
The kinetics and integral characteristics of synchrotron radiation 
at high energies 

v. N. Baier, V. M. Katkov, and V. M. Strakhovenko 

Institute of Nuclear Physics, Siberian Division, USSR A.cademy of Sciences 
(Submitted June 13, 1973) 
Zh. Eksp. Teor. Fiz. 66, 81-95 (January 1974) 

The energy distribution function p(E, t) of particles radiating in a magnetic field during the time 
interval t is discussed with allowance for quantum corrections for the case when X < 1 <x is a 
parameter characterizing the quantum effects). The investigation is based on the use of the energy 
distribution moments at the time t, moments which prove to be analytically calculable. From these 
moments the function p(E, t) is determined with the aid of an interpolation procedure. Also found 
with allowance for the quantum corrections are the integral spectral and angular distributions of the 
radiation for the entire period of time during which the particle is in the field. 

1. INTRODUCTION 

We have of late been witnessing a new upsurge in 
interest in the problem of the synchrotron radiation of 
ultrarelativistic particles. This is connected, on the one 
hand, with the experiments planned for the most power­
ful accelerators, in which attempts will be made to ex­
tract the hard photons produced when high-energy elec­
trons (up to hundreds of GeV) pass through a strong 
(- 106 Oe) magnetic field (magnetic converters[I)) and, 
on the other, with the fact that the available indications 
of the existence of very strong fields (up to 1012 Oe) in 
astronomical objects(2) make it important that we know 
the characteristics of the radiation of relativistic parti­
cles in such fields. The instantaneous characteristics 
of the radiation (the spectrum, angular distribution, 
polarization, etc.) of particles with the energies in ques­
tion have been thorougly investiaged in both the classical 
and quantum regions [3-5). However, if we consider the 
problem of synchrotron radiation of a particle which is 
located in a magnetic field for a sufficiently long period 
of time and which does not receive energy during this 
time, then of primary interest are the integral charac­
teristics of the radiation of a particle that has traversed 
a definite path in the field1 ) (the integral spectrum and 
angular distribution of the radiation, the energy spread 
of the particles, etc.). To analyze this problem, we must 
solve the corresponding kinetic problem. The analysis 
in the classical region turns out to be quite Simple. 
Under the above-indicated conditions, however, the para­
meter 

(E is the particle energy, H is the magnetic field intensity, 
and Ho = m"c3/eh = 4.41 x 1013 Oe is the critical field) 
characterizing the quantum-mechanical effects is not 
negligibly small, and the quantum-mechanical approach 
must be used, which complicates to a great extent the 
solution of the kinetic problem. In such a formulation, 
the problem is also of theoretical interest. The present 
paper is devoted to the above-indicated range of problems. 

In Sec. 2 we formulate the computational procedure 
and determine the energy distribution moments for the 
particles at the time t. In Sec. 3 we obtain the integral 
characteristics of the radiation -the spectral and angular 
distributions of the radiation for the entire period of 
time during which the particle is in the field -with allow­
ance for the quantum effects. In Sec. 4 we discuss the 
form of the particle distribution function p(E, t). 
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2. THE DISTRIBUTION MOMENT 

The phenomena that occur during the motion of a 
high-energy charged particle in a magnetic field essen­
tially depend on the value of the parameter X. For X »1 
the emitted photons can (with a probability of the same 
order as the emission probability) produce particle pairs, 
i.e., the problem of the electron-photon shower should 
be considered. For X ::. 1 the probability of pair produc­
tion is exponentially suppressed, and it is sufficient to 
solve the problem of the radiation of the charged parti­
cle. It is precisely to this region that the presently 
known applications pertain, and we shall restrict our­
selves to it in the present paper. 

The kinetic equation for the energy distribution func­
tion p( E, t) of an electron located in a magnetic field for 
a time interval t has the form 

iip(e,t) =-W(e)p(e,t)+Soo W(e,e')p(e',t)de'. (2.1) 
iit 

Here W(E, E') is the probability density for the transition 
of an electron from the state with energy E' to the state 
with energy E with the emission of a photon of frequency 
W = (E'-€)tli: 

am' 1 { (e'-e)' 00 } 

W(e,e')=--=-- ---K'I'(v) + S K'h(y)dy , 
13nne" ee' 

(2.2) 

where v = 2(E' -E)/3EX(E'), and . 
W(e)= SW(e/,e)de'. (2.3) 

We shall consider magnetic fields which satisfy the in­
equality H « Ho, and in which the motion of a high-energy 
particle is always quasi-classical2); this implies, in par­
ticular, that the energy spectrum of the particle is quasi­
continuous. In view of this, it is sufficient to use the 
kinetic equation in the quasi-classical form (2.1). 

The expression (2.1) is the balance equation for the 
particle number in the energy representation. This type 
of equation is encountered in, for example, the problem 
of the electron-photon cascade in a medium, but its solu­
tion in a magnetic field meets with great difficulties 
owing to the complex nature of the kernel of (2.2). 

Let an electron beam in which the energy distribution 
is described by the function <P(E) enter a magnetic field H 
perpendicular to the beam at time t = 0, i.e., peE, 0) = 
<P(E). Let us define the function 

F",(t) = S p(e,t)g(e)de, (2.4 ) 
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where, evidently, 
F .. (O) = S lD(e}g(e}de, (2.5 ) 

o 

g( E) being an arbitrary function of the energy. If we set 
g(E) = Em in (2.4), then we obtain the distribution mo­
ments, which, if known, provide significant physical in­
formation. In the case when all the moments are known, 
we can, in principle, determine the distribution function. 

Let us differentiate the expression (2.4) n times with 
respect to time and express the time derivative entering 
into the right-hand side with the aid of the formula (2.1): 

anFq,(t) = S~ a,,-Ip(e',t} ['C (e'}]de' 
at" at"-' g , 

o 

where G is the linear integral operator 

" 
[Gg(e')] = S W (e, e')[g (e) -g(e') ]de. 

Repeating this procedure, we obtain 

anF", (t) S~ 
---= p(e,t)[C"g(e}]de, 

at" , 
where 

" 
[Cng(e')]= S wee, e') [C"-'g(e} ]de-W(e'} [C"-Ig(e'}] 

o 

" 
= SW(e, e'}{[G"-'g(e} ]-[G"-'g(e'} ]lde. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Expanding the function F<I>(t) in a Taylor series, and 
using (2.8) and (2.5), we find 

-oa t" GO 00 

F",(t} = r,~S lD(e)[Cng(e}]de=S de lD(e} [elGg(e}]. (2.10) 
n=O 0 0 

If the initial beam is monochromatic (i.e., <I> (E) = 6(E-Eo», 
then 

~ t" ~ (-l}"t" 
F,,,(t) = ~-cng(eo}= ~ --cp,,(e,}, 

~ n! ~ n! (2.11) 

where IPn(Eo) satisfies, in accordance with (2.9), the re­
lation .. 

cp,,(eo}= J de W(e.eo} [cp,,_I(f,}-cp..-.(e}], 
(2.12) 

'fo=l;( eo}. 

The above results are valid for an arbitrary equation 
of the type (2.1). Let us now proceed to consider the 
equation with the kernel (2.2), writing it in the form 

cds m H 1 -CSH~ ( s 1) 
W(u,eo}=---- dsr ----

nh Ifo 8";_,_,,, 2 3 (2.13) 

x r(-~. +~)_U_'_(3Xo}-('+t) [(1-~) (Hu}+u'] 
2 3 (Hu)' 38 ' 

where C > 2/3, XO = X(Eo); here we have made the change 
of variable u = (Eo-E)jE, which is often done in the syn­
chrotron-radiation problem, and have used the integral 
representation of the K functions (see[lll, p. 658). 

Let us find the energy distribution moments when 
g(E) = Em. Then the quantity IPn(Eo), which can be com­
puted according to the formulas (2.12) and (2.13), can 
be represented in the form of an n-tuple contour integral, 
there arising at each step of the iterative procedure in 
(2.12) an integral of the following form: 

rdU~,(HU} (1-; ) +u'] [1-(1+u)P"]=/(p,, .• ,,), (214) 
(Hu)- 3s" • 

where sn is the variable of the n -th integration when the 
representation (2.13) is used and (-Pn) is the power (of 
the energy, which enters into the expression through the 
quantity x) arising in the preceding step in the iteration 
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of the recurrence relation. Evaluating the integral (2.14), 
we find 

/ ~ _ 1'(s,,} {r(l- } (3 '+3 +1O)+ G r(-s,,-p,,) [s 3 

(P",''') I:i S" s" s" r(3-p,,)" (2.15) 

+s,,'(p,,+1) + s; (3p;-8p,,-dO)- ~ P,,(P,,-2)]} 

Using (2.15), we obtain the following expression for IPn 
(Eo), (2.12), in the case geE) = Em under consideration: 

, , ,D (s,,) 1jJ(s" s" ' , . ,s,,) 1jJ (s., s", , , , s"_,, -1,8,,-1) 1jJ(s" s"... (2.1 u) 
... , S,,-3, -1, -1, s,,_,) .. . 1jJ(s" -1, ... , -1, s,)¢( -1, -1, ... , -1, S,}, 

where 

D(s)=r(-; ++)r(-; --1-) r(s)(3xo}-(,+1) , 
(2.17) G 

~·(s",." s,,) = -rw l,p" '")~T(P." -s .. ), 

p.,=n- (m+l) +s,+.<,+ ... +s"_,, 

The integration in the formula (2.16) should be performed 
in the order S1, S2, ••.. The form of Pn ensues from the 
following argument: at each step in the iteration, starting 
from the second, there appears (see (2.13» an additional 
factor X -(si + 1), which in the aggregate makes to Pn the 
contribution n - 2 + S2 + ... + sn _ 1, while the power of 
the quantity X in the first iteration is (S1 + 1 - m). 

For X «1 we can, by successively closing the contours 
on the left and evaluating the integI;als in the formula 
(2.16), obtain an expression for IPn(Eo) in the form of an 
asymptotic series: 

(2.18 ) 
" Substituting the values thus computed into (2.11), and 

carrying out the summation over n, we find an expression 
for the moments. In the case when X-I, howeve r, the 
integration contours should be closed on the right, and a 
converging series for IPn( Eo) is then obtainable. Let us 
discuss the case X « 1 in greater detail. It is convenient 
here to write the recurrence relations (2.12) in the form 

cp" (Eo) =Q" (Eo) Cp,,-,( Eo), (2.19) 

where 
aV:! mIll -C+im 

Q" = - 24nh lfo 2nij_,,,dsD(s)T(p,,, -s) 

3Y3 I, (eo) m ,., 

= Hin -e-o-~b,'t(p", l) (.lXo)'-'. 

(2.20) 

Here 
(-1) '+1 , I 1 I 1 

b,=-- I (-+-}r(---) 
I! :l:3 2 ;J' (2.21 ) 

and IC(Eo) = 2am2xo/3ii is the classical intensity of the 
synchrotron radiation of particles with energy Eo. The 
values of Pn naturally depend on the points at which the 
residues were calculated in the preceding integrals. 
Substituting into (2.19) the functions IPn( E 0) and IPn _ 1 (Eo) 
in the form of the expansions (2.18), and equating the 
coefficients of the same powers of X, we obtain the fol­
lowing recurrence relation: 

36 I,. (e,) r,' 
Q",k = -,---- b,,+,_.a,,_c ,T(-- (m+n+r-1), k+2-r). (2 22) 

lLiJl Ell r"_ .(> '. 

Notice here that to describe the classical limit, we need 
to calculate all the residues at the point l = 2, the quantum 
corrections being the contributions of the poles at l > 2. 
Substituting IPn(Eo) from (2.18) into (2.11), we have 

(2.23 ) 
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The formulas found allow us to compute the distri­
bution moments (Em) in the form of a power series in 
Xo· In view of the well-known unwieldiness, we shall 
write out (Em) here up to terms - X~ and (E) up to the X~ 
terms. 

The following are the values of the quantities bi and 
T(-q, i) (i = 2, 3, 4, 5) which will be needed below: 

b,=- 2~, b,= 1On, b,=- ~n , b,= 77.2n; 
61'3 6' 1':1·3' 4!6' 

'(-q.2)=-iGq, ,(-q,3)=-22q(5+ij), (2.24) 

,(-q,4)=-4q(218+63q+7q'), 

,(-q, 5) =-2q[ 17q'!q+ 14) +1387q+3878]. 

Let us now compute the functions fk(t) for k = 0, 1, 2. 
For the chosen initial condition p(E, 0) = O(E - Eo), we 
have from (2.23): fo(O) = 1, fk s 1 (0) = O. For this reason, 
ao,o = 1, aO,k ~ 1 = O. Then 

.... (-t)" (-t)" I,(eo) 
foUl = ~--a,,,o= 1+ ~---- (n+m-1)a,,_I,o 

~ n! ~ n! eo 
,,-, "-1, (2.25) 

1,(eo) S =1---[t/o(t)+(m-1) dx /o(x)]. 
eo 0 

Differentiating (2.25) with respect to t, we find for fo(t) 
the equation: 

d/o (t) (Ht I, (eo) ) +m I, (eo) 10 (t) = 0, 
dt eo eo (2.26) 

/,(0)=1, 

whose solution is 

1 
/o(t)= (Hz)'" ' 

z = I,(eo) t. 
eo 

(2.27) 

Using (2.22) and (2.24) and the procedure employed 
in (2.25), we obtain for fl(t) the following equation: 

d/,(t) (Hz)+(m+1)":'-/ (t)= _ 55f3 [(m+5) d/o(t) +td'/o{t)] 
dt . t' 6·48 dt dt" 

(2.28) 
/,(0)=0, 

whose solution is 

m 55ia [ z (m+1)] 
/,(t)= (Hz)"'+1 . 3.48 21n(Hz)+ Hz -2- . (2.29) 

A successive calculation yields for any k the equation 

d/. z 
-;u(Hz) + (m+k)t'/'=1Jk (t) , /.(0)=6,.0, (2.30) 

where 17k(t) is expressible in terms of the derivatives 
of the functions fl (1 = 0, ... , k - 1) up to the (k + l-l)-th 
derivative. 

Let us give the mean quantities (Em) up to terms 
-X~: 

38 

<em) 1 { 55~3;.::0 m [ z (m+l)] 
~=(Hz)m 1 +--------;.si+z 21n(Hz)+ Hz -2-

_ ;'::o'm [27Z + 7z(m+1) (m+2) + 7(m+1)ln(1+zi] 
(Hz)' o(Hz) 

(2.31 ) 
+ (551'3)' ;'::o'm [2(m+l)ln2(HZ)+ln(HZ) [m(m+5)z+2(m-1)] 

48 (Hz)' 1+z 

+_z_ [5z'+-=-(62-5m+6m'+m')-2(m-l) ]]}. 
(Hz)' 8 
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eo. GeV / x·IO' 

H)() 0.887 I 0.94299 0.00276 -0.00017 0.00001 0.94489 
mo ri.32tl 

I 
0.731 0.0;'1 -0.011 0.003 0.773 

12(JO 10.64 O,!)7G 0.107 -0.026 0.006 0.663 
lXOO 15.9B O.47B O.I·\,> -0.0:11 0.006 0.594 
2'100 21.28 0.40;) 0.166 -O.O:W O.l)()" 0.;)48 

Here the first term in the curly brackets gives the clas­
sical result, the remaining terms being quantum correc­
tions of order XO and X~. 

In order to give an idea of the nature of the expres­
sions that arise when the subsequent corrections in XO 
are computed, and to determine the value of (E) more 
accurately, let us write out the correction 03(E) propor­
tional to X~: 

11,(8) . {771'3 [In(HZ) z ] --=;'::0' -- 68---+--(113z'+471z+392) 
eo 128 (1+z)' (1+z)' 

+ (551'3)'[81n'(HZ) + 41n'(Hz) (7z+1)- 21n(Hz) ( 
48 (Hz)' (Hz)' (Hz)' 9+22z 

-12z'-1Oz') + __ z -(15z'+133z'+21Oz'+98z+36) ] 
. 2(Hz)' (2.32) 

55f3 [841n2 (HZ) In(Hz) ( 
--- +--- 108z'+180z-68) 

48 (Hz)' (Hz)' 

+ 6(1:Z),(461Z'+2960Z 2+3327Z+408) n· 
It can be seen from the formulas (2.31) and (2.32) 

that the quantum corrections to (Em) decrease with time 
(with distance traversed in the field) more rapidly than 
the classical term, so that at very large times the quan­
tity (Em) is determined by the classical term. This cir­
cumstance will be discussed below. 

In the table we give values of (E(t) computed from the 
formulas (2.31) and (2.32) for a magnetic field H = 2 X 106 

De, a depth ct = 1.21 cm, and different initial energies 
Eo; EC is the classical value of (E) at the given depth and 
0k(E) are the corrections of order X~. As is well known, 
the expansion of the magnetic-bremsstrahlung intensity 
in an asymptotic power series in X yields satisfactory 
numerical results only for X < 0.1. This, however, applies 
to the formulas (2.31) and (2.32) for small z. For z > XO 
the region of applicability of these formulas broadens, 
which is illustrated by the table. For z »1 the leading 
terms of the expansion are, in comparison with the clas­
sical term l/z, of order X~/z. The values of (E) for the 
values of Hand t used by us have also been computed by 
White(Bl by a direct numerical solution of the basic 
integro-differential equation (2.1). The results obtained 
by him are of low accuracy (to within 4%), despite the 
use of high-performance electronic computers, and, 
within the limits of this accuracy, they agree with the 
results given in the table. 

Let us draw attention to the following important cir­
cumstance. Nowhere in the derivation of (2.16H2.31) 
did we assume that m was an integer. In fact, the results 
obtained are valid for any, including complex, m. The 
procedure developed allows us, in principle, to obtain 
the form of any integral transform of the function p(E, t) 
with respect to E, respectively choosing the function g(E) 
in (2.4)-(2.10). The inversion of this transform solves 
the problem of finding p(E, t). In this sense, the formulas 
(2.11) and (2.16) are Mellin transforms of the function 
p(E, t). Notice that to find integral characteristics of the 
type (A(t) = J A(E)p(E, t)dE, it is sufficient to know the 
form of the transform of p(E, t) in some integral trans­
formation. Indeed, let 
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A(e)=I A(s)s(s,e)ds; 

then 

(A(t»= IA(S)ds Ide s(s, e)p(e,t)= I dsA(s) ji(s,t). 

3. THE INTEGRAL CHARACTERISTICS OF THE 
RADIATION: ANGULAR DISTRIBUTION AND 
SPECTRUM 

Besides the energy averages at a given t, which were 
considered in the preceding section, of great interest 
are the integrals of the characteristics of the radiation 
over some interval of time (over the radiation observa­
tion time, over the entire period of time during which 
the particle is in the field, etc.). In this case it is con­
venient to first compute 

t, 

I p(e, t)dt. 
t, 

We shall consider this problem using as an example 
the following characteristics of the radiation: the total 
spectral distribution of the radiation for the entire 
period and the total angular distribution (over the angle 
of emission of the radiation relative to the plane of 
motion of the particle). With that end in view, let us take 
the time integral of the right-hand side of (2.31) and 
invert it. As a result, we obtain (up to terms - i) 

j p(e,t)dt=_l_. {Hc(e) [2+ ~)' I)(e-e,)] 
, 1,(,.) _ 

-)('(e) [20+7eoli(e-f,)-~e,'~6(e-eo)] 
G de 

1 d }' +c'(e) [:1+2e,6(e-e,)--eo'-6(e-eo) 1 ' 
4 de • 

5513 
c(e)=~X(f). 

(3.1 ) 

Using (3.1), we can find any total characteristics of the 
radiation up to terms - i. For this purpose, we must 
integrate the corresponding instantaneous characteris­
tics with (3.1). For the spectral distribution of the radi­
ation for the entire period of the motion of an electron 
in the field (until the particle ceases to be ultrarelati­
vistic3»), we have up to terms -X 

1 d8 913, Ioo 
[ y'I'-l (1) 3 ,] ---.-=--x K'I'(xy) - .. -+c(eo) !/--:;- -T)(eo)xy dy, 

fo dx 871 ,) _ t 

, (3.2) 

where K = 2fJ.w/3X(Eo)Eo and the variable y = (Eo/E)2. 

The first term in (3.2) is the classical result, which 
can be obtained from the instantaneous classical value 
of the intensity as a function of the frequency by integrat­
ing it over the time with allowance for the time depen­
dence of the energy of the emitting particle [3] (this prob­
lem is considered in[lOl). The remaining terms are the 
first quantum correction (-X). The forms of the classical 
spectrum c and the quantum corrections for Xo = 0.177 
(the curve 1) and XO = 0.089 (curve 2) are shown in Figs. 
1a and 2a. We show at the same time (Figs. 1b and 2b) 
the fraction ~ of the classical energy loss that is ac­
counted for by the radiation in the interval 0- K, to wit 

1 • d$ 
s=-I-dx. 

Eo u dr.. 

It can be seen that the dominant contribution to the energy 
loss falls in the region where K :s 1. For K « 1 the 
spectrum behaves like 1/IK, but the contribution of this 
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FIG. I. The plots - the curves c 
- of the integral spectrum (a) and 
the classical energy loss (b) as func­
tions of /( = 2hw/3EoX(€o); the 
curves 1 and 2 represent the first 
quantum corrections to the spec­
trum for XO = 0.177 and XO = 0.089 
respectively. 

10 

1 de 
c;, dx 
0.5 ,------------, 

FIG. 2. Same curves as in Fig. 1 
for the region /{ - 1. 

0.5 

0.9 

O,J 

of 

O,l 

O.l{ O.lJ 1.2 " 1. f' 

region to the energy loss is, as can be seen from Fig. 1, 
quite small (it is clear that the losses in this region are 
proportional to /K). For K > 1 the spectral distribution 
falls off exponentially. It is evident that the relative 
magnitude of the quantum corrections (as compared to 
the classical result) increases in the hard section of the 
spectrum. This is also evident from Figs. 1a and 2a. 
Notice that the integrals of the quantum corrections of 
each order in X over the entire region of variation of K 

vanish. This circumstance is a consequence of the law 
of conservation of energy, since the total energy lost 
during the radiation emission is Eo. 

For the angular distribution of the energy losses, we 
obtain the following expression (up to terms - X): 

~ d$ =2.. ~{3-4R'+R'+ 5513 x(e o)y'(7W+3Y'R 5 +2.(12Y'+7)R'] 
.eo dy 32 y' 72 • 4 

_..z.~~~~[39arctgy +l39(y'-1)+143y5+17y2jRS]}, (33' 
3113n y . ) 

where y = EOJ/m, R = (1 + y 2r1/2 , and J is the angle of 
emission of the radiation relative to the plane of motion 
of the particle. In Fig. 3 the curve c is the plot of the 
classical part of (3.3). The curves 1 and 2 represent the 
entire function (3.3) (with allowance for the first quantum 
correction) respectively for X = 0.266 and X = 0.133. The 
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I dG 
c;, d!! 

FIG. 3. The integral angular dis­
tribution as a function of y = Eo {JIm 

({J is the angle of emission of the 
radiation). The curve c is the classi­
cal distribution, while the curves I 
and 2 are the distributions with 
allowance for the first quantum cor­
rection for Xo respectively equal to 
0.266 and 0.133. 

points at which all the three curves intersect correspond 
to the value y = Yo at which the quantum corrections 
vanish, these corrections being negative when y < Yo and 
positive when y > Yo- Thus, the quantum corrections de­
crease the function E~ld{\/dy in comparison with its 
classical part when y < Yo and increase it when y >Yo. 
This is a reflection of the well-known fact[5l that the 
instantaneous angular distribution broadens with increas­
ing X. With allowance for the quantum corrections, the 
maximum of the distribution lies at J I O. Besides the 
quantum corrections, the decrease of the energy (E) in 
time also leads to the broadening of the angular distri­
bution (in comparison with the instantaneous distribution). 

4. THE DISTRIBUTION FUNCTION 

The process of the successive emission of photons 
by a particle in quantum electrodynamics is discrete in 
nature, the time intervals between the moments of emis­
sion being random. Therefore, it might be expected that 
the distribution function for a long interval of time (after 
a large number of emission events) would be of the 
Gaussian type. As the time increased further, the parti­
cles would, owing to the decrease with energy of the 
radiation intensity, accumulate in the low-energy region. 
This circumstance and the quantum retardation -the 
nonvanishing probability of finding a particle in an energy 
region from which it should escape according to the 
classical theory -lead to an asymmetry in the distribu­
tion curve about the point E = Emax where the distribu­
tion has its maximum; moreover, Emax < (E) and there 
is a "tail" on the higher-energy side. If at t = 0 we have 
p(E, 0) = OlE-Eo), then for small times (when only a few 
emission events have occurred) the particles are con­
centrated in a narrow (of width -XoEo) energy region con­
tiguous to Eo, there is a "tail" on the low-energy side, 
the quantum fluctuations in the emission process are 
important, and Emax > (E). Thus, the physical pictures 
of the process are different in the large- and small-
time regions, and we shall therefore consider them sep­
arately4) . Notice that after many emission events the 
mean particle-energy loss is well described by a contin­
uous (classical) emission process (see (2.31)). 

Let us now proceed to find the distribution p( E, t). 
The inversion of the classical part of (Em), given by 
(2.31), yields directly the classical distribution function 

polE, t)= o( e - 1~Z ), (4.1) 

where z = Ic(Eo)t/Eo (see (2.27)), i.e., the distribution 
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preserves the a-function form, while its center is dis­
placed in the time t to the point E = Eo/(l + z). The re­
sult (4.1) can also be easily obtained from the basic 
equation (2.1). Let us write it in the form 

ap(e,l) S~ S~ -a-t- = - W(u, e)p(E, t)du + W(u, e(1+u) )p(e(1+u), I)du, (4.2) 
o 0 

where the probability W(u, E) is defined in the same way 
as in (2.13), and let us take into account the fact that for 
X « 1 the dominant contribution to the integral over u is 
made by small u -X (see, for example, [5 l). Then the func­
tion of E(1 + u) can be expanded in powers of u. We ob­
tain as a result 

0p(E,t) = ~ ...!..~[In(e)p(e t)l 
at ~ n! Den " (4.3) 

1<=1 

where 
~ 

In (e) = S W(u, e) (eu)n dll. 

If we allow h - 0 on the right-hand side of the formula 
(4.3), which corresponds to a transition to the classical 
limit, then only the first term of the series will remain, 
in which 11 should be replaced by the classical value of 
the intensity, i.e., we have 

iip,(e, I) 0 1 
--, -=-[I,(e)p,(e,l) . (4.4) 

iJt Oe 

The solution of this equation for the initial condition 
PC(E, 0) = q,(E) will be the function 

(4.5) 

which clearly agrees with (4.1). To allow for the quantum 
corrections on the right-hand side of Eq. (4.3), we must 
retain the terms of the appropriate order in X. We must 
however, bear in mind that for the initial condition 
p(E, 0) = OlE - Eo) the expansion in powers of u in the 
second term of Eq. (4.2) makes sense only when (Eo-
E)/ E » X, since the upper limit of the u integral is prac­
tically equal to umax = (Eo - E)/E (when this inequality 
is fulfilled, the upper limit of the u integral can be re­
placed by <Xl ). The cited inequality is violated when E -
Eo - EX, i.e., in the region contiguous to the initial energy. 
For large t (when many emission events have taken place), 
the majority of the particles escape from this section, 
while for small t they are, on the contrary, concentrated 
in it. For this reason, Eq. (4.3) with the quantum correc­
tions is valid only for sufficiently large t, which leads 
to certain difficulties in the imposition of the initial (at 
t = 0) condtion. 

Besides the solution to Eq. (4.3), the distribution 
function p(E, t) can also be obtained by inverting the 
above-found distribution moments (2.31), which were 
computed with the singular initial condition p(E, 0) = 
O(E - Eo). To us, that is naturally a more direct approach. 
As a result of the inversion of (2.31) (see, for ex­
ample,l12 l), we obtain the function p(E, t) expressed in 
'terms of PC(E, t) and its derivatives. The singular nature 
of such a distribution is due to the allowance for the 
finite number of terms in the expansion of (Em) in powers 
of X. Although the indicated form of the distribution 
function is suitable for computing averages with, it does 
not impart the true character of the distribution, which, 
naturally, is a smooth function of E for t > O. The refore, 
of certain interest is the interpolation of the function 
p(E, t) by a smooth curve, such that it yields in the given 
order in X the correct values of the distribution moments. 
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On the basis of the above-expounded physical considera­
tions, we can, in the first order in X, interpolate the 
function p( E, t) by the Gaussian distribution: 

pl(e, l)=C , exp [-b(e-emo,)'J. 

Computing with this function the first two moments of 
the distribution up to terms -X, and taking into account 
the normalization condition for p( E, t), we find 

1 {(e-(e»'} pl(e,t)==-cxp ----- , 
]i2,d,' 26. 2 

(4.6) 

where 
, 551'3 eo'"xoz , 

""""(e')-(e) =-----+0('1.0) 
48 (Hz)' ' 

is the variance of the distribution; in (E) , the first quan­
tum correction should be retained. The distribution 
(4.6) gives (up to terms -X) the correct values of all the 
moments (Em); as t - 0, the function PI(E, t) - 6(E - Eo), 
while for large t (z » 1) it goes over into the classical 
distribution PC(E, t), (4.1). This is connected with the 
above-noted fact that when z » 1 the quantity (Em) is 
determined by the classical term. The width of the dis­
tribution curve first increases, attains its maximum at 
z '" 1/3, and then decreases again. 

To take the subsequent quantum corrections into ac­
count, we seek, in accordance with the foregoing, the 
distribution function in the form 

{ 
exp{-,-'b(e-emo")'}, ,,;;'emo" 

P2 (e, t) =C, 2}' exp{-b(e-emo,), e';;:;emo" 
(4.7) 

Let us compute with this function the first three distri­
bution moments up to terms -l, and solve the resulting 
system of equations for C2 , b, A, and Emax' This requires 
the solution of the following cubic equation. 

y'(n-3) -"'2y+B=O, (4.8) 

where 

B=3(e)(e')-(e')-2(e).3 = eo'xo'z [7-6 (55};) )' _Z_] . 
(Hz)' 48 l+z 

Notice that for z - 1 (more precisely, for z »Xo), the 
ration BIll. 2 is a small parameter (-Xo), which signifi­
cantly facilitates the solution of Eq. (4.8). In this case 

B [B2 ] Y = Y 1 + -::1" (n-3) , em~=(e>+y, 

1 [n2 2(3" )] Vb = d -y 8- 1 (4.9) 

C2 = V IJ., 1 . 
" l-yY"b/2 

This solution shows that: 1) the quantity y = Emax - (E) 
is at first positive, passes through zero at z - 0.4, and 
subseuqently remains negative; 2) the width of the distri-

cof(C,t) cul'(&,t) 

8 ~ 8 
10 

b 
10 

5 5 

~ 

Z 2 

U8 U.5 U~ U.2 U.6 U.5 U.~ U.2 
- &/&0 -&/co 

FIG. 4. The distribution function for a) Xo = 0.089 and b) XO = 
0.177 (H = 5 X 106 Oe). The numbers on the curves are the values of 
the effective range lH(l is in cm, H in units of 106 Oe). 
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bution curve first increases, and then decreases, P2 
going over into pc(E, t) at z» 1; 3) the height of the dis­
tribution curve first decreases, and then increases. 
Everything said here is well illustrated by the plots of 
the function5) EcP2(E, t) for X = 0.089 and X = 0.177 shown 
in Fig. 4. Notice again that the function P2(E, t) in the 
form (4.7) gives the correct values of all the moments 
(Em), (2.31), up terms ~ l. 

Let us now consider the region of small times t. For 
the initial condition peE, 0) = 6(E - Eo) chosen by us, of 
interest is the probability of finding a particle in some 
interval Eo-EoX (x < 1), a probability which is given by 
the quantity 

" 
A(eo,x,t)= S p(e,t)de, (4.10) 

with the proviso that A(Eo, x, 0) = 1. Using the basic 
equation (2.1), we can obtain the expansion of A(Eo, x, t) 
for small t. Indeed, 

irA "o,,-Ip(e, t) 
-=-Sde a(e,~), (4.11) 

ot" fJt',-1 
I' 

where (3 = EoX and , 
are. ~)= S \I (e', e)de'. (4.12) 

Then, clearly, 

ail I D' 1 
-.- =-a(eo,p), -"'I =a'(eo,~l 
Dt I~O ut- 1=0 

eo (4.13) 

- S ll'(e, eo) [are, il)-a(eo,~) Jde. 

To calculate the highest derivatives anAl atn , we must 
substitute into (4.11) the functions an- 1p(E, t)/atn - 1, 
obtained by differenting the basic equation (2.1), expres­
sing the derivative on the righthand side in terms of 
p( E, t) with the aid of (2.1), and repeating the process 
n - 2 times. We have as a result 

t' 
A (eo, x, t) =1--a(eo, ill t + -[ a2 (eo, ill 

2! 

'" (4.14) 
- S Wee, eo) [arE, ill-a(eo, ill Jde 1 + ... . . 

It follows directly from the formula (4.10) that 

p (e, t) =-iJA (eo, eie" t)lae. (4.15) 

If (l-x)/x »X, then the quantity a(Eo, (3) is exponentially 
small, which is due to the nature of the instantaneous 
spectrum of the radiation: a particle radiating energy 
in small portions -EoX cannot escape from the indicated 
region after a small number of emission events. Of pd­
mary interest at small t, however, is the energy region 
where (l-x)/x -X and in which the integrals entering 
into (4.14) can be evaluated only numerically. 

The authors are very grateful to D. V. Pestrikov for 
his help in the numerical computations. 

I)The individual problems for such a formulation have been considered 
in a number of papers[6 -10 J. 

2)The principal quantum number n = Ho ('Y2 - I )/2H is, under the 
assumed conditions, clearly much larger than one. 

3)Let us recall that when the energy of an electron becomes of the order 
of its mass, all the formulas used here (including the instantaneous 
characteristics of the radiation) cease to be valid. However, for Eo }> m, 
this region makes a negligibly small contribution to the total energy 
of the radiation. 
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4)Nowhere in the preceding sections did we, proceeding directly fram 
Eq. (2.1), use the explicit form of the distribution function; the ob­
tained results are therefore valid for any t. 

5)The function p(€, t) was computed by a direct numberical solution of 
the basic integra-differential equation (2.1) in[7, 8], and is given in 
the form of graphs for some values of the parameters. Our results 
essentially agree in this region with those obtained in[7, 8]. 
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