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A theory of the linewidth of a Raman laser excited by nonmonochromatic pump radiation with a 
spectral width much smaller than the linewidth of spontaneous scattering is developed. It is shown 
that the linewidth is determined by the additive contributions of two components, one of which is 
connected with the nonmonochr~matic nature of the pump and the other with spontaneous and 
thermal noise in the medium and the field. The contribution of these two factors near and well away 
from the excitation threshold of the Raman laser is discussed. 

1. There has been a considerable increase in the in­
terest in tunable Raman lasers since 1970 when Patel 
et al. succeeded in exciting stimulated Raman scattering 
(SRS) in a resonator in which the Stokes frequency was 
tuned by using a magnetic field to vary the period of 
spin oscillations in a semiconductor. [1J This was fol­
lowed by studies of the various characteristics of the 
pulsed and continuous operation of such lasers (usually 
referred to as spin-flip Raman lasers)[2-4J and, in par­
ticular, by measurements of the line width of the Raman 
radiation. [5J However, the theoretical line width was not 
considered although there was undoubtedly considerable 
interest in this quantity, especially since the tunable 
Raman laser has been finding extensive application in 
spectroscopy. [6J 

Before the line width of the Raman laser can be de­
termined, it is necessary to investigate the width of the 
spectrum of the Stokes component of SRS in the resona­
tor. This problem is solved in the present paper for the 
case of the excitation of SRS by a traveling pump wave 
within the framework of the classical analysis. A deriva­
tion is given of the line width of the Raman laser and it 
is shown that its value is determined by the additive 
contributions of two terms, one of which is connected 
with the effect of the nonmonochromatic nature of the 
pump and the other with spontaneous and thermal noise 
producing a natural broadening of the Stokes spectrum. 
The contribution of the two factors near and well away 
from the threshold for the excitation of the Raman laser 
is discussed. 

We note that the results obtained below refer not only 
to traveling-wave spin-flip Raman lasers, but also to 
other continuous generators whose operation is based on 
SRS in a resonator transparent to the external pump. 

2. We shall consider a Raman laser whose working 
material is located in a circular resonator in which the 
pump wave produces SRS. We shall describe SRS by the 
standard set of truncated equations for the complex am­
plitudes of the exciting 80, scattered 81> and phonon Q 
waves: [7Jl) 

(1) 

(2) 

These two equations take into account extraneous 
sources of noise which are responsible for spontaneous 
Raman scattering. The spectral source-correlation 
functions are, respectively, given by 

f ( ) • ( " 8(", •. ,)a •. , , , 
< 0.' "',Z fo., '" ,z» = 6(",-", )6(z-z), 

VO,lEoS 
(3) 
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q;(""J)~'("",z'» =, <:J(Il.: 6(",-",')6(z-z'). 
2:rrUo-PoT,S 

In these expressions, T2 and no are, respectively, the 
relaxation time and frequency of optical phonons, WI 

(4 ) 

= WO - no is the frequency of the Stokes radiation, S is 
the cross-sectional area of beams in the resonator, Eo 

is the permittivity, Po is the density of the medium, and 
n", nw 

8(w)=-+-----
2 exp(nw/kT)-i 

We shall assume that the circular resonator in which 
SRS takes place is tuned to the Stokes component and is 
transparent to the pump. The reflection coefficient of 
the mirror for Raman radiation is denoted by R, and the 
distributed losses in the medium are the same for both 
waves, a = 0'0 = 0'1' We shall confine our attention to the 
case when the width liwo of the pump spectrum is small 
in comparison with the line width T;1 of spontaneous 
scattering. This condition is usually satisfied in experi­
ments. (3-lB 

We shall write the solution of Eq. (2) in integral form 
and assume that the field 80 and 8 1 vary slowly along 
the time axis in comparison with the relaxation time T2. 
We then expand the integrand into a Doppler series. If 
we substitute the result in Eq. (1), we finally obtain 

3. We now use Eq. (5) to set up the equations for the 
phases cpo and cp 1 of the exciting and scattered waves 

( i a a ) " , 8<JJ -;;: iii. + 7h <p •. ,-g."g,T2-A,,0 lit 

A 1,oT2 , II . 1 I I, • 
=go,,---(~ cos q)+~ sm <JJ) + -(to, cos <po ,+/." sm <p.,,). 

A:)I AO,l 

(6) 

In these expressions cP = cpo - cp 1, !;; I and !;;" are the real 
and imaginary parts of the noise source 

_i-s' exp (-~) ~(z, t-,u)du, 
T, 1, 

o 

and f~ 1 and f~ 1 are the real and imaginary parts of the 
sourc~ fa l' The boundary conditions for the circular 
resonato; must be written in the form 

<po (z=o, t)=<Po(t), <p,(z=o, I)=<p,(z=l, t)+£(t). (7) 

In these expressions, ~ (t) is the correction to the phase 
of the Raman wave, which is due to the influence of zero­
point vacuum fluctuations which penetrate the semi­
transparent mirror (within the framework of the class-
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ical analysis which we are giving here). Simple calcula­
tions show that 

<S(t)S(t') > ~ (I-R)8(IU,) 6(t-t'). (8) 
4nveoSA,' (0) 

Since the line width of the Raman radiation in the con­
tinuous state is determined by phase fluctuations, the 
determination of the line width requires the solution of 
Eq. (6) subject to the boundary conditions given by Eq. 
(7). It is clear from Eq. (6) that relatively small fluctua­
tions in the amplitudes of the interacting waves have no 
substantial effect on the phase fluctuations. We shall use 
this fact in the determination of the line width and 
neglect the effect of small changes in the amplitude due 
to spontaneous and thermal noise, zero-point fluctuations 
penetrating the resonator through the semitransparent 
mirror, and possible small fluctuations in the pump in­
tensity at the entrance to the nonlinear medium.2) The 
amplitudes Ao and Al in Eq. (6) may be regarded (in the 
continuous state) as functions of only the longitudinal 
coordinate z, and their steady-state distribution may be 
described by 

( fJ a ) , 
fJz +""2 Ao.t~+go.,g,T,Ao.,A,.o (9) 

with the boundary conditions 

Ao'(O)~A""', A,'(O)~RA,'(l). (10) 

To simplify our analYSis, we shall also assume that 
the velocities of the two waves are equal, i.e., v = Vo 
= VI' Since the functions cpo and CPl are "slow," it can be 
shown that the statistical properties of the right-hand 
sides of Eq. (6) do not depend on the values of 4>, cpo, 
and cP l' In other words, Eq. (6) is statistically equiva­
lent[9J to the set of equations, the left-hand sides of 
which coincide with Eq. (6) and th~ right-hand sides are, 
correspondingly, equal to 

go.,A,.oT, s' + ~ ,;.,. 
A o.t AO,1 

We must now set up the equations for 4>. Subtracting 
the second equation in Eq. (6) from the first, we have 

1 8<1> fJ<I> iJ<I> -;;'"Dt + a~ - g,T2(g.,A,'-g,Ao')'Dt 

( A, Ao) , fo' ft' 
~ go--g,- T,\; +---. 

A, A, 04 0 A 

(11) 

Solving Eq. (11) and substituting the solution into Eq. 
(6), we can determine cpo and CPl' Next, using the boun­
dary conditions, we find the phase of the Stokes radiation 
in the z = 0 plane and its Fourier component cP 1 (0). We 
shall require the formula for the Fourier comp8b.ent 
near the zero frequency. Omitting the intermediate 
steps, we reproduce here the final result: 

q>,.I._o~L/M, 

L~ilUq>o"(O)S dzg,g,T,Ao'(z)+S g,A.(z) \;.'(z)dz 
A,(z) 

o • 

+ j f,.' (z) dz+ s (IU), 
o A,(z) 

I ' M~ilU(-;+ Sg,g,T,Ao'(z)dz). 
o 

(12) 

4. We now proceed directly to the determination of 
the spectrum of the Stokes component. We use the well­
known formula relating the spectrum width 0 W with the 
power spectrum of frequency fluctuations Sw: [9J 

6IU~2nlimS., (13) 
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where 
) S. ( , < q>oq>. , ~71) IU-lU). (14) 

Substituting for CP1w(0) in Eqs. (13) and (14), and using 
Eqs. (3), (4), and (8) and the fact that 

fA"(z)dZ~_a_f~+ I-R jA'(Z)dZ~al-lnR 
o A,'(z) 2g,g,T,0 A,'(z) 2g,g,T,A,'(0) ' o' 2g,g,T, 

[the last two results follow from the amplitude equation 
(9) and the boundary conditions (10)], we find the width 
of the spectrum of the Stokes radiation 

(15) 

In this expression owll) is the broadening of the spec­
trum due to the nonmonochromatic nature of the pump: 

tI) _ (T,/Tp) , I) 

6IU, - (l+T,ITp)' IU., (16) 

where T = 2[ v(a - In Hll)t l is the characteristic damp­
ing timePfor the amplitude of the Raman radiation in the 
resonator and owo = 27T lim Spw is the width of the pump 
spectrum. The value of OW~2 which characterizes the 
so-called natural broadening of the line is given by 

• ")_ lWIU, (8(Q.)/Q.+8(IU,)/IU,) (S' dz I-R) 
ulU, - a --+-- . 

SI'eo(I+T,/Tp ) , • A,'(z) A,'(O) 
(17) 

It is interesting to note that the value of owil) when T2 
is replaced with the damping time for the free wave 
coincides with the corresponding term in the formula for 
the line width of the localized parametric generator ex­
cited by nonmonochromatic radiation. [lOJ The expres­
sion for owi2) in the resonator case (R - 1) is similar to 
the expression for the natural line width of the laser and 
the parametriC oscillator obtained within the framework 
of the localized model. 

It follows from Eq. (17) that the natural width of the 
spectrum is determined by the additive contribution of 
spontaneous noise in the medium [term proportional to 
@(no)/n o] and the thermal noise associated with the elec­
tromagnetic field in the resonator and on the semitrans­
parent mirror [term proportional to @(Wl)/Wl]' In the 
quantum region (nno, nWl »kT), the contribution of 
the two factors which lead to the natural line broadening 
is the same. If, on the other hand, nno« kT« nWl, or 
nno« nWl «kT, the natural width of the spectrum is 
determined by spontaneous noise in the medium; in the 
opposite case (n WI «kT «nno, or nWl «nno« kT), 
the value of owi2) is determined by the thermal noise in 
the field. 3 ) , 

5. Let us consider Eqs. (16) and (17) in greater de­
tail. We begin with the natural line broadening. To de­
termine owi2), we must find the spatial distribution of 
the intensity of the Raman radiation in the resonator, 
i.e., solve Eq. (9). We shall not write out here the solu­
tion of Eq. (9) in the general form, but confine our atten­
tion to the detailed analysis of the natural line width for 
al « 1 which is the case of interest in practice. 

The dependence of ml = A~ and mo = A~ on the longi­
tudinal coordinate is 

rm,(O)exp(-az) r-2"(.m, 
m, ~ 2l"(.m,(0)+"(,mo(0)exp(-rz)]' mo=~, (18) 

where r = 2Yoffil(0) + 2YlmO(0) and YO,l = go,g2T2. The 
value of ml(O) is obtained by solving the transcendental 
equation 

(Re-"'-e- r')/(I-Re-"') ~"(.m, (0) i"(,mo(O). (19) 
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The integral I in Eq. (17) is given by 

S'dZ 2101 ( 1tmo(0) 1-e-(r-a),) 
1= -=- 1+--- . 

o m t r 10m,(0) (r-a)l 
(20) 

The generation threshold is given by 

2y,mo <h (O)l=al-In R. (21) 

If 1 - R « 1 and al « 1, we have the threshold condition 
2Y1moth(0)1 « 1. Near the threshold, the gain per pass 
is small, i.e., 2YlmO(0)1 « 1. For a small (but sufficient 
to enable us to neglect amplitude fluctuations) excess 
over the threshold [mo(O) - m oth(9) «moth(O)] we have 
the approximate formulas 

mt(O) ""mo(O)-mo th (0) 1= __ 1_. (22) 
3mo th (0) 101' m, (0) 

When 2 Y 1 mo(O)1 ;C; 1 (substantial gain per pass) 

I m,(O)= Rexp(-al) 1, mo(O), 
l-Rexp(-al) 10 

1=--. 
nl,(O) 

The natural line width for both the above cases is 

{)(".") = VOl, (8(Qo)/Qo+8(Ol,)/Ol,) 

IT pP,(1+T2/T p )' ' 

(23) 

(24) 

where PI = VEoffil(0)S/21T is the power carried by the 
Raman radiation in the z = 0 plane. We have used the 
fact that for 1 - R « 1 we can replace 1 - R by -In R. 

We now note the following point. The formula given by 
Eq. (24) was obtained on the approximation R - 1, and if 
we express PI in terms of the power of the radiation 
dissipated in the medium and through the resonator 
walls,. i.e., PI = ;lDVTp/2~, then the corresponding ex­
preSSlOn for t'lw~ ) when T2 IS replaced by the damping 
time for the free wave becomes identical with that ob­
tained earlier for the natural line width of the parame­
tric generator. [1OJ We can then use the analogy between 
the formulas for the line width of the parametric and 
quantum -mechanical generators, which was noted in [1OJ. 
To achieve this, the expression ® (no)/IHto + ® (Wl)/ti WI 

will be written in the form 

1+nQ,+i!., (no.=[exp(/iQolkT)-l)-' and n.,=[exp(/iOl,lkT)-J]-' 

which gives the mean numbers of the optical phonons 
and Stokes photons in equilibrium. Equation (24) with 
uno + Uw 1 replaced by the sum of the number of thermal 
photons and photons responsible for spontaneous emis­
sion, is identical with the formula for the line width due 
to the quantum-mechanical generator (see, for exam­
ple, [11J ). 

We must now analyze the expression given by Eq. 
(24). Near the generation threshold, PI tends to zero 
[see Eq. (22)] and the natural line broadening can be 
quite large. However, if the gain per transit through the 
resonator is greater than unity, Le., 2Ylmo(0)1 ?: 1, the 
Raman power becomes considerable and the natural line 
width can be very small. For example, when no/w 1 

= 0.2, we have 1'1/1'0 = 0.8 and when Re- al = 0.8, we 
have P 1 (0) = 3Po(0). When Po(O) = 1 W, T = 2.5 
X 10-10 sec, T2 = 10-11 sec, v = 2 X 1010 crE/sec, WI 

= 4 X 1014 sec-I, T = 2° K, I = 1 cm, the natural broaden­
ing is t'lw~2) = 0.5 sec-I. The output power P 10ut 
= (1 - R)P 1(0) is 0.6 W (when R ~ 0.8). 

When R « 1 and the excess over the threshold is 
mo = moth(O) ~ (YllrI, the value of m 1(0) can be ob­
tained from the formula (al = 0) 
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(25) 

The natural line width is 
Il (2)_ v'Ol,(8(Qo)/Qo+8(Ol,)/Ol,) 

Ol, - 2I'(1+T,ITp )' P, . 
(26) 

When Po(O) = 5W, R = 0.1, 1'1/1'0"" 0.8, the Raman radia­
tion power is 0.4 W. For WI = 4 X 1014 sec-I, T = 2°K, 
1 = 1 cm, v = 2 X 1010 cm /sec, the natural broadening is 
OW~2) = 8 sec-I. 

We now consider the contribution to broadening due 
to the fact that the pump is nonmonochromatic. When 
T2 « Tp' we have 

(27) 

If we suppose, following,5J, that T2 = 10- 11 sec, Tp 
= 2.5 X 10-!O sec, OWo = 5 X 106 sec-I, we obtain 
t'lwil) = 8000 sec-I, which is much greater than owi2). 
The approxir..late result OWL ~ owll) = 8000 sec- l is in 
very approximate correspondence with the measured 
value of the line width of Raman radiation in InSb. (5J It 
follows that the foregoing analysis leads to the conclu­
sion that the line broadening in the Raman laser is 
largely determined by the nonmonochromatic nature of 
the pump and to reduce OWL for owo < T?, the width of 
the spectrum of the exciting radiation or the parameter 
T2/Tp must be reduced. 

I)In deriving Eqs. (I) and (2), we neglect the change in the population 
difference between the vibrational levels in the course of SRS. (8). 

2)1t is important to note, however, that near the generation threshold, 
when the mean value of the Stokes componint is comparable with the 
magnitude of its amplitude fluctuations, the effect of the latter may 
turn out to be important. Such small excesses above the threshold will 
not be considered here. 

3)When account is taken of the change in the difference between the 
populations of vibrational levels during SRS, the natural line width 
OWl (2) will, in general, be slightly different, but an estimate of this 
quantity can be obtained by substituting the value of El which is a 
function of the new effective temperature (determined with allowance 
for the change in the populations) into the previous formula. However, 
in most cases of interest in practice, the change in the populations 
during SRS is quite negligible. [8) 
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