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The transitions between the n 2 (n is the principal quantum number) degenerate states of an excited 
hydrogenlike ion during distant 'collisions with a heavy charged particle are considered. It is assumed 
that the nuclei move along classical trajectories, the interaction between them at large distances being 
close to the Coulomb interaction. The four-dimensional symmetry group of the nonrelativistic 
hydrogenlike atom is used in the dipole approximation for the interaction between an atomic electron 
and a charged particle to solve exactly the nonstationary Schrodinger equation for the electron in the 
basis of the n 2 degenerate states. The dynamical terms between which no transitions occur in the 
course of a collision and the dynamical wave functions of the quasimolecule that correspond to these 
terms are found. Interference between these states leads to oscillations in the angular dependences of 
the probabilities of transition between states with spherical quantum numbers. The limits of 
applicability of the theory are discussed. As an example, the reaction H + + He + (2s )~H + + He + (2p ) 

is considered in detail. 

1. INTRODUCTION 

We shall consider the collision between a hydrogen 
atom or a hydrogen-like ion in an excited state with the 
principal quantum nwnber n and a charged particle-a 
positive or negative ion whose structure will not be 
taken into consideration. We shall describe the relative 
motion of the two particles classically, assuming the 
trajectory of the motion to be given. As a result of the 
collision, a mixing of the n2 degenerate states of the 
hydrogen-like system will occur; under certain condi­
tions all the other transitions in the colliding particles 
can be neglected. 

Transitions between degenerate states have the 
peculiarity that the adiabatic approximation is not a 
good approximation even at low colliding-particle 
velocities, and the system of n2 first-order differential 
equations must be solved exactly, which significantly 
complicates the problem. Owing to the additional de­
generacy with respect to the quantum number l and the 
presence of the linear Stark effect, a hydrogen-like sys­
tem possesses a unique characteristic: there arises in 
a transition-inducing interaction with a charged particle 
a long-range term proportional to R-2 (R is the inter­
nuclear distance), i.e., a charge-dipole interaction 
arises. It is clear that this interaction plays the domi­
nantrole in sufficiently distant collisions, and the terms 
that falloff more rapidly with increasing R can be 
neglected. In its turn, for a purely dipole interaction 
the system of equations describing the mixing can be 
solved exactly, and we can construct from the degener­
ate hydrogen wave functions linear combinations which 
will only be multiplied by a factor in the course of a 
collision (i.e., we diagonalize the time-evolution matrix 
and, consequently, the S matrix), the coefficients of these 
linear combinations depending on the velocity of the in­
coming particle. We are thereby able to construct the 
dynamical eigenstates and the dynamical terms for our 
nonstationary problem. As far as we know, this is thus 
far the only sufficiently realistic example of such a con­
struction. 

It is interesting that to solve the problem we need to 
use results which have been obtained earlier for the 
problem of hydrogen energy level splitting in crossed 
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electric and magnetic fields and which are closely re­
lated to the four-dimensional rotation group, which ex­
plains the additional degeneracy[lJ. 

The total cross section for transition between degen­
erate states turns out to be infinite in the approximation 
under consideration here. A finite cross section is ob­
tainable only in the more exact calculation which takes 
into account the relativistic level splitting that decreases 
the transition probability for very distant collisions. 

The differential cross section for these transitions 
are obtained as a result of the interference between the 
dynamical eigenstates, but to compute the cross section 
we must know the trajectory of the relative motion of 
the particles. This trajectory is known with sufficient 
accuracy if the two colliding particles are charged, so 
that only their Coulomb interaction need be considered, 
the additional forces inducing the transitions being 
neglected. Such a calculation is carried out in Sec. 3 for 
the reaction W + He+(2s) ~ W + He+(2p), for which the 
characteristic interference oscillations of a cross sec­
tion are obtained. For the collision between an ion and 
a hydrogen atom, the computation of the differential 
cross section is complicated by the fact that the dipole 
interaction, which in this case not only induces the tran­
sitions, but is the main cause of the particle deflection, 
is different for different dynamical states, and we can­
not restrict ourselves to the consideration of one trajec­
tory when computing the scattering in a given direction. 

Measurements of both the total and the differential 
cross sections for the process in question have not as 
yet been performed. Among the measurements within 
our reach, the easiest is the measurement of the cross 
section for the decay of metastable atoms or ions in the 
2s state during collisions with ions, i.e., the experiment 
with crossed beams and the registration of La photons. 
The measurement of the differential cross section will 
require, in addition, the use of the coincidence technique 
to Simultaneously register the L photons and the ions 
scattered in a given direction, a grocedure which is now 
apparently on the verge of the possibilities of modern ex­
perimental techniques (allowing for the fact that the 
cross sections here are very high). We note also that 
the reaction under consideration may be important for 
astrophysics. 
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The n = 2 case has been theoretically investigated in 
a number of papers [2-6J , the most complete of which is 
the paper[5J by Chibisov. In all these papers only the 
total scattering cross section (which can in principle be 
estimated without solving the system of equations) is 
determined, and the case of rectilinear flight is consid­
ered. Thus, the greater part of the information which is 
obtained upon the solution of the system of equations, 
and which allows the determination of the angular depen­
dences, is not used. The method applied in these papers 
does not make use of the symmetry of the hydrogen 
atom, and does not allow a generalization to an arbitrary 
n, 

Furthermore, the results of[lJ were used in[7J to 
compute the collision-induced broadening of hydrogen 
spectral lines with arbitrary n, a broadening which is 
directly related to the process under consideration here. 
However, the authors did not determine the transition 
cross sections and the angular dependences, nor did they 
investigate the interference phenomena, 

It should be noted that the use of the four-dimensional 
symmetry of the hydrogen atom in the theory of atomic 
collisions is of fundamental interest in itself, and it is 
remarkable that the present problem is practically in­
soluble in the general form without the use of this sym­
metry. 

2. THE ELECTRON PROBLEM 

The wave function of the electron of a hydrogen-like 
system A with a nuclear charge ZA satisfies the non­
stationary Schrodinger equation 

a1jJ rR(t) 1 2 ZA (1) 
J'6'(t)1jJ=iat", J'6'=J'6'o-z. R3 (t)' J'eo=-TV ---;:-. 

We locate the origin at the center of the system A, set 
the charge of the incoming ion B equal to ZB' and as­
sume that the vector R(t) of the relative disposition of 
the particles is a given function of the time and that it is 
at all times large compared to the dimensions of the 
wave function of the system A, so that we can restrict 
ourselves to the consideration of the dipole term in the 
interaction. Here and below we use atomic units. Let us 
direct the x axis in opposition to the incoming-particle 
flux, i.e., along the vector R(-oo). Further, let the 
trajectory R(t) lie in the xy plane, and let us measure 
X (t)-the azimuthal angle of R(t) in this plane-from the 
x axis. 

Let us introduce a rotating coordinate system with 
the z' axis coinciding with the z axis of the fixed system 
and the x' axis directed along the vector R(t); we shall 
distinguish the quantities pertaining to this system by a 
prime. Then the Schrodinger equation assumes the form 

where 

(J'e'(t)-i :t)1jJ'(r',t)=o, (2) 

¢'=explix(t)I,]1j:, 

J'6"(t)=J'eo'-Z.-X' __ ~I' 
R3 (t) AlR'(t)" 

(3) 

(4) 

Here 1 is the angular momentum operator of the electron 
of the system A and L is the angular momentum of the 
relative motion of the heavy particles. The vector L is 
directed along the z axis and is equal to 

(5) 
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The operator J'6" coincides with the energy operator of a 
hydrogen atom located in crossed electric and magnetic 
fields if the diamagnetic term is neglected: 

Yt$'=J'6'o'+Er' +~HI' 
2c 

(6) 

(c is the velocity of light). The electric field E is direc­
ted parallel to the x' axis, and is equal in magnitude to 
E = - ZBR-2. The effective magnetic field is directed 
parallel to the z axis, and is equal to H = -2cLz /MR2. 
Its appearance in the rotating coordinate system is a 
consequence of the well-known Larmor theorem [8J . 

Finally, let us assume that the transitions occur only 
between states with a given n, i.e., we shall consider 
Eq. (2) in the n subspace of the n2 eigenfunctions corre­
sponding to the eigenvalue ;sAO) = -ZA(2n2rl of H~. Then 
the problem can be solved exactly in the general form if 
the results ofP] are used. The diagonalization of the 
energy operator (6) in the n subspace turns out to be 
possible owing to the operational equation in this sub­
space: 

r=-3nA/2ZA , (7) 

where A-a subsidiary integral of the motion-is the 
Runge- Lenz operator 

A=(-2Yt$o)-hH-([PX1l-[IXP]) -ZA";-} (8) 

connected with the 0(4) symmetry group of the hydrogen 
atom. In the n subspace the eigenvalues of 36' have, ac­
cording to [1J, the form 

,., ,.,CO}+ R-'( '+ ") '1/ • '+1 .. n-l 
<Dnn'n"=CD n "( n n ; n,n =-J,-] , ... ,]; ]=--; 

2 (9) 
_ 2 [ ( 3nE ) 2 ( H ) '] 'f, _ [ ( 3Z nn ) 2 L' 1 'f, 1-R - + - -- -- +- . 

2ZA 2c 2ZA JIf' . 

The quantum numbers n' and nil are the eigenvalues of 
the components of the commuting operators II = %(1 + A) 
and 12 = %(1- A) along the vectors 

1 3n 1 3n 
!o,=-H--E, !02=-H+-E. 

2c 2ZA 2c 2ZA 

It is more convenient here to express the eigenfunc­
tions if!nn/n"' in terms of the hydrogen-atom wave func­
tions if!nili;' obtained when the variables are separated 
in a parabolic coordinate system with its axis along the 
z axis; in this case it is easier to go over from the ro­
tating to the fixed system (in [lJ, the axis of the para­
bolic system was directed along E). The quantum num­
bers h and ~ are simply related to the ordinary para­
bolic quantum numbers nl, n2, and m: 

i,='I,(m+n2-n,), i,='/2 (m+n,-n,); 
(10) 

Using the same method employed in[lJ, we obtain the 
expansion in terms of the functions of the moving sys­
tem: 

1jJ:n'n"= t D;",(O,P"O)D;""(O,P"O)1jJ:',i,, (11) 

where the oinm's are the well-known Wigner functions of 
the spherical top and i3l and i32 are the angles between 
the vector H and the vectors W land W2' In our case 

3nl1fZ. n 
tg p=- 2LZA' 2'< p < n. (12) 

A similar expansion in terms of the fixed-basis func­
tions has the form 

; 

,I, '''= '\1 D',· (0 R O)D'". (0 _A O)e-i(i'+',lx,h .. (13) 'fnn n k..J 11 tl 'I"" n 12 , t-" 't'n1,l1' 

i,i:=-j 
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Let us now make the assumption that the angular mo­
mentum L is conserved during the motion of the heavy 
particles. Strictly speaking, only the total angular mo­
mentum L + 1 is conserved, and our assumption is ad­
missible if we consider the angular momentum L to be 
large and neglect momentum transfer from the heavy 
particles to the electron, i.e., assume that L »n. If 
now L = const, then in the moving system the functions 
I/!nn/n"' do not depend on the time explicitly, and depend 
on the form of the trajectory R(t) only through the 
parameter L. 

Let us seek the solution of Eq .. (2) in the form 
i 

.p' = ~ Cnn'""Ijl~"'"" exp (_~~O) t) 
n'n"=_j 

(14) 

and introduce in place of the time t a new variable X' 
which is the azimuthal angle. Then d/dt = (MR2r 1d/dX, 
the term with R-2 cancels out on both sides of the equa­
tion (it is precisely here that the unique characteristic 
of the dipole interaction appears), the coefficients of the 
system do not, in general, depend on X, and the system 
itself splits up into separate equations: 

transformations that the solution obtained by us for this 
case to the nonstationary electron problem coincides 
with the solution found byChibisov[5J (see also[6J ) in 
spherical basis for the particular case of rectilinear 
flight. 

3. THE CASE OF COULOMB INTERACTION BETWEEN 
THE HEAVY PARTICLES. THE LIMITS OF 
APPLICABILITY OF THE METHOD 

If the trajectory R(t) of the nuclei is given, then the 
formula (17) allows the immediate determination of the 
probability of transition between any atomic states I/!i 
and I/!f with a given n: 

Pi~t=I(.pdU(oo, _00) Iljlt> I'· (20) 

Let us consider the case when ZA;' 1. Then the mo­
tion of the heavy particles is determined largely by the 
Coulomb interaction 

V(R)=(Zc 1)Z./R. (21) 

Then the interaction of the charge ZB with the dipole 
induced in the atom as a result of the linear Stark effect 

. dc .. ,." M'"( (' ") 
t--a;;:-=L n +n Cnn'.". 

can be neglected in computing the trajectory if the con­
(15) dition 

Thus, the time-evolution operator U(t2' t 1) is diagonal in 
the n/-n" representation, its diagonal matrix elements 
being given by 

<n', nI/IUln' , nl/>=exp[-iv(n'+nl/)]; 

v=,"(ML-'I'1X, I'1x=x(t,)-x(t,). 
(16) 

In the moving parabolic basis I/!ni i' exp (-i~~O)t), we ob-
tain 1 2 

I 

<ni/i,'IUlni,i,>= ~ Di~'.'(O,~,O)D:"n"(O,-~,O) 
n'n" __ J 

(17) 
XD!.., (O,~, O)D;'." (0, -~, O)exp[ -iv(n'+nl/) J. 

Finally, the transition from the parabolic quantunl num­
bers il and iz to the spherical quantum numbers I and m 
is accomplished with the aid of the Clebsch-Gordan co­
efficients; in doing this, we must (as in the formula (11)) 
pay particular attention to the correct choice of the 
phases of the wave functions[9J • 

It is interesting that the operator U depends only on 
the angular momentum L and on the change ~X in the 
azimuthal angle, and does not depend on the other char­
acteristics of the trajectory of the particle motion. 

As was explained in [IJ , upon the application of mutu­
ally perpendicular electric and magnetic fields the de­
generacy of the energy levels of the hydrogen atom is not 
completely removed in first-order perturbation theory. 
In our nonstationary problem, this leads to a situation in 
which the operator U possesses special symmetry 
properties, to wit, 

<ni/i/f ul niJiz)= (_1)i l+il '-i2-i2 ' <ni./i/I u/ nizi,> 
=(-1r,+,,+l,+i"<n, -i.', -i,/IUln, -i" -i,)' (18) 

=(ni1i2'1 U I ni/iz>. 
The unitarity of U leads to additional relations between 
its matrix elements. 

For the particular case when n = 2, we obtain 
<2'/,'/,1 UI2'/,'/,)= (1-'/,sin' ~)cos v-i cos ~ sin v+'/,sin'~, 

<2'/,'/,1 UI2'/,-'/,)=-'/,sin ~[cos ~ cos v-cos ~-i sin v], (19) 
(2'/,-'/" U,2-'/,'/,>=1-(2'/,-'/,1 UI2'/,-'/,>=sin' ~ sin' v. 

All the remaining matrix elements can be obtained 
with the aid of (18). We can show by means of simple 
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p:t>'/,n2/ZA (Z"'-1) , (22) 

where p is the impact parameter for the nuclei, is ful­
filled. The scattering angle e in the potential (21) is 
connected with the angular momentwn by the relation 

1 8 
L(O) = -I (ZA-1)ZBlctg-

n 2 t (23) 

where v is the relative velocity of the nuclei. 

The cross section for scattering through an angle e 
(in the center of mass system) that accompanies the 
transitions of the atom from the state I/!i to the state I/!f 
is equal to 

where ac is the cross section for scattering in the 
Coulomb potential (21): 

(J (8)=[ (ZC1)ZB]2sin_'~ 
, 4E 2 ' 

(24) 

(25) 

E ~ %Mv2. The quantity Pi - f in the formula (24) should 
be computed with the aid of the formulas (17) and (20), it 
being necessary to use (23) and set ~X = 7f - Ee, where 
E = sign[(ZA - l)ZB], i.e., E = 1 if V(R) is a repulsive 
potential and E = -1 for the case of an attractive poten­
tial. 

In the n = 2 case the relation between the states with 
spherical and parabolic quantum numbers is especially 
simple (see, for example, [10J). Using this relation, we 
obtain with the aid of (20) the total transition probability 
between the metastable 2s state and the 2p state: 

tg ~ 
3Mu fl 

-::-:.,:.::..::...-,.,-- tg·- v (8) = (n-e8) (1 +tg' ") 't, 
ZA(ZA-1) 2' .' . 

(26) 

It follows from the formula (26) that for a sufficiently 
large value of Mv the probability P2s _ 2p(e) oscillates 
between zero and unity as the angle e varies. It is worth 
noting that the formula (26) for the transition probability 
does not explicitly contain ZB' the charge of the incom­
ing particle. The results for proton scattering by the 
ion He+(2s) are shown in Fig. 1. 
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FIG.!. Angular dependence of the 
2s -'> 2p transition probability for the 
reaction H+ + He+ (2s) ..... H+ + He+ (2p) 

~ 
I for different values of the energy E: 

. the dashed curve is for E = IO -3 a.u.; the 
dot-dash curve, for E = 10 -'2 a. u. ; the 

I continuous curve, for E = 0.1 a.u. Visible 
-1 is a double interference structure which 
i is due to the interaction of the 2s with 

_j the two 2p states. The oscillation fre-
'I quency increases with increasing E. The 

~,,=--I...Jl.,!;;--~Il...--b~. L-J limits of applicability of the computation 
0.8 6/;; are indicated in Fig. 2. 

Not allowed for in the paper is the fact that in reality 
an energy level with a given n is split by some small 
amount ~rel because of the presence of relativistic ef­
fects (the fine structure and the Lamb shift). If the con­
dition 

p/v«'1/tJ."" (27) 

is fulfilled, then in solving the nonstationary problem the 
indicated splitting need not be considered, and the tran­
sition probability between the fine-structure states can 
be found by simply computing the matrix elements of 
the above-obtained operator U between these states. 
The transition probability for the transitions 
2S1/2 :;:!: 2p112 and 2s112 :;:!: 2p312 then differs from the 
transition probability for the 2s - 2p transition only by 
statistical factors [sJ, and we obtain for the 2p 112 :;:!: 2P3/2 
transition probability the expression 

P2p,!,~'P'I, (8)=2P'P'I'~'P'I' (8)='I,{ 2-sin' ~(1-cosv) 

+sin' ~ (i-cos v)'-2 eos(n-eS) [ cos v + + sin' ~(i-cosv)] (28) 

+2 sin (n-8'8) cos ~ sin v }. 

For the case of rectilinear flight, ·we can derive from 
this formula the formula (13') of[sJ. 

Let us discuss the limits of applicability of the other 
approximations made in the course of the solution of the 
problem. The dipole approximation for the interaction 
potential is valid for large impact parameters: 

(29) 

This approximation does not allow the description of 
charge transfer, which is especially important in the 
symmetric (ZA = ZB) case. The neglect of charge trans­
fer is valid in this case if the condition 

(30) 

which becomes important at low collision velocities, is 
fulfilled. 

In order for the transitions between states with dif­
ferent n to be negligible, it is in any case necessary that 
the Stark splitting (~E ~ 3n2p-2ZAZB) of the energy 
levels due to the interaction with the charge ZB be sig­
nificantly smaller than the spacing (~E ~ ZA,n-3) between 
levels with different n, whence 

(31) 

Usually, this last limitation is stronger than (29). 
Further, estimating, according toe 11J , the transition 
probability for a nonadiabatic transition between levels 
with different n, and requiring that it be small, we ob­
tain 

(32) 
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FIG. 2. The limits of validity o( the approximations made in the 
calculation for the reaction H+ + He (2s) ..... H+ + He+ (2p): J) the negligibil­
ity of the relativistic splitting of the levels - the conditions (27); II) the 
negligibility of the transitions between states with different n - the 
condition (32); III) the negligibility of the dipole interaction in the 
trajectory complltation - the condition (22) - as well as the negligibil­
ity of the mixing of terms with different n in the effective electric field 
- the condition (31). The dashed curves represent the positions of the 
first five maxima of the 2s ..... 2p transition probability. It can be seen 
that the theory is applicable in a fairly large region, where the cross sec­
tion has a clearly expressed oscillatory structure. 

Finally, this same inequality guarantees a low probabil­
ity of n changing as a result of the rotation of the inter­
nuclear axis AB (such a coincidence is one of the conse­
quences of the characteristics of the dipole potential, 
which is inversely proportional to the square of the dis­
tance). 

The classical description of the nuclear motion for 
small-angle scattering is applicable in the case when the 
potential has a Coulomb asymptotic form for not too high 
velocities [l1J : 

(33) 

We show in Fig. 2 on the example of the H+ + He+ 
scattering that there exist regions of the variables E 
and e in which all the conditions (22), (27), and (29)- (33) 
are satisfied and the above-employed approximations 
are applicable. In doing this, we allowed for the fact 
that, strictly speaking, the indicated estimates should 
contain not the impact parameter p, but the distance of 
closest approach of the nuclei during a collision. This 
circumstance becomes important at large scattering 
angles, and is the cause of the deviation in Fig. 2 of the 
boundaries of applicability of the approximations from 
straight lines. Notice also that the violation of some of 
the conditions of applicability of the theory should not 
lead to the complete disappearance of the above-ob­
tained interference oscillations in the transition proba­
bility as a function of the scattering angle. In fact, the 
deviation at small R from the dipole approximation only 
yields a shift in the positions of the maxima, while the 
violation of the condition (32) leads to some damping of 
the oscillations as a result of the transition of the atom 
to states with a different n. 

4. CONCLUSION 
Using the obtained formulas, we can easily predict 

the results of the simultaneous measurement of the 
direction of the scattered particle and the direction and 
polarization of the emitted La quantum. Notice that in 
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the case of the 2s - 2p transition, the following selec­
tion rule is rigorously valid: the p state corresponding 
to the transition dipole moment perpendicular to the 
scattering plane (which contains the initial and final 
momenta of the scattered particle) is not populated. 
This leads to the linear polarization of the L quanta 
emitted in directions lying in the scattering p~ane. 

The total cross section for inelastic scattering for 
arbitrary n can be computed by integrating over the 
angles the obtained differential cross sections. In order 
to remove the logarithmic divergence that arises in the 
integration, it is necessary to take into account at large 
impact parameters the relativistic splitting of the levels 
of the atom and match the corresponding solutions in the 
intermediate region, as was done in Chibisov's paper[5]. 
Some difference between the results of this paper and 
our results arises because of the fact that the curvature 
of the trajectory has been taken into account in our ex­
pression for the transition probability. 

It is of interest to consider in the framework of the 
quantum or semiclassical approximation the motion of 
the colliding particles themselves with allowance for the 
dipole term in the interaction. This is especially impor­
tant for the computation of the angular distribution in the 
reaction W + H(2s) - H+ + H(2p). 

The present problem is, in a sense, unique: it is thus 
far the only nontrivial and sufficiently realistic case, in 
which the dynamical problem of strong interaction be­
tween states can be solved exactly. This enables us to 
explicitly introduce the concept of dynamical terms, 
whose role in our problem is played by the quantity 
y(n' + n")/R2, and of the corresponding dynamical 
quasi-molecule wave functions <P nn/n", which depend on 
the angular momentum L of the colliding particles. 
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