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The model of conical term crossing is considered for a triatomic system in the E state, and the 
problem of resonant scattering by a conical well is solved. The scattering phase shifts and the level 
positions and their widths are obtained for linear (E >m 2/3) and circular (E ::::::3m 2/3/2) trajectories 
are obtained. Unlike the previously known expressions, the expressions derived here are applicable for 
all values of the Landau-Zener parameter that characterizes the problem. The obtained widths 
coincide with those calculated numerically in the common energy region. 

INTRODUCTION 

Many physical problems connected with energy trans
fer in molecular systems call for the investigation of 
nonadiabatic transitions. Such transitions have been in
vestigated most thoroughly at the present time for two
atom quantum systems [lJ. Nonadiabatic transitions in 
two-atom systems occur with largest probability for 
those states whose energy terms are close enough to 
one another. This is usually due to the fact that the 
zeroth-approximation terms have different symmetry 
and intersect; in this case the transition is effected 
under the influence of a relatively weak coupling between 
the considered states (spin-orbit interaction, interaction 
of the electron angular momentum with the ;:,otation of 
the quasimolecule). In this sense, nonadiabatic transi
tions in polyatomic systems differ in principle. This dif
ference is determined by the fact that in this case terms 
of identical symmetry can intersect, and this should lead 
to appreciable transition probabilities. 

This was indeed first demonstrated by Teller[2J and 
later by Nikitin [3J for the semiclassical model of mo
tion in two dimensions (two-dimensional Landau-Zener 
model). The very possibility of using the concept of a 
trajectory in a problem in which the potential surfaces 
have a complicated shape (double cone) remained unclear 
in this case, however. Therefore the problem of a non
adiabatic transition of this type was reviewed in[4J in 
the quasiclassicallimit, in a range of parameters where 
the transition probability is exponentially small. A 
rigorous expression for the transition probability in a 
wide range of parameters, including the region where it 
becomes appreciable, had not been derived to this day. 

1. FORMULATION OF PROBLEM. DERIVATION OF 
EQUATIONS FOR THE TRANSITION AMPLITUDES 

The simplest equation for the investigation of non
adiabatic transitions in three-atom systems is produced 
when three identical atoms in the 2S state form a con
figuration that is close to that of an equilateral triangle 
(doubly-degenerate molecular state E). The motion of 
the system along the normal coordinates x and y, which 
violate the symmetry, leads to a lifting of the degeneracy 
in accordance with the Jahn-Teller effect. Near the sym
metrical configuration, the nuclear Hamiltonian of the 
system can be represented in the form [5J 

px'+pi (1) 
H=~+F(xox+Yov), 

where Px and Py are momentum-projection operators, 
and ax and ay are Pauli matrices. The adiabatic terms 
corresponding to this Hamiltonian are solutions of the 
equation 
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det (e-F[xox+Yo,]) =0 

and form a double circular cone 

e,,2=±Fr. 

(2) 

(3) 

In the upper term (conical well) there exist nonsta
tionary states that decay under the influence of the non
adiabatic coupling between the electrons and the motion 
of the nuclei. The stationary states of the problem 

(4) 

are standing waves that correspond to elastic resonant 
scattering by the conical well at E > 0, and to scattering 
by the conical peak at E < 0 (the latter are not of great 
interest, since they are not connected with nonadiabatic 
transitions in this problem). Thus, the problem (4) 
should be regarded as the problem of elastic resonant 
scattering in which it is necessary to find the corre
sponding phase shifts, meaning also the positions and 
widths of the levels corresponding to quasistationary 
states in the conical well. 

It is most expedient to use for the solution of (4) a 
momentum representation, putting in the first step 

1 ~ ~ 

"",2 = ~I dPxJ dp, exp{ipxx+ip,y}!p", (p" p,) (5) 

and then introducing a polar coordinate system'in the co
ordinate and momentum spaces: 

x=r cos cp, y=r sin cp, Px=P cos a, p,=p sin a. 

We now expand in partial waves 

"",,{r,cp)= 1: "'~2{r)ei(m±'t.)., 
~ ,.' !p", (p, a) = ~ 'P",,(p) e'(m'±'t.l •. 
m' 

(6) 

Here m takes on only half-integer values; this is a mani
festation of the existence of Singularities of the terms at 
the origin and follows from the requirement that the total 
electron-hole wave function be unique on going around 
r = 0[5J. Using subsequently the length and energy units 
(11 2/FM)113 and (F2h2/M)113, we obtain 

(~2 _ E) cp,m+i (d: _ m~'/') !p,m=o, 

( p' ) (d m+'/) T- E !p2m+i d];+-p-' cp,m=o, 

More convenient for the study are the functions 

Om (p) = exp { -i I ( ~2 -E + 2:) dp} (cp,m (p)+'I',m(p» , 

Om(P)= exp { i S (~' -E- 2~ )dP} ('I',rn(p)_'I',m(p», 
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(7) 

(8) 
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which satisfy the system of equations 

~ am(p)=- ; exp {-2d (~' -E) dp} lim(p), 

~lim(p)=- ;exp{2d(~' -E)dp}am(p). 

(9) 

Solutions of this system, which is the basis for all the 
further investigations, have the following fundamental 
property: 

(10) 

Thus revealing that the system is'non-Hermitian, mean
ing that it is impossible to introduce a single classical 
trajectory [6J • Knowledge of <p?\(p) makes it possible to 
obtain the wave functions ' 

~ 

1jl,~ (r) =im±'" J p dp cp~, (p) lm±'" (pr), (11) 

satisfying the condition that they be finite as r - 0 
(Jm ± 1;2(pr) are Bessel functions); this condition must 
be satisfied in order that the solutions of the scattering 
problem be physically meaningful. 

The behavior of the solutions as r - 00 is investigated 
in the following manner: We set up the functions 

which are solutions of the problem (4) in an adiabatic 
basis: 

(12) 

1. m'+'/, ) m m. m 

(-(rp,)'+---r-E '1', (r)+-2' '1', (r)=O, 
2r' 2r2 r 

1 m'+'/ ) m 
(13) 

(-(rp,),+--' +r-E ,¥,m(r) +-2 ' 'I',m(r) =0, 
2r' 2r' r 

Pr is the radial momentum. For these we get from (8) 
and (11) the representation 

where 

'¥,m(r) = S dp[am(p)K,m(pr)+~m(p)K,m(pr)], 
o 

~ 

,¥,m(r)= S dp[am(p)K,m(pr)+~m(p)K,m(pr)], 
o 

am(p)= l': exp{i( r -Ep )}am(p), 

~m(P)= l'[ exp { -i (~' -EP) }1iJ/l(P), 

K,":.(pr) =im+'I. (lm+".(pr) 'Film_'I, (pr». 

(14) 

(15) 

(16) 

The main contribution to the integral (18) as r - 00 is / 
made by the vicinity of the saddle point p = (2(E + r))l 2, 
and as a result we get 

'I' ,m (r) - r~. cos (: (2 (r+E) )"'-cpo- -~ - ; ) . (20) 

We have put here 

am (+00) llim (+00) =e", (21) 

which corresponds to the choice const = 0 in (10). This 
choice of the arbitrary constant must be made in order 
to ensure an elastic character of the scattering. 

Expression (20) is the sought asymptotic form of the 
standing waves for the problem in question. Indeed, 
from (13) it follows that as r - 00, when the nonadiabatic 
coupling vanishes, ~(r) satisfies the equation 

( 1 m'+'/, ) 
-2r' (rp,)'+--v--r- E ,¥,m(r) =0, r-+ oo , 

which is the two-dimensional analog of the Airy equation 
describing the scattering states. 

The asymptotic form of ~(r) is determined mainly 
by the nonadiabatic coupling, since the physically mean
ingful solutions of the equation 

( 1 m'+'/, ) 
2r' (rp,)'+--v-+r- E 'l!t"'(r) =0, r-+ oo 

decrease exponentially as r - 00. The second equation 
of (13) shows, together with (20), that the principal term 
of the asymptotic form of \)I~(r) should be 

'¥,"'(r)- ~cos (~(2(r+E»".-m -..:::.-~) r'/·+2 3 ,,0 4 2' (22) 

This asymptotic form can be obtained directly from 
(14)-(17) by recognizing that, by virtue of the fundamen
tal equations (9), the following representation holds true 
as p - 00: 

a (p) =a(+oo) - ~7 Ii (+oo)exp{ -2i S (~' -E) dp}, 

6(p)=6(+oc)+ ~7 a(+00)exP{+2;f (~' -E )dp}. 

(23) 

The use of this representation together with the asymp
totic forms of (17) of order not higher than 1/pr leads to 
the vanishing of terms of order 1/r3/4 + 3/2 from ~(r). 
The next term in ~(r) is of order 1/r3/4 + 3 and corre
sponds to the asymptotic representation (22). 

The remainder of the problem is to find the phase 
shift X. For this it is necessary to solve the system (9). 

The asymptotic representation for K~\(pr) takes, accur- 2. SOLUTION OF PRINCIPAL EQUATIONS. QUASI-
ate to terms of order 1/(pr)2, the form CLASSICAL APPROXIMATION 

1/ 2 [( m' im' (m'-l) ) Kjm(pr)=im+V, f- -i+-+_ _ eipr-fmn/2 
,npr 2pr 2 (2pr) , , 

+ (~_ im(m'-l») rlP,+,m.',] 
2pr (2pr) , , 

(17) 

K,m (pr)::=( -1) m+'''K,m(pr). 

USing only the principal terms of this expansion, we ob
tain for ~(r) the expression 

( 1 )'1. ~ [ {( p' ) } '¥,m(r)"" ~ im+'l'S dp exp i 6-Ep -ipr+tIP. am(p) 

o (18) 

+ exp{ -i ( ~' - EP) +iPr-iIP'} 8m (p) ] 

in which 

cpo=n(m+1)/2. (19) 
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When the conditions 

E:J>l, m:J>1 (24) 

are satisfied, it is possible to obtain for the functions 

2; (p) = exp { i J ( ~' -E) dp } a (p), 

'" (p) = exp { -i f ( ~' -E) dp }Ii(p) 

(25) 

the following quasiclassical representations 

• • 
2;(p) =C, cos g exp {iB S w (P)dP} + C, sin g exp{ -iB S w (P)dP} ' 

(26) 

\ (p) =-G. sing exp {iB f w (P)dP} + C, cos gexp{ -iB f w (P)dP} 
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in which 

[ ( p' )' m' ]'" . (P' ) ro(p)= 2- E -7 ' e=Slgn 2- E , 

1 1m 
(27) 

g=2arctg pl'/,p'-EI 

Expression (26) approximates correctly the solution 
only at a sufficiently large distance from the zeroes of 
the adiabatic splitting 

(p'/2-E)'-m'/p'=O. (28) 

All the roots of this equation lie on the real p axiso 
Three of them are positive (Po, PI, PZ)o By solving the 
system (9) exactly near Po, PI, and pz and making these 
solutions continuous with the quasiclassical asymptotic 
relations (26) between Po, PI, and Pz, we can continue the 
solutions ~ (p) and ~ (p) along the entire positive p axis. 
A special role in the solution is played by the point p = 0, 
near which the functions ~ (p) and ~(p) should be regular, 
for otherwise ~m(r) acquires unphysical terms ~ rill as 
r - 00. Therefore 

2;(p) =Gop'I'(Jm-'I,(Ep) -ilm+'!.(Ep», 
(29) 

L\ (p) =-eop'" (Jm-'I, (Ep) +iJm+'!,(Ep». 

Here Jm ± 1;2 (Ep) are Bessel functions and Co is an arbi
trary constant. The representation (29) plays the role of 
the boundary condition at any placement of the zeroes 
Po, PI, and pz. 

A concrete continuation of the solutions can be car
ried out in the following cases. 

Case I: >. I Sro(p)dp 1~1, P, .• =O,Po,p"p,. (30) 
P, 

In this case the zeroes of po, PI, and pz are far enough 
from one another and near these zeroes the solution of 
the system (9) can be approximated by Airy functions. 
The transition from the region where the solutions in
cz:ease exponentially or decrease with the coefficients 
C!, z into the region of oscillations with coefficients cf, z 
is effected by the transformation [7J 

( e.')= (e-'.'" 0) ('/,1 1) (e,') "" (GI') 
el 0 e'·,l -'/,1 1 e,' S e,' . (31) 

The continuation from p «Po(C~,z) to P »Pz(Ci,z) as
sumes in this case the form 

(32) 

Here 
PI 

Q= S ro(p)dp, 
Po 

D= I f~(P)dP I· 
P' 

(33) 

We note that the most consistent procedure is that of 
simultaneously going around the two zeroes PI, and pz in 
the complex p plap.e with a Stokes parameter a 
a = i(1 + e-D)l/ze1GD (cp is an undetermined phase, 
cp - 0, D - (0), as against a = i in the case of (32). 

. However, the approximation (32) is sufficient at the ac
curacy of interest to uSo 

Since there is no solution that increases as p - 0 in 
the region p «Po, owing to (29) (C~ = 0), we obtain the 
following final coupling formulas: 

e,+=e- i." (2e D cos Q+'/2ie-D sin Q)G,o, 

C,+=e'·"(2eD cos Q-'Iz;e-D sin Q)e,O, 

which will be used to determine the phase shift Xo 
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(34) 

Case II: 

(35) 

The zeroes of the adiabatic splitting are located in this 
case at the points 

po=m/E, pl,2=Y2E+m/2E. (36) 

The action between the points PI and pz no longer satis
fies the condition (30) in this case, and the system (9) 
must be solved exactly in the interval between PI and pz. 
This can be done by virtue of the inequality (35), which 
enables us to regard PI,Z as a double root of the adia
batic splitting. The system (9) should then be approxi
mated at p R! PI,Z by a system of the form 

da/dz=-;v'I'e""b, (37) 

where 

Z=2'IY'·"(2E) 'I. (p_ (2E) 'I,), (38) 

v=-im'/2 (2E),I,. (39) 

The system (37) can be solved in terms of parabolic
cylinder functions Dv(z). 

In the remainder of the derivation of the coupling 
formulas it must be recognized that if the condition (35) 
is satisfied then the representation (29) is valid also at 
p > Po (p « PI, z)o This makes it possible to match to
gether the expressions (29) and the quasiclassical 
asymptotic relations 

2;(p)=C,oexp { -; j ro(P)dP}, 

"" (40) 
• 

L\ (p) =e,O exp { is ro(P)dP}, 

"" by using in (29) the Debye expansionso The transition 
from Po to PI(C;:, z) is given by a diagonal matrix with 
phase shifts ±n, and for the continuation from p < PI to 
P > pz it is necessary to use the rotation formulas in the 
solutions 

3 n (41) 
argz-=T n , argz+=-T 

and to match (41) to the quasiclassical asymptotic forms 
> 

2;(p)=e,'F exP { +i S ro(P)dP}, 
PI,2 

L\ (p)= C,'" exp { ±i J ro(P)dp}. 
PI,' 

The final coupling formulas are 
e,+=ao[e-'·+ (1-e-'·.) I/'et(.+o)jCo, 

C, +=ao [e,Q+ (1-e-'··) 'I'e-'(Q+o) jCo, 

where 

ao = 1/ 2 e •• r nE ' 

(42) 

(43) 

(44) 
n 

'P=-t;-arg r(l-i l1)+I1-f1 ln l1. (45) 

Case III. At energies close to the resonant-scattering 
threshold, Eo = (3;2)mz13, if the inequality 

(E-Eo)/Eo«.1 (46) 

is satisfied, the adiabatic-splitting zeroes that approach 
each other become Po and PI: 

po •• -moh=f('/.(E-Eo» 'I" 
_ 'I, 4 E-Eo 

p,-2m +9~' (47) 
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so that the standard relation between them can be the 
equation for the parabolic-cylinder functions[6]. The re
sult for ~ (p) is 

(48) 

where 
1 3"· £-Eo 

v~--+-m--. 
2 2 Eo 

(49) 

This solution can be joined together with the quasi
classical solution at p < po and, by virtue of the condi
tion (29), we should have Cl = 0, The continuation from 
Pl to P2 is effected by a diagonal matrix with elements 
e±D, the solution (48) is made continuous with the quasi
classical solution near p = Pl' The passage through the 
last zero P2 is given by the matrix (31). We note that 
both in case I and in case III small imaginary terms are 
disregarded in the second-order equations for ~ (p) and 
b.(p). It is assumed that they exert no strong influence 
on the Stokes parameter on passing through simple turn
ing points. The final coupling formulas can be expressed 
in the form 

Here 
\~(V+'/2)-(v+'/,)ln (v+'/,), 

(50) 

(51) 

(52) 

The obtained expressions make it possible to connect 
a(+oo) with a(-oo) and to determine the scattering phase 
shifts X/2. 

3. DETERMINATION OF THE SCATTERING PHASE 
SHIFTS AND THE LEVEL POSITIONS AND WIDTHS 

The connection between a(+oo) and a(-oo) follows from 
formulas (25) and (34), (43), (50) and takes the form 

(53) 

where 

s=lim (J W(P)dP-(~' -Ep)) +:.:.., 
p-~ m (j 2 

(54) 

As a result we obtain for X/2 the expression 
)( 1 CI + 

2=s+2 arg C,+ . (55) 

Thus, when the inequalities (30) are satisfied we have 

~ =s--':':" + arctg (~e-'D tg Q) 
2 4 4 ' (56) 

in the Landau-Zener region (35) we have 

~ =s+~<p+arctg [R-i tg ( Q +~<p)] R= (i-r'".) 'I. (57) 
2 2 RH 2 • 

while in the deep tunnel transition region (46) we have 

~ =s- : + arctg [ ~~~; e-'-2D cos nv} 

Near the resonances En' the resonant part of the 
phase shift X/2 can be represented in the form 

x' r z = arctg 2 (E-En) . 

(58) 

(59) 

As seen from (56)-(58), the resonant levels are in this 
case roots of the equations 

Q= (n+'/2) n, 
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(60a) 

(60b) 

v=n, n~O. 

For the widths we obtain respectively 
1 

r = 2 (dQ/dE). n e-'D, 
2 1 

r = (dWdEj. (R+l), e-2n
., 

f = exp{- (n+I/,) + (n+I/,)!n (n+I/2)} r 2D 

12n(dv/dEh, n! 

(60c) 

(61a) 

(61b) 

(61c) 

Let us examine some consequences of the results, First, 
inasmuch as in the deep tunnel region (49) we have 

E 3 'I i3 n (62) 
n=zm '+~(n+I/2)' nv=Q-z' 

both formula (60b) at IJ. »1 and formula (6Oc) reduce to 
(60a). Second, at n » 1 formula (61c) yields 

r = i e-2D • (63) 
2n(dv/dE)" 

In view of (62), this reduces to (61a). At the same time, 
when the condition E »%m213 is satisfied we have 

D=nJ1. (64) 

and consequently at Jl »1 formula (61b) coincides with 
(61a), Thus, the expressions 

Q~(n+';')n, 

C 
f= e-2D , C~l 

(65) 
2 (dWdE). , 

that describe well the resonant scattering by the conical 
potential in a wide range of parameters. The action 
varies in this case from 

Q=mn"'(E-Eo)/Y3, n«m (66) 

in the deep tunnel region to 

(67) 

near the top of the barrier. For D we have accordingly 

- - 2m3'!' 
D=m(f3 -!n(13+2»-'/,(n+'/,)ln--- n«m, 

(n+'/,) (68) 
m' 

D=n--- E'2>'/,m't.. 
2 (2E)'10 ' 

In the intermediate region, nand D can be expressed in 
terms of the elliptic integrals 

_ i SX' [ (x-xo) (XI-X) (x,-x) 1'" 
Q-4", X dx, 

(69) 

1 SX' [ (x-xo) (X-XI) (x,-x) J'" 
D=---;- dJ. 

ii Xl X 

Here xo, Xl, and X2 are the squares of the zeroes of the 
adiabatic splitting in increasing order, 

The two limiting cases (61b) and (61c), which differ in 
the form of the energy dependence of the resonance 
width, differ also with respect to the character of the 
classical motion, To this end, let us consider an arbi
trary linear trajectory in the (x, y) plane. We pass 
through this trajectory a plane perpendicular to the (xy) 
plane, and examine the intersection between this plane 
and the conic surfaces ±z, The hyperbolas 
z = ± (x2 + b 2)l/2 produced in this intersection make it 
possible to reduce the problem to a one-dimensional 
problem with unit forces and with slopes of opposite 
sign, It corresponds to a Landau-Zener parameter 
Jl = b 2/2v, where b is the impact distance and v is the 
velocity of the representative point. We see that 
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Jl = m 2/2(2E)312. Such a representation of Jl is obviously 
possible only at E » 1 and E »b, Le., for classical 
trajectories that penetr~te in the interior of the upper 
cone. At E ~ b(E ~ m 2 3) the motion occurs near the 
surface of the conical well and becomes circular. The 
decay problem reduces in this case to an investigation of 
transitions between parallel terms with an action radius 
determined by the tunnel decay with respect to r. 

CONCLUSION 

The results can be used to calculate the cross sec
tions for the scattering of atoms by two-atom molecules 
and to estimate the lifetimes of three-atom complexes. 
In the latter case they can be compared with the 
numerical calculations carried out in [9J for low energies 
(the initial sequence of values of the principal quantum 
number) and for a number of angular momenta m. The 
results of this comparison are perfectly satisfactory in 
the common region of parameters. 

In our case, terms of like symmetry of three-atom 
systems intersect along a line in three-dimensional 
space in the absence of spin-orbit interaction, or at the 
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point if this interaction is present. This leads to new 
possibilities for nonadiabatic transitions. 
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