/Z = WpNo, v = i. 
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Integrating Eq. (5) subject to the initial conditions 
£(0) = <p(0) = 0, we obtain the following integrals of mo­
tion [6J 

where w2 = £2/ 41TlltJmc2 • 

(6) 

(7) 

After some algebraic rearrangement, Eq. (7) may be 
written in the more convenient form 

(8) 

where O! = 1I112sin <P. 

Different states of nonlinear stabilization of instability 
[right-hand side of Eq. (5), which gives the field ampli­
tude, equal to zero] are defined by the ratio between the 
first and fourth terms in E~. (8). When the beam is 
"weakly" relativistic (Yoll! 3 « 1) the effect associated 
with the phase motion of the bunch relative to the field 
is the dominant one. Substituting sin <P = 1 in this case, 
we have[6J 

(9) 

Accordingly, the field energy denSity is given by Eq. (1). 

In the opposite limiting case, when Eq. (2) is satisfied, 
it follows from Eq. (8) that 

sin l[)~w'/2v'''yo'. (10) 

Substituting wmax ;:; Y6i2 into Eq. (10) [which, according 
to Eq. (6), corresponds to almost total loss of energy by 
the beam], we find thae) 

(11) 

The instability of a high-density relativistic beam is 
not, therefore, accompanied by an appreciable phase 
shift of the bunches relative to the wave, and the kinetic 
energy of the electrons is completely transformed into 
the plasma wave field energy .. 

3. INSTABILITY OF A HIGH-CURRENT RELATIVISTIC 
BEAN IN PLASMA 

We shall use the following set of equations to describe 
the interaction of a continuous relativistic beam with 
plasma: 

at at at 
-+,v-+eE_=O, 
at az ap 

(12) 

where f(t, z, p) is the function describing the electron 
momentum distribution in the beam. 

The solution of Eq. (12) will be sought in the form 

1 ~ . . 
t(t,z,p)=t.(t,p)+"2 ~ [t.(t,p) e-iA'+j' (t,p)e"'j, (13) 

• 

where fo is the phonon distribution function and fk are 
the amplitudes of small oscillating additional terms. 4 ) 

Substituting Eq. (13) in Eq. (12) and averaging with 
respect to z, we obtain 
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at.. at. 
--Ikt.=-eE.-, 
at ap 

(14) 

!!!+.!.... ~ (E· !!.::..+E !!i....) =0 
at 4 ~ • a • a ' . • p p 

(15) 

~ d m 

( -+00.') E.=-4ne- I vt.dp. 
dt' dt 

(16) 

We shall suppose that at the initial time the thermal 
spread in the beam is sufficiently small and the distri­
bution function is close to a delta function: 

t.(O, p) =noli (p-p.). (17) 

The development of instability is accompanied by a re­
duction in the directed momentum and an increase in the 
electron temperature in the beam so that the distribution 
function is given by 

nb(t) {1 } t.(t,p)=-_--exp ---[p-p(t)l' . 
'InpT(t) p/(t) 

(18) 

Since according to Eq. (18) the state of the beam is 
uniquely determined by the moments of the distribution 
function, we can substantially simplify the problem by 
considering the equations for nb(t), PT(t), p(t) instead of 
the complicated set of equations given by Eqs. (14) and 
(15). 

Let us transform Eq. (16) by eliminating the time 
derivative on the right-hand side with the aid of Eq. (14) 

~ m ~ ("dt' + 00.') E.=-4ne_f (ikv't.+eE'apt. )ldP. (19) 

The second term under the integral sign in Eq. (19) is 
a small addition to the plasma frequency and can be 
omitted without loss of generality. Next, we compare the 
right-hand sides of Eqs. (15) and (19) and eliminate the 
function fk. The result is 

~ I· me' (.!..... - arctg '!""') t.dp= -'_. ~ ~ (E; d'E. -E. d'~;) . (20) 
dt me me 16n ~ k dt' dt • 

The equation which determines the thermal spread in 
the beam will be taken to be the relation which follows 
from Eq. (15), namely, 

:t I [p-p(t) ]'t.dp= ~ j [p-p(t) 1 ~ (f.E;+t;E.)dp. (21) . 
The function fk on the right-hand sides of Eqs. (16) 

and (21) is given by Eq. (14): 
, at ' 

!.(t,p) =-e I E.(T)T exp (ik J vdt,) aT. (22) 
• p , 

Substituting for fo(t, p) from Eq. (18) into Eqs. (16), (20), 
and (21), using Eq. (22), and evaluating the integrals 
with respect to the momenta on the assumption that 
p(t) »PT(t), we obtain the following closed set of equa­
tions: 

(:' +oov' )E,=-4ne'iknb f E.Ct)exp[ifll.(t)-ifll.(-r) 1 . 
dv x [ikv'(t--r) +2v]-d-r, 
dp 

d ' ' ~ =2e' Re IE; (t)E.(T)exp[ifll.(t) -ifll.(-r) ld-r, 
dt . 

, 
fll.(t)=k I v(t.)dt" 
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where v(t) is the directed beam velocity, dp/dv = m y3, 
and the density lb which by Eq. (15) is a constant of mo­
tion has been taken out from under the time integral. 

We now introduce the slowly varying field amplitude 
Ek(t) by substituting 

e, (t) ~E, (t) exp [~i<ll,(t)], ~k«$ek 

and if we neglect the second derivatives of the amplitude 
we can rewrite Eq. (23) in the form 

( p P) ( nope' '\"1 Ie. I') 
n,me' -;;;;: ~arctg -;;;;: +v 2m,' + l...J. ---s;- ~So, 

, . (25) 

( de, dV) ( , k' ') J 'k" ( ) () d-r; ik 2v-+e,- + (i)p ~ V 8.~ (i)b V t~-r; 8, -r; -, 

dt dt 0 " 

(26) 

d ' ' ~~2e'Ro '\"1J e,:(t)e,(,)d", 
dt l...J. 

(27) 
, 0 

where wb is the Langmuir frequency of the beam. 

The integro-differential equation given by Eq. (26) 
may be reduced to a differential equation by differentiat­
ing with respect to time t: 

. d' ( de, + dv ) + d' [( , k' ') 1 'k' , 1 (28) ,k- 2v- e.- - (i)p ~ V 8. ~(i)b V -8 •. 
dt' dt dt dt' " 

We shall assume that the contribution of the thermal 
energy flux to the integral of motion is sufficiently small 
and will neglect the term proportional to PT in Eq. (25) 
(the validity of this approximation will be estimated be­
lOW). This ensures that the closed set of equations re­
duces to a set of equations for the amplitudes Ek given 
by Eq. (28), in which the velocity v(t) is related to the 
field amplitude by Eq. (25). 

During the linear stage of the instability [nJ [v (t) 
= Vo and y(t) = Yo] the solution of Eq. (28) takes the form 
Ek(t) = EOkexP (Akt), where Ak satisfies the equation 

2ikv,'A,,'+ (wp'~k'vo')'A.'~(i)o'k'vo'ho'~o. (29) 

The maximum growth rate (Re A 0 > 0) occurs for the 
harmonic ko = wp Iv 0 (the width of the wave packet is Ak 
~ IAol/vo) 

'Ao= l':,~i ( ,~, ) 'I. (i)p. (30) 

Moreover, the harmonics for which kvo < wp turn out to 
be unstable: 

( k'vo' (i)b' )'f, 
'AI<~ --, -22---' ' 

W;! --Ie Un "(0 

and oscillations with kYo - wp ;2; I Aol are not excited 
during the linear stage, 

(31) 

According to Eq. (25), the increase in the field ampli­
tude is accompanied by a reduction in the beam velocity. 
Accordingly, there is a change in the energy distribution 
over the wave-number spectrum. The increase in the 
amplitude of unstable "fast" harmonics (Wp Ik > vo) is 
slowed down and the "slow" harmonics (wp/k < vo) enter 
resonance with the beam during the nonlinear stage 
[v(t) < vol and are amplified with maximum growth rate. 
The final result is that the spectrum of oscillations ex­
cited during the nonlinear stage is shifted into the slow­
wave region, which is qualitatively confirmed by numer­
ical calculations. [8J 

The analytic nonlinear solutions of Eq. (28) cannot be 
found for an arbitrary number of harmonics. We shall 
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therefore consider the case where the beam excites in 
the plasma a wave with a fixed value of the wave vector 
ko which, according to [8J ; occurs in a sufficiently 
thinned-out spectrum [Ikvo- wpl > (Vly~)l/3Wp] or in the 
presence of external modulation5 ). 

We shall suppose that the harmonic ko = wp Iv 0 is ex­
cited, so that the growth rate is determined by Eq. (30). 
As the beam is slowed down [v(t) < vol the resonance 
condition is violated and the second term in Eq. (28) be­
comes comparable with the first when the beam velocity 
falls to the value 

wp'~k"'v'~ (vii,') 'h(i) p', ,~( vilo') -'/'. (32) 

Since the change in the velocity at this time is still 
small, and the instability continues to develop at a lower 
growth rate, in the analysis of the nonlinear stage of the 
beam-plasma interaction (during which most of the beam 
energy losses occur) we can neglect in Eq. (28) the 
terms containing the third derivative and consider the 
equations 

d' v' 
-. [(v02~v')el~(i)b2-e, 
dt' " 

( p P) ve2 

nome' - ~arctg - + - ~So. 
me me Sn 

(33) 

(34) 

ExpreSSing the field amplitude E(t) in terms of the 
velocity v(t) obtained from Eq. (34), and substituting the 
result in Eq. (33), we obtain the nonlinear equation for 
the function v(t), the first integral of which is 

( dV)2 4 2 2 e 2 '/6mnb(vo'~v')'(v'+vo'/2)+I(v) 
- ~ (i)b V - -;-;c::-;-.,-'~;-;::-,--,'---:-:c:'-.,.---:.,,:....,.,.. 

dt Sn [(3v'+vo') e'/Sn+mnbr'v' (V"2~V') ]' 

J\lO , ve 2 du 
(35) 

I(v)= (3v'+v o')--. 

, Sn " 

In deriving Eq. (35), we used the relation 
de' e' dv d 
dt ~~ -;;Tt ~ Tt(8nnbme',) , (36) 

which follows from Eq. (34). 

According to Eq. (35), the derivative of the beam 
velocity vanishes at pOints Vl = Vo and V2 = 0 which de­
termine the maximum and minimum values of the beam 
velOCity. The beam therefore excites in the plasma a 
wave with variable phase velocity vph = v(t} which is 
synchronous with the beam at each instant of time and 
completely loses its energy of directed motion. 

It is clear that this effect can be interpreted as the 
successive excitation by the beam of a spectrum of 
waves with frequencies w(t) = kov(t) in the interval wp 
2: w(t) 2: O. Equation (34) then gives the energy dis­
tribution over the oscillation spectrum and is the differ­
ential characteristic of the spectrum. To estimate the 
effectiveness of the beam-plasma interaction as a func­
tion of the beam energy, it is useful to consider the 
spectral characteristics defined as follows: 

W JP' lei' d 1 "(' 1 1 ') 
,~ v- p~-nbm e ,0 ~ ~ il,o . 

8n 4 
o 

(37) 

Comparing this with the analogous quantity for the beam 

Wb=nbme' J ('l'~l)vdp=t/,nbm'e'('l'o~l)', (38) 

we see that 

1;;. W'./Wb ;;. I/" (39) 

where the left-hand inequality is satisfied in the non-
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relativistic case and the right-hand inequality occurs for 
yo » 1. 

Equation (35) has been obtained on the assumption 
that the thermal spread in the beam is sufficiently small 

4nn,p;¢:~'Y'lel'. (40) 

Substituting PT ~ ed in Eq. (40) [using Eq. (27)], we ob­
tain the following restriction on the time interval t dur­
ing which the approximation given by Eq. (35) is valid: 

(41) 

when t ~ y~I2/wt> the contribution of the thermal flux to 
the energy integral (25) is comparable with the field 
energy density. 

4. ELECTRON-ION INSTABILITY 

Consider the low-frequency electron-ion instability 
in the nonlinear approximation, [14J using the method de­
veloped in Sec. 3. The nonlinear analysis of this effect 
given in[lsJ for various models of electron and ion 
beams has shown that the most important effect is the 
slowing down of the electron beam. We shall therefore 
restrict our attention to the nonlinearity of the electron 
motion, and will treat the ions in the linear approxima­
tion (the estimate is given below). The equations des­
cribing the motion of the electrons will be taken in the 
form given by Eqs. (14)-(16), replacing the plasma fre­
quency w 2 in the field equation (16) by the natural fre­
quency of the ions6) wi = 41Te2ni /M. Since the time 
necessary for the development of the instability is large 
in comparison with the Langmuir frequency of the elec­
trons 

(42) 

we write the solution of Eq. (14) ill the form of an ex­
pansion into a series: 

(43) 

Substituting Eq. (43) in Eqs. (15) and (16), and assum­
ing that fo = nb6[p - p(t)] , we obtain a closed set of equa­
tions for the beam field and momentum: 

d' w,'E d' [( W")] 2i- -~ +- 1--~ E +w,'E=O, 
dt' ( k'V''(') dt' k'v'l' 

(44) I 

dp __ e' [E'~(~)+E~(~)] at - 2k'm dt v''(' dt v''(' . 
.. (45) 

Integrating Eq. (45), we obtain an equation for the con­
stant of the motion 

k'm' ( 1 1) IEI'=-.-v''(' ---, . 
e2 v2 Vo 

In the linear approximation, assuming that v = Vo, 
k = ~/voy~l2, and E = EoeAt, we obtain 

(46) 

(47) 

As the field amplitude increases, the beam energy de­
creases and the second term in Eq. (44) becomes com­
parable with the first for a relatively small change in 
the beam velocity: 

(48) 

Since the instability is not stabilized for small nonlinear­
ity, we shall, as in Sec. 3, neglect the term proportional 
to the third derivative. Moreover, if we now express the 
field amplitude in terms of the velocity given by Eq. 
(46), we obtain the following nonlinear equation: 
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~[ (vo'-v') 'I, (vo''(,'-v''(') 1 =w!v',(' (u,'-v') 'I,. 
dt' 

Using the first integral of Eq. (49) 

(49) 

(v"!:!")' = w'e' '(0'-'(' ,(,(,+,() ('('~'-2) +('(0'-1) [('(0'-1)1-2'(,], 
dt ' '(' [3'('('Yo+,()+ ('(o'-1)('Yo'+1'+'Y'Yo)]' 

(50) 
we can determine the extremal values of the beam veloc­
ity by setting v(vext) = O. Since the right-hand side of 
Eq. (50) vanishes only for Vext = ±vo, the development 
of the instability is accompanied by an initial reduction 
of the beam velocity to zero. The velocity then changes 
sign and increases in absolute magnitude back to the 
initial value. [lSJ By analyzing Eq. (46), we can investi­
gate the dependence of the field energy density on the 

. beam velocity (energy). With decreaSing velocity the 
: field amplitude increases, reaching the maximum value 

I EI'/16n=n,mvo"'(o/27 

when 
Vo 

~o=-. 
e 

(51) 

(52) 

Further reduction in the beam velocity is accompanied 
by a reduction in the field energy density, so that Emin 
= 0 for v = 0 and the beam energy is completely trans­
formed into the energy of the ion oscillations. 

Let us now estimate the validity of the linear approxi­
mation as applied to the ions. Since the condition for the 
linearization of the equations of motion for the ions is 
av/at »avi/az where 

(53) 

and substituting for A and E from Eqs. (47) and (51), we 
find that 

(nJn,)'/'» (m/M) "'. (54) 

5. EXCITATION OF A REGULAR ELECTROMAGNETIC 
WAVE BY A BEAM OF RELATIVISTIC OSCILLATORS 

In conclusion, we consider the excitation of an elec­
tromagnetic wave by a relativistic electron beam moving 
down a constant external magnetic field Ho with velocity 
Vo which is greater than the velocity of light in the slow­
ing down system with an effective refractive index n, 
where Vo > c/n (anomalous Doppler effect). [16J 

The solution of the self-consistent set of equations 

ap e 
-+(vV)p=eE+-[v~H+H.], at e 

an, '. 
Tt+drvj=O, 

n' aE 4n 
rotH=--+-j; 

e at e 

1 an 
rotE=--­

c at 

(55) 

will be sought in the form of circularly polarized waves 
propagating along the magnetic field: 

H,-iH,=n(E,+iE,) =nE(t) exp[i<l>+iqJ(t)], 
(56) 

v.+iu,=v.dt) exp[i<l>+itl (t) ], 

where p and V are, respectively, the momentum and 
velocity of the beam, E and H are the electric and mag­
netic components of the self-consistent field j = elltJv, 
~ = w(t - nzlc), and w is the wave frequency. Assuming, 
moreover, that vz(t, z) = vll(t) and ~(t)z). = .no (the con­
tinuity equation is then automatically satlsfled), we ob­
tain the following set of equations in total derivatives 
with respect to time and for the slowly-varying ampli­
tudes and phases: 

d e 
-:- '(VJ. = -(1-~lIn)E cos 1'], 
dt m 

(57) 
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d e 
&1VII =-;;;nv.LEcosl'), (58) 

dE V.L 
Tt=-2neno-;zcosI'), (59) 

dl') OlH d 
-=-+ Ol(1-~lIn)-tgl')-ln(lv.LE), (60) 

dt 1 dt 

where 

Oln=eH,/mc, I')=ti-<p, 1= (1-~II'-~.L') -"', 13'= Ivl 'Ie'. 

In terms of the same variables, the change in the beam 
energy with time is described by the equation 

Subtracting Eq. (58) from Eq. (61) term by term, we 
obtain7) 

The set of equations given by Eqs. (57), (59), (60), 

(61) 

(62) 

and (62) may be written in a more compact form by sub­
stituting 

a=~.L 1, b= (~!ln-1) 1, Q=Ol/Oln, dS=Olndth· 

Accordingly, we have 

~=-b£ cos '1, e=-q'a cos 1'), b=(n'-1)ae cos 1'), 

d 
I')=1-Qb-tg I') ds1n (ea). 

(63) 

Integrating these equations subject to the initial condi­
tions 1)(0) = a(O) = 0, E(O) = Eo, b(O) = 0-1 (condition for 
the anomalous Doppler effect), we obtain the following 
integrals: 

(n'-1) a'+b'=Q-', 

e'-eo'=~ (~- b) 
n'-1 Q ' 

sin'1=(1-Qb)'/2aeQ(n'-1). 

(64) 

(65) 

(66) 

These relationships enable us to reduce the set of equa­
tions given by Eq. (63) to a first-order equation. In view 
of Eq. (64), we substitute 

(n'-1) 'i'Qa=sin 1jJ, Qb=cos 1jJ. 

The result of this is the following equation for the func­
tion <P(s): 

(67) 

Substituting Eqs. (65) and (67), and expressing 1) in terms 
of <P from Eq. (66), we have 

'" '(' ) 2q' ( ) ( 1-cos 1jJ) , 1jJ'=£o n -1 +- 1-cos1jJ - . _ . 
Q 4 "II" 1jJ 

(68) 

The maximum value of the function <P(s) is obtained from 
the condition <P( <Pm) = O. Since I <Pm I « 1 (when q2 « 1 
and Eo « 1), we have 

q/Q~e,'t. (n'-1) 'f. 

q/l2~pe,'" (n'-1) ';' 
(69) 

where the first case corresponds to the instability of 
the charged particle in the field of an external trans­
verse wave. 

Substituting for <Pm in Eq. (65), we obtain the energy 
density of the electromagnetic field excited by the beam 
in the absence of the external wave Eo = 0: 

, 1 ( 4q' ) 'f, 
Emox = n'-1 Q . (70) 
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Returning to the dimensional variables, we can re­
write this formula in the form 

(71) 

The nonlinear stabilization of the instability arises as 
a result of the detuning of the phase resonance between 
the beam and the wave due to the longitudinal slowing 
down of the beam. In contrast to the above Cerenkov 
instability, in the present case the phase velocity of the 
wave is unaltered (vph = c/n) and the instability is stabil­
ized even at small field amplitude. 

I)The stabilization of the increase in amplitude of the regular field as a 
result of capture of a beam of oscillators by the wave was first dis­
cussed in [4]. Similar effects were investigated for Cerenkov instabil­
ity in an unbounded plasma in rs -9] and in the case of the injection 
of a beam into unbounded plasma in ['0,11 I . 

2)This approximation is valid when v'/ 3 /'(0 «I. 
3)1t is important to note that when the equation w2 max='Yo - I is ex­

actly satisfied, the second and fourth terms in Eq. (8) compensate one 
another and comparison of the first and third terms gives a condition 
which is stronger than that given by Eq. (I I), namely, C'Yov)'/2 »1. 
This is also the case for a continuous beam (Sec. 3) when there is a 
substantial reduction in the growth rate during the nonlinear stage of 
instability. 

4)The condition that the self-modulation depth of the beam is small, 
fo»lfk I, for which one can neglect effects associated with the phase 
shift of the particles, is equivalent to the requirement that ('Yo 3 v) '/6 »1. 

5)We note that, for a relativistic beam, the condition that the spectrum is 
"thinned-out" is less stringent than in the nonrelativistic case [8] 
because of the reduction in the width of the wave packet by the factor 
'Yo» \. 

6)The condition that the modulation depth is "small," fo >>If, I, now takes 
the form 'Yo»\. 

7)We note that, when n = I, the function(l-iJ IIh is a constant of motion 
and there is a nonlinear resonance between the beam and the field. [17, IB] 
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