
Structure of the bound-state spectrum of two rotons in 
superfluid helium 

L. P. Pitaevski'f and I. A. Fornin 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences 
Institute of Physical Problems, USSR Academy of Sciences 
(Submitted July 25, 1973) 
Zh. Eksp. Teor. Fiz. 65, 2516-2521 (December 1973) 

The behavior of the branches of the superfluid helium spectrum corresponding to the bound states of 
two rotons is considered. An explicit expression is obtained for the dependence of the binding energy 
on the total momentum of the two rotons in the range of low momenta ~«y' /-Ie). The asymptotic 
behavior of the branches in the. high momentum range, Po ~ I p I ~ (y' /-Ie), is found. An estimate is 
obtained for the width of the bound state due to the possibility of decay into two phonons. 

As is well known, the infinitesimally weak attraction value € == 2~- E '" 0.37 "K for l = 2, Le., it is very small 
between rotons leads to the formation of a bound state in comparison with ~ and p5/2f..L, which also validates 
with energy E < 2~. [1-3] At P = 0 (p is the total momen- the neglect in r of the dependence on p. 
tum of the rotons), these states can be claSSified ac- In the integral over d4Q' the important values are 
cording to the value of the angular momentum l = 0, 2, 4, w' '" ~ and I q 'I == q' '" Po; ther!tfore we can assume w' 
... The experimental data on combination scattering of d" th rgu ents of rand r to be equal to these 
li~ht in he~ium a~parently indicate ~hat the bo~d state ~~lu~s.I~he~:the:remains in r only the dependence 
wIth l = 0 IS lacking, but that there IS a state Wlth l = 2. on the angle between q and q' and in r the dependence 
It is natural to suppose that there are bound states with on p E and the angles betwee~ q and p and q' and p 
larger l that have not yet been discovered experimentally, We c~n then integrate in (1) over dq' and dw' ,11 as a . 
For p ¢ 0, the energy of the bound state depends on result of which we obtain the equation 
I pi == p and this state can be regarded as a new branch 
of the spectrum in helium. The aim of the present note 
is a discussion of the path of this branch as a function 
of p. 

We first note that at p= 0, the state with l = 2 is five
fold degenerate in its values of m (by m we understand 
the projection of the angular momentum in the p direc
tion). The degeneracy in I ml is removed at finite p; 
there remains only the degeneracy in the sign of m; 
therefore the state which has the angular momentum 
l = 2 at p = 0 is split at p ¢ 0 into three states with 
I ml =0,1,2. These states possess a certain "helicity," 
but no longer have definite l, the contributions from 
the various l being intermingled. 

The equation of the bound state is obtained by sum
mation of diagrams with "dangerous" cross sections, 
Le., cross sections in which there are two roton lines. 
The equation for the vertex part has the form [4] 

r(Q,p-Q; P"p,)=r(Q,p-Q; P"P,) 

+ 2~ Jf(Q,P-Q; Q', P-Q')G(Q')G(p-Q')r(Q', P-Q', P"p.) ~~~)3' 
(1) 

The capital letters indicate "4-vectors;" P = {E, p}, 
Q = {w, q} and so on. The energy of the bound state is 
determined by the pole of r. Near the pole one can 
neglect the free term with r, after which one obtains 
a homogeneous equation in which the eigenvalues of the 
total energy E of the rotons determine the energy of 
the bound states. 

The momenta P3 and P4 are not affected by Eq. (1) 
and the dependence on them can be left out of account. 
We also note that one can neglect the dependence on the 
total momentum p in r. This is a well-based approxi
mation. The fact is that, as we shall see below, the in
tegral of the product of two G functions that appears in 
(1), depends on the momentum on the characteristic 
interval [f..L(2~- E)]1/2. One can expect the dependence of 
r on p to be important only at P-PO (Po is, as usual, 
the location of the roton minimum in the spectrum of 
superfluid helium €= ~+(P-PO)2/2f..L). The experimental 
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r=- J.lp.~ S do,' rr 
nfl' 4n [4J.1B+P'(X')')"" 

where € = 2~- E and x' is the cosine of the angle be
tween q' and p'. 

(2) 

The total momentum p of the rotons plays the role 
of a parameter in the above equation. We choose the 
direct ion of p as the polar axis, and locate the x axis 
in the plane of the vectors P3P4. We expand the quanti
ties that enter into the equation in series in spherical 
harmonics: 

r(Q,p-Q)= 1:,r,m(B,p; 0), q) N,mp,m(x) elm." 

where 

1m 

x= cos 8q , 8q is the angle between p 

N m= [21+1 (l-Iml)! ]'1. 
I 2 (Hlml)! 

and q, 

are the normalization factors for the Legendre poly
nomials pF(x). 

- nfl' ~ r= -i-J (21+1J1,P, (cos e), 
J.lP. , 

and 8 is the angle between q and q'. 

Substituting these expansions in (2) and integrating 
over doq', we obtain the equation 

1:, (1,B'm'mHI,') r'm=O, 
, 

where 

The first few functions Bt: are given in Appendix A. 
The solvability condition for system (5)-the condition 
determining the energy levels of the bound states- re
duces to vanishing of the determinant 

At P = 0 

(3) 

(4) 

( 5) 

(6) 

(7) 
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B 'm= po 8,' 
l'4fl.e 

so that the equations for the various are decoupled and 
reduce to 

l'4fl.8,=-y,p, (8) 

and there is a bound state for yZ < 0 with El = Yi~/ 4Jl, 
in agreement with the results of Iwamoto.[l] 

For p '" 0, as has been mentioned previously, E be
gins to depend on p and I m I ; we shall denote the cor
responding levels as EF(p). We emphasize that since 

the equations with different l are intermingled at p '" 0, 
the index l no longer denotes the angular momentum of 
the bound state literally, but only denotes the limiting 
value of the angular momentum at p = 0, and the quan
tity EZ does not depend only on yz with the same l. 

The first term of the expansion of EZ in p has the 
form 

(p"«fl.8,) , 

and the effective masses JlZ do not depend on the 
value of the interaction 

and in particular 

2 (21-1) (21+3) 
fl.,m= 21-1+2 (l'-m') fl., 

I 14 
fl.'=3fl., 

(9) 

(10) 

(11) 

We now turn to the case of relatively large momenta 
Po »p »..f/ii.. In this case, for even m, the important 
quantities in the integrals (5) are the small values of x 
and the equation could be Simplified by calculating the 
.coefficients Bt::: with logarithmic accuracy. However, 

it is Simpler to turn directly to Eq. (2). Expanding r 
and r in Fourier series in cp, we obtain a set of equa
tions for various values of m (see [5]). In the integral 
(2) for even m, the small values of x are important, so 
that, with logarithmic accuracy, we can set x=O in r 
and r. As a result, we have 

-. Po 4fl.8 
1=g",-ln--, 

p p' 
(12) 

where 

fl.Po S - d<p 
gm=-h' r(<p, x=O)-2 ' 

n :It 
(13) 

so that, with exponential accuracy, 

P' (P) 8 m --exp -- . 
fl. pog", 

(14) 

This solution naturally has meaning only if gm < O. 

Bound states are lacking in this region for odd m. 
Substituting the expansion (4) for r in (13), we express 
gm in terms of yz: 

(15) 
';Om 

It is seen from Eqs. (12), (13) that there is no more 
than one bound state in the considered region of "large" 
p for each even value of m, while as p - 0 we had states 
with all possible m for those l for which yz < O. This 
means that all the remaining EZ(p) curves are "ter-

minated," i.e., they reach the level Ept = 0 and go off 
into the continuous spectrum in the range of small p. 
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It is easy to see to which l (at p = 0) a single "sur
viving" branch of the spectrum corresponds at large 
p. For this purpose, we note that branches of the spec
trum with the same value of m cannot intersect be-
cause of the theorem of the nonintersectibility of terms 
of the same symmetry .2) It is therefore clear that that 
branch of the spectrum which has a maximum value E 
at p = 0 should be the last to terminate. In other words, 
the branch of the spectrum "surviving" at large p has 
a value of the energy as p - 0 that is equal to the maxi
mal EF(O) at the given m~ l, which we shall denote by 

EF max' We also note that although the gm are expressed 
in terms of yz with all l ~ m, it is natural to suppose 
that for the surviving branch gm - yZ max(m) 
- (JlEF mdP~)1/2. Inasmuch as it was assumed in the 

derivation of (12) and (13) that gmPo/p«l, the condition 
of applicability of these formulas has the form 
p2 »JlEml . The remaining branches for even m 

max 
terminate at momenta p2 - Jl Ept max' The endiny of these 
branches occurs in the manner described in [4 , Le., 

er-exp{- ~'" }, 
Pol -P . 

(16) 

where Pcl is the momentum of the termination point. 

The branches Ept with odd m terminate in the region 
p2_ JlEZ(O), while the path of the curve near the ter
mination point is determined by the formula 

m J.l.8l" m m e, In-,-=a, (P-Pd ) 
p 

(see also Appendix B). 

(17) 

The figure shows schematically the character of the 
spectrum of the bound states of two rotons for the case 
in which only two constants Y2"'-0.07 and Y4"'-0.04 are 
different from zero and negative. The branch that sur-
vives at p»"; JlEm can terminate only at the point at 

lmax 
which gm changes sign, i.e., in the range of momenta in 
which r depends significantly on p. 

From the viewpoint of the possibility of experimental 
study of the picture of the spectrum just described, the 
problem of the damping of the bound states is of im
portance. As has already been shown by Landau, [6] ex
citations which have finite energy at p = 0 are unstable 
relative to decay into two phonons with oppOSitely di
rected momenta. In our case, the energy of each phonon 
should be 0 "'~, and the momentum k'" ~/c '" 0.48 A -1, 
where c is the sound velocity. 3) The damping of the 
bound states due to the decay can be calculated if we 
take into account in r the diagram with the intermedi
ate state, in which there are two phonons: 

z 
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- is -d'Q r~r<I)+- r<I)GGr---. (18) 
2,,; (2,,;11)' 

As a result, an imaginary part appears in Eq. (5) for r. 
We set yz-yz-iOl. We then get for the energy at p=O 

e,= (1,'-2i6,1,) Po'/4JJ.. (19) 

A calculation by Eq. (18) gives for ol: 

(20) 

where fl is in corresponding fashion the normalized 
irreducible amplitude of conversion of two rotons with 
angular momentum l into a pair of phonons. Direct 
estimation of fl is difficult, since the character of the 
interaction of rotons with shortwave phonons is un
known. For the estimate, we assume that fl""YZ, i.e., 
the probability of two rotons being converted on colli
sion into phonons -1. It is probable that this gives the 
maximum estimate for fl; then 

(21) 

for example, 02/")'2-0.01, i.e., the damping is compara
tively small. 

We note that the existing experimental data on the 
lifetimes of rotons appear to indicate that Yl cannot 
fall off too rapidly with increasing lo[7] This means 
that the entire range of energies can be filled with levels 
with different lo 

The authors thank G. M. Eliashberg for useful com
ments. 

APPENDIX A 

, 4J111 "=-, 
P' 

L=ln l'~1 
V1+T)'-1 

APPENDIX B 

For odd m at small 1]2 = 4J.I.t:/p2 

B 'm""i!!NmN m{ S+lp1m(:z:)p.m(:z:) d +~_d_ 
1m P I 1 1:z:1 :z: 2 d(:z:') 

-I 
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(B.1) 

SubstitUting this expression in Eq. (7) and expanding it 
in the small quantity 1]2 In 1]2, we get an equation of 
the form 

where D~m) and D~m) are determinants 

<m) :,' P (m)', D. - -611+Yla.. • 
., p, 

(m, NmN':J1 p,('"(:z:)P." (:z:) d:z: 
all. -, 1 1:z:1 • 

-I 

The explicit expression for D~m) is not needed. 

(B.2) 

(B.3) 

(B.4) 

For those p for which D~m)(p)=O, Eq. (B.2) has the 
solution 1]2 = 0, which corresponds to termination of one 
of the branches. Thus the terminal points of the 
branches Pcl which correspond to odd m are found 
from the equation 

It can be shown that Eq. (B.5) has as many positive 
roots as it has negative Yl with l~m. 

(B.5) 

I)In the integration over d3 q, we can make the substitution qZ dq "" p&dq; 
this corresponds to neglect of the next-higher-order terms in p/Po and 
..jii€/Po· 

Z)Branches with different m have different symmetries and can therefore 
intersect. 

3) As is well known, at n - ~ the spectrum of the phonons still departs 
only slightly from linearity. 
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