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It is shown how the intensity of gravitational radiation by an ultrarelativistic charge in an external 
electromagnetic field can be determined. The method is applicable to a wide class of problems. A 
closed expression is obtained for the intensity of the radiation emitted in circular motion in a 
Coulomb field. 

The problem of gravitational radiation emitted by an 
ultrarelativistic charged particle in an external elec
tromagnetic field has been discussed before in(1-4l. 
However the discussion of this problem in these papers 
seems to us not quite satisfactory for the reasons which 
are discussed in detail below. 

In the linear approximation (in the gravitational 
field) the Einstein equation can be written in the form 

D1jJ •• =X (T •• "+T./) , 

8.1Jl..=O. 

(1) 

(2) 

Here we set c = 1 and K2 = 167Tk, where k is the New
ton gravitational constant, 

and Khf..l /I is the deviation of the metric from the flat 
space metric; T~/I is the energy-momentum tensor of 
the particle, and T~ /I is the energy-momentum tensor 
of the electroma~netic field. The latter is quadratic in 
the field, i.e., T ~ FF + 2Ff + ff. The square FF of 
the external field F bears no relation to the motion of 
the particle and will therefore not be discussed in the 
sequel. There is also no need to discuss the square ff 
of the field f of the particle, since almost everywhere 
f « F, and at small distances from the particle, where 
f is large, its contribution is taken into account by a 
mass renormalization, Le., is already contained in 
TR/I' Thus, only the term 2Ff is important here, there
fore in the sequel we shall interpret T& /I to mean this 
quantity. This term is necessary for the conservation 
of the energy-momentum tensor, since for a particle in 
an external field the tensor T~ /I by itself is not con
served. It is incorrect to consider only T~ /I in Eq. (1) 
(the way the problem was solved in(i,4l). 

However, the contributions of Te /I and T~ /I to the 
field of the gravitational wave are different. Whereas 
the first is a usual divergent spherical wave, the second 
contribution does not fall off with the distance when the 
external field does not decrease at infinity and 

T' -r- I cxp {i(kr-",t)}. 

The reason for this is that the electromagnetic field of 
the particle goes over in a resonant manner into gravi
tational radiation. This effect was pointed out for the 
first time by Gertsenshtein[5l (cL also[2l). 

The problem of gravitational radiation in a uniform 
magnetic field has been considered by Pustovoit and 
Gertsenshtein[2l. They have attributed independent 
meaning to the part 1j;( 1) of the gravitational field which 
decreases with the di~Knce. However, it is easy to see 
that eJ..L1j;~lt;7! 0, the nonvanishing divergence of 1j;~1~ 
being necessary for the cancellation of terms ~l/r in 
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the divergence of the resonant part of the field. In itself 
the separation of a four-dimensionally transverse part 
from 1j;~1~ is not an unambiguous operation. Thus, the 
determmation of the nonresonant part of the gravita
tional radiation turns out somewhat difficult in the case 
of an infinite homogeneous external field. A model with 
an arbitrarily cutoff homogeneous field is not admissi
ble, since such a cutoff violates the Maxwell equations, 
and thus leads to a nonconservation of the energy-mo
mentum tensor. 

It is therefore natural to consider an inhomogeneous
field problem of the simplest possible variety: the 
motion along a circular trajectory in a Coulomb field. 
The wavelength of the electromagnetic radiation of the 
ultrarelativistic particle is much smaller than the 
radius ro of the orbit, so that the external field varies 
little over a wavelength. Consequently, one may speak 
of a resonant transition of the electromagnetic radiation 
into gravitational radiation. Let us calculate this effect. 

Let Q be the charge at the center; e, m are the 
charge and mass of the particle. Then eQ ~ ymro 
= Era, where y = (1 - v2 t 1/ 2 • In the ultrarelativistic 
case (y » 1) the synchrotron radiation is concentrated 
in a narrow cone along the tangent to the trajectory. 
Inside the cone one may assume that the external field 
depends only on the coordinate x along the ray. There
fore we look for a solution of Eq. (0 in the form 

1(1,/ = : .E a •• ("" x)expU", (x-t)), . 
where aJ..L/I(w, x) is a slowly varying function of x. Sub
stituting into the right-hand side of Eq. (1) the expres
sion of T& /I in the wave zone of the synchrotron radia
tion: 

, 1 ~ . 
T •• = -;; L..i '". ("" x)exph", (x-t)), . 

we arrive at the equation (for wx » 1) 

. dall., dZall'Y 2,,,, --+ -- = 'X'IIlV, 
dx dx" 

(3) 

We neglect the second derivative of the slowly varying 
function aJ..Lv(w, x). Then the solution at infinity has the 
form 

a •• (",)=...2..S dx, •• (""x). 2,,,, 0 

(4) 

Only the following components contribute to the gravita
tional radiation: ayy, ayz , azz . Taking into account the 
explicit form to T J..L /I it is easy to see that the resonance 
transformation comes about on account of the compon
ents of the external field which are orthogonal to the 
direction of the wave[4l. Simple calculations lead us to 
the following expression for the intensity of the reso
nant gravitational radiation: 
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kQ' 2 ke' 2km' 
lre.=-,-Iem = -3 -2 1~=-3 2 16, 

To ro ro 
(5) 

where 

(6) 

is the intensity of the synchrotron radiation. It is obvi
ous that the angular and spectral distributions of Ires 
and Iem coincide. 

Let us estimate the intensity of the nonresonance 
gravitational radiation, Igr . For this purpose we com
pare it with Ie m' These quantities differ, first, in 
their coupling constant: kE2 in Igr, versus e2 in Iem; 
second, the component of the vector potential which 
contributes to the electromagnetic radiation is three
dimensionally transverse, Le., Al ~ 8 ~ Y-\ whereas 
the potential of the gravitational field is doubly trans
verse l/JII ~ 82 ~ y-2. (Here we have taken into account 
the purely kinematic circumstance that any radiation 
emitted by an ultrarelati vistic particle is concentrated 
in a cone with opening angle 8 ~ y-'.) Taking these two 
differences into account yields, together with Eq. (6) 

(7) 

This result was obtained by Doroshkevich, Novikov and 
[6 ' Polnarev ], who have considered the problem of the 

ultrare lati vis tic rotator. 

It is now clear that the expression (5) is the correct 
ultrarelati vistic approximation to the total intensity of 
the gravitational radiation by a charge moving along a 
circular orbit in a Coulomb field. This result is also 
confirmed by a direct calculation (cf. the Appendix). 

The problem under consideration was solved by 
Peters[7] by numerical methods. Qualitatively, his re
sult agrees with ours, but the numerical coefficient 
obtained by Peters is about four times larger than ours. 
(see note added in proof-transl.) We cannot indicate the 
concrete cause for this discrepancy, in view of the 
numerical character of the calculation in[3]. 

It is quite clear that the intensity Ires can be com
puted for motions in any slowly varying field, whenever 
Iem is known. Let us find in the general case the condi
tions for which Ires will make up the major fraction of 
the gravitational radiation. Let us first consider the 
case when the deviation angle O! of the particle in the 
field is much larger than the opening angle of the cone 
in which the radiation is concentrated, 8 ~ y-'. Then 
the estimates (6) and (7) hold for Iem and 19r, with ro 
replaced by a characteristic impact parameter. In this 
case 

(8) 

where F is the characteristic intensity of the external 
field, a is the path traversed by light in this field. 
From Eqs. (7), (8) it follows that 

I;,.,/Ig,-a'1'/R', (9 ) 

where R = de F is the radius of curvature of the tra
jectory of the particle. If the paths traversed by the 
particle and light in the external field are of the same 
order of magnitude, then aiR ~ O! »y-' and, conse
quently, resonant radiation dominates. This is the 
general solution of the problem of gravitational radia
tion emitted in fields which are sufficiently strong and 
vary slowly. 
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Similar estimates for O! «y-' (here both lem and 
Igr turn out to be y2 times smaller than for O! » y-' ) 
show that in this case the contribution of the resonant 
radiation is small. 

Let us now prove that the resonant and nonresonant 
parts of the gravitational radiation do not interfere. 
(This circumstance was noted inE2] for the case of a 
uniform magnetic field.) From the absence of inter
ference it is clear than Ires is in any case a lower 
bound for the total intensity of gravitational radiation. 

For the proof we expand the solution of Eq. (1) in a 
Fourier series in time: 

(10) 

Here Wo is the circular frequency of revolution of the 
partiCle. The solution of the stationary wave equation 

(il +n'ru,') $.," (r) =xT., n (r) 

in the wave zone has the usual form 

(11) 

'X eikR 

$.,n(R)= -4n""T T.,n(k) , (12) 

where T~ v(k) is the space Fourier transform of 
TUv(r), k being the propagation vector of the radiation 
detected at the point R. The contribution of the electro
magnetic field to TUv(k) can be represented as a con
volution of the Fourier transforms of the external field 
and of the field of the particle: 

T,n(kl=_1-J dq~(k-q)f(q) (13) 
(2,,) 3 • 

The Fourier transform f( q) of the field of the particle 
is related in the following manner to the Fourier trans
form j (q) of the current: 

f ( ) _ j( q) ( ) [1 (" ] 
q k -q'+ie j q P k2_q' - i,,1l k -q) . (14) 

The second term in the square brackets is a solution of 
the wave equation and therefore its contribution corre
sponds to resonance radiation. The phase of this term 
is shifted by 71/2 with respect to the nonresonant part 
l/J& v' which in turn must have the same phase as l/JR v' 

in order to guarantee the transversality of their sum. 
This proves the foregoing assertion. 

Unfortunately, the problem under consideration pre
sents a purely methodological interest, since in all 
known real situations the intensity of the radiation turns 
out to be minute. 

In conclusion, we wish to thank sincerely A. I. 
Vainshtein, V. V. Flambaum and E. V. Shuryak for 
valuable discussions. 

APPENDIX 

We now carry out a direct computation of the gravi
tational radiation emitted by an ultrarelativistic parti
cle moving in a Coulomb field along a circular orbit. 
Regarding the part l/J~ v of the gravitational field which 
has T~ v as source, It is calculated in the usual manner 

(cf. e.g.,E2]). We do not carry out these calculations 
here, the more so, fince l/J~ v is a quantity of higher 
order in y-' than l/JlJ.v' 

The calculation of all the components of the tensor 
l/J~ v is useful in the sense that it allows for an inde
pendent verification of the calculation which makes use 

O. P. Sushkov and I. B. Khriplovich 2 



of the condition (2), taking, of course, into account 
1/Ie /I' However here we calculate only those components 

of 1/1& /I which contribute ·to the intensity, leaving out 

systematically from 1/I~n components proportional to 
limn and kmbn (m, n = 1, 2, 3), where k is the propa
gation vector of the radiation and b is an arbitrary 
vector. 

The tensor T~n has the form 

(A.1) 

where fT m is the external field and Em is the field of 
the particle. The arrow denotes here and in the sequel 
that terms proportional to limn and kmbn have been 
omitted. 

Making use of Eqs. (12), (13), (A.1), as well as of 
the explicit form of the Fourier transforms fTm(k - p) 
and Em( q), we find the following expression for 
1/Iff in the wave zone: 

dq e-'q, • 
X J (k-qj'(k'-q'+ie) {(k-q),(kv-q);+(k-q);(kv-q),l. 

(A.2) 

Here ro (t) and v( t) are the coordinate and velocity of 
the particle. The integral 

J d _iq, (k-q),(kv-q); 
qe (k-q)'(k'-q'+ie) 

can be reduced with the help of the Feynman para
metrization 

, 
a-'b-'= J dx[ax+b(1-x)]-' 

" 
to the form 

-k' ~ dx exp{ixkr-i(1-x) kr} r; [ikv; + ~j (ikx - + ) ]. (A.3) 

After substituting (A.3) into (A.2) the integration with 
res pect to r can be carried out tri vially . 

We now define the coordinate system. Assume the 
trajectory to be in the (x, y) plane and the observation 
point to be in the (y, z) plane, so that R = R(O, sin e, 
cos e). The integration with respect to t then leads to 
Bessel functions and we obtain the following equations 
for the components of 1/1'?-. in terms of which one can 
express the intensity of \~e radiation: 

{ 1 +cos' e [ 1 ( 1 )] x J:(~)--. - 1-- i(l-x)--
xSln8 nv nv 

3 SOy. Phys.·JETP, Vol. 39, No.1, July 1974 

[ ( 1 +cos' e ) ( 1) 1 +cos' e ]} +In(~) --. --cos'e i(1-x)-~ - . , 
x'v' sm' Jl' nv nvx' sm' 8 . 

(A.4) 
x ke'" I { i cos e 'P .. fn cos 8 =~--J dxe'n",-x, J:(6)--.-

4n R 0 xvsmO 

[ V 1] [V 1 . --+i(1-x)-- -icos8J.(6) ----.-
n nv Z x'vsm8 

1 ( 1 )]} + i(1-x)--. 
nx'v' sin' 8 . nv (A.5) 

Here ~ = nvx sin (J, Integrals of the type 
I J dxJn (6)exp{inv(1-x)} 

o 

can be calculated for large n (and for ultrarelativistic 
particles n » 1 are essential) by expanding 
In(nvx sin (J) in the neighborhood of x = 1 in powers of 
x-I. Then the integration yields a series in powers 
of n- 1/ 3 • Since the main contribution comes from 
n ~ y3 we obtain the gravitational field in the wave zone 
as an expansion in powers of y-l. The intensity of radi
ation after all substitutions reduces to the form (only 
the leading terms in yare written out) 

dl ka' r.~ . 
-= -- n'[J" '(nv sin 8) +ctg' el,,'(nvsin8)], 
dQ Zl1ro' . 

(A.6) 
n~1 

or 
kQ' > 

dl=-dl,m, (A.7) 
ru' 

in complete agreement with the result contained in the 
main text. 

Note added in proof (20 November 1973). As Professor Peters kindly 
informed us, after receiving our preprint he has discovered a programming 
error, the correction of which has led to agreement between his results 
and ours. 
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