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The fluctuation rotation of the plane of polarization of transmitted light in cholesteric liquid crystals above the 
transition point (T c) is considered in the self-consistent-field approximation. It is shown that the sign of the 
optical activity does not depend on the incident-light wavelength (there is no inversion of the optical activity). 
An analogous investigation is made of the effect of fluctuations on the rotation of the polarization plane at T < T c. 
The results agree with the experimental data. 

1. INTRODUCTION 

Cholesteric liquid crystals (CLC) are made up of 
molecules of elongated form, having no inversion center. 
Therefore the ground state of a CLC is inhomogeneous. 
By virtue of this inhomogeneity, the CLC have rather 
unique optical properties, and in particular a tremendous 
rotation of the plane of polarization (cp). The value of cP 
is connected with the inhomogeneity of the ordering of 
the molecules and greatly exceeds the molecular rota­
tion of the plane of polarization (CPo) due to the spatial 
dispersion of the dielectric tensor. The transition of a 
CLC from the isotropic phase to the ordered phase is a 
first- order transition. In most liquid crystals, however, 
this transition is very close to a second-order transi­
tion (the coefficient of the cubic invariant in the Landau 
expansion of the free energy is anomalously small). It 
is therefore natural to expect fluctuating pre-transition 
phenomena to appear, even in the isotropic phase, as the 
transition temperature is approached. Particular inter­
est attaches to the optical activity that is typical of CLC 
only (whereas the fluctuation increase of the light scat­
tering occurs in the isotropic phase of nematic liquid 
crystals). It should be borne in mind, however, that a 
molecular optical activity CPo is also present in the iso­
tropic phase. Therefore to observe the fluctuations of 
the optical activity it is necessary to have cP > CPo. As 
will be shown below, this usually occurs at the parame­
ter values typical of CLC in a wide range of tempera­
tures (-10,,) near the transition point. In addition, CPo is 
practically independent of the temperature, so that the 
fast temperature growth of cP can be separated against 
this background. Since a real first-order transition 
takes place at a temperature Tc that differs little from 
the temperature Tt of the fictitious second-order 
transition, the increase of cp if "cut off" at the tem­
perature T c. 

The optical properties of the ordered phase of CLC 
were considered by several workers (see, e.g., [1]). It 
is possible in this case to obtain an exact solution of 
Maxwell's equations, owing to the simple exponential 
dependence of the dielectric-tensor components on the 
coordinates (exp(±2io:z), where 21T/0: is the period of 
the helical structure). In the isotropic phase, on the 
other hand, the fluctuation corrections to the dielectric 
tensor have a continuous spectrum of harmonics with a 
maximum at the wave vector 20:. In Sec. 2 we therefore 
derive formulas for the optical activity in a medium 
with small and random inhomogeneities. The derivation 
is carried out with the aid of a diagram technique for 
the Green's function of the radiation in the medium. 
This is equivalent to the use of the methods of nonlinear 
oscillation theory. The angle of rotation of the plane of 
polarization in CLC depends nonlinearly on the path 
traversed by the light in the medium. It is therefore 
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more convenient to calculate the differential optical 
activity ~k= acp/az at z=O. At small thicknesses of 
the CLC we have cp '" l~k. In the isotropic phase, ~k 
is expressed by an integral of the correlation function 
of the dielectric-tensor components. The correlators 
necessary for the calculation of ~k are calculated in 
Sec. 3 in the self-consistent-field approximation. As the 
temperature approaches Tt, the value of ~k increases 
like (T-T~rl/2, in agreement with recent experi-
ments [2], In addition, ~k has a constant sign, whereas 
in the ordered phase of the CLC, at an optical wave­
length coinciding with the period of the structure, the 
sign of the optical activity changed. 

Section 4 is devoted to fluctuations at T < T c. Lu­
bensky [3] has shown that CLC are similar, in the sense 
of their symmetry, to two-dimensional degenerate sys­
tems (Bose liquid, Heisenberg magnets, etc.). The fluc­
tuations of the order parameter therefore diverge, just 
as in the two-dimensional case. In CLC this is manifest 
in the fact that the correlation function of the order 
parameter is of the form 

k3 is the wave-vector component along the helix axis 
(z); kl is the wave-vector component in a plane per­
pendicular to the axis; ~ is a constant -1/0:. If m 
were a unit vector in the direction of the helix axis, 
then the ordered phase of the CLC would be specified 
by the condition m = const. The fact that the integral 

( 1) 

of C, as given by formula (1), diverges logarithmically 
means that (m) = 0 at all finite temperatures, In analogy 
with two-dimensional systems [4], however, a phase 
transition takes place nevertheless, but the true order 
parameter is not the "spontaneous moment" m, but a 
property analogous to the transverse rigidity of mag­
nets. In CLC there is a special small quantity (o:a« 1, 
where a is the atomic dimension), which makes the 
low-temperature phase almost ordered down to Tc. 
With the aid of the formulas of Sec. 2 we can calculate 
the optical activity in this case too. Small corrections 
(-o:a) to the formulas for the polarization-plane rotation 
of the ordered phase of the CLC are obtained. Fluctua­
tions in the transition region near Tc are also discussed. 

2. OPTICAL ACTIVITY AT T > Tc 

Let us consider an electromagnetic wave propagat­
ing in the z-axis direction in the isotropic CLC phase. 

. The electric field in the medium therefore has com­
ponents Ex and Ey . Since the rotation of the polari­
zation plane is the difference between the propagation 
velocities of left- and right-polarized waves, it is 
convenient to introduce the circular components E± 
= Ex ± iEy. The isotropic phase is characterized by a 
dielectric tensor €ij = EoOij (Oij is a unit tensor), and 
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FIG. 1 

in this case only the molecular optical activity 'Po is 
present. The polarization-plane rotation connected with 
the inhomogeneity arises only when account is taken of 
the fluctuation corrections to the tensor fij. When light 
propagates along the z axis, only the components 
X± = Ell ± iE12 are of importance. If we introduce the re­
tarded Green's function D~ of the radiation in the usual 

1) 

manner [5J, then, without allowance for the fluctuations, 
this function is given by 

R _ 4n (Il . _ k,k; ) 
D" - e,ro'lc'-k' " k' 

(in a gauge where div A = 0 and A is the vector poten­
tial). The optical activity means that the poles of the 
Green's functions D~ of Maxwell's equations for the 

(2) 

right- and left-hand polarizations are unequal. Then [5J 

(3) 

In the case when Eik=Eo1'>ik, as follows from (2), there 
is no optical activity. However, owing to the fluctuations 
there is the interaction 

FIG. 2 

For comparison, the Appendix contains a derivation 
of formula (7) based directly on a solution of Maxwell's 
equations in a random medium. We note also that for­
mula (7), which expresses the optical activity due to the 
short-range order <X+X-) , can have a wider range of ap­
plicability. As seen directly from the derivation, it is 
applicable to any system with weak inhomogeneity and 
anisotropy. Cheng and Meyer [2J calculated the optical 
activity of CLC by using the concept of rotation of the 
polarization plane in a system of inactive groups 
coupled by dipole-dipole forces. This approach cannot 
describe the CLC adequately, first because their com­
ponents themselves have optical activity and second, 
dipole-dipole forces alone cannot ensure stability of 
the CLC in any case. 

3. CORRELATIONS IN THE ISOTROPIC PHASE 
OFClC 

We write down the most general form of the free en­
ergy compatible with the symmetry of the CLC. It is 

H;n'=ro'S x"A,A. dv. 

Dyson's equation for the Green's function D~ with 

allowance for the interaction (4) is shown in Fig. 1 (the 
cross on the diagram indicates the interaction (4)). By 
virtue of the random character of the fluctuations we 
n:tre (X±) = 0 but (X±X=F) ;0' O. Therefore the equation for 
Dik should be averaged in analogy with the procedure 

(4) more convenient here to expand not in the gradients of 
the deviation of the orientation from equilibrium, but in 
terms of physical quantities of interest to us, namely 
the anisotropic parts of the dielectric tensor. In analogy 
with [2J, we have 

. used when random impurities are taken into account. 
Unlike the impurity problem, however, the averaging if 
carried out over a Gibbs ensemble and not over the im-
purity positions. As a result, we obtain 

(8) 

The third term takes into account the absence of an 
inversion center in CLC (a is a pseudoscalar quantity), 
and all the phenomena of interest to us are connected 
with the presence of this term; A and C are coefficients 
of the Landau expansion (C = const >0, A -..fT, T= T-Tt). 

JJ R_ 4n (Il q,q,) 
ilt - ko2-q2_D ill - T ' 

In formula (8) we have left out the fourth-order terms, 
which are not of interest to us, and for SimpliCity we 

(5) have disregarded the presence of the second correlation 
length. 

where ko = ..fEW/c is the wave vector in the medium and 

D ll'k,'S )JJR' = -2 - <X;mXm. .. d q. (6) 

Formula (6) thus gives the frequency renormalization 
due to the influence of the fluctuations. From this we 
can obtain the differential optical activity directly. In 
second order in the fluctuations, the corresponding dia­
gram is shown in Fig. 2 (the wavy line denotes the fluc­
tuation propagator (X+X-»): 

!1k= Il'ko' Sd' {<x+(q-k,h-(-q+k,) <x+(q+k,h-(-q-k,)} 
2 q ko'-q' k,'-q" 

If we put in the first term of this expression q = ko == K 

and in the second q + ko == K, then we obtain 

As already noted in Sec. 2, an important role in the 
calculation of the optical activity is played by the z-de­
pendent components of the tensor Eij. This singles out 
immediately the corresponding two-dimensional repre­
sentation for the free energy (8) 

The general requirement that the tensor Eij be sym­
metrical yields the condition E12 = E21' In addition, in 
CLC the order parameter has a zero trace, and this 
calls for Ell =-E22' At T < Tt [lJ we have 

fll=<5e cos 2ct.z, e,,=lle sin 2ct.z 

(9) 

!1k=Il'k ' S d' <x+ (xh- (-x» (2x,k,+xJ.') 
, x (2x,k,+x.L') '-x,' . 

(E is the average dielectric constant). It is therefore 
(7) convenient to choose the following two quantities to 

characterize the order parameter: 
The same formula can be used to calculate the optical 
activity in the ordered phase (T < T~). In this case there 
is no longer any need for averaging, since we have a 
nonzero <x±) = exp(±2iaz). Therefore, integrating (7), 
we obtain 

!1k=Il'ko'/4ct.(k,'-ct.') . 

Formula (7') coincides with the results of the exact 
solution of Maxwell's equations in this case [11. 
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(7') 

8" =-e,,=S cos e, e" =e,,=S sin e. 

Substituting (10) in (8) we obtain 

6F=AS'+C(VS),+CS'[ (V8)'-2ct.V ,e]. 

( 10) 

(11) 

Formula (11) corresponds to a transition to the ordered 
state of CLC in the form of a spreading of the fluctua­
tion regions with helical order. The dimension of each 
such region -(C/ A)1/2 becomes infinite at the transition 
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pOint. Of course, all this is true only in the first-order 
self-consistent-field approximation. As already noted in 
the Introduction, when a certain proximity to Tc is 
reached, both the interaction of the fluctuations and the 
presence of helix-axiS orientation fluctuations, which 
destroy the helical order, become important (see Sec. 4 
for details). 

It follows from (11) that the correlation function 
<X+X-> of interest to us can be expressed in terms of 
the correlator S. Indeed, 

x+(x)=e,,(x)+iel2(x)=8(x,+2a, x.c), 

x- (-x) =e" (-x) -ie" (-x) =8 (-x,-2a, -x.c). 
( 12) 

Carrying out simple integration (averaging with the free 
energy (8)), we obtain 

<x+ (xh- (-x) )=T![ T+(x,+2a)'+x.c'j. ( 13) 

We have taken into account here the fact that the true 
transition temperature is determined by the vanishing 
of the renormalized coefficient of S2. This corresponds 
to separation of the complete square in (11) and to 
T= (A/C) + 4a2 • 

Substituting (13) in (11) we have 

!'J.k=262Tk '. S d'x (2kox,+x.c') (14) 
o h+ (x,+2a)'+x.c'][ (2kox,+x.c')'-x,'j 

The value of the integral in (14) depends on the ratio of 
ko- a and ri. In the case when I ko- a I < ri we have 

( 15) 

(the nonsingular terms of the type T In a T- 1 have been 
left out). 

On the other hand, if lko-al »ri, then the principal 
contribution to the integral is made by the integration 
region (KZ + 2a)2 > Ki. Then Ak is small and strong 
scattering obtains: 

62T ko'T 
!'J.k=-----, . 

16 (ko-a) 
( 16) 

The dependence of Ak on the wavelength at a given 
temperature (and consequently at a given T) is shown 
schematically in Fig. 3. The temperature dependence 
of Ak agrees with the experimental data [2J. 

4. FLUCTUATIONS OF THE ORDER PARAMETER 
ATT<T~ 

As already indicated in Introduction, helical ordering 
of CLC is impossible at any finite temperature. This is 
reflected in the form of the correlation function C (see 
formula (1)). The nature of the low-temperature phase 
T < Tt becomes manifest in the power-law fall- off the 
fluctuations. This circumstance can be discerned directly 
by writing down the Euler-Lagrange equations for the 
functional (8). The roots of the dispersion equation then 
satisfy the condition kz - ki. This indeed conforms to 
formula (1). The Hamiltonian of the fluctuations is ob-
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tained from the Franck expansion of the free energy 
for CLC 

H-Eo=KJ d'x{(V.q»'+~'(V.c'q»'}. (17) 

Here cP is a parameter characterizing the helical order 
(the polar angle of the director) and K is the modulus 
of elasticity. 

Instead of (17) we can write down a fully two-dimen­
sional expression. To this end we introduce a new 
field iI>: 

(~ has been introduced to preserve dimensionality in 
the right-hand side). We next integrate the first term 
in the right-hand side of (17) by parts. The integral 
term vanishes by virtue of symmetry, and we incor­
porate the remaining expression in Eo. This represents 
the nonsingular fluctuations in a plane perpendicular 
to m. We then get from (17) 

H-Eo=IJ d'x(V.cII»'. (18) 

Thus, in the long-wave approximation the CLC are in­
deed equivalent to two-dimensional degenerate systems. 
The wave vector along the z axis can be arbitrary in 
the interval [-a, a J. 

In formula (18) we have put, in order of magnitude, 
K=Tc/a (a is the atomic dimension). Therefore 
J=Td/21Ta, and since ~-l/a, the low-temperature 
condition T« J is always satisfied in real C LC. This 
means that CLC are always "almost" ordered. Since 
aa-1O-2 to 10-3, divergences would occur at astronom­
ical distances -1050 cm, meaning that the destruction 
of long-range order would take place at astronomical 
times. In the low-temperature region we can obtain 
from (1) 

<cos a cos a') =const· cos a (z-z') R-y. 

Here 
T Ta 

1 = 2nK~ = 2nT,~ , 

With the aid of (19) and (7) we obtain 

/!.k= (1-1) 6'ko 'I 4a (ko'-a'). 

(19) 

(20) 

Since y« 1, formula (20) naturally differs little from 
formula (7') corresponding to the fully-ordered state. 
Relation (19) indicates, however, that the polarization­
plane rotation angle is nonlinear even in small layers 
of CLC, cp-I1- Y. We point out that the entire derivation 
of formulas (19) and (20) is connected with the use of 
the Franck expansion. The divergences are the result 
of the fact that the terms -qi cancel out in the lowest 
mode of the C LC. This, of course, is no accident, and 
reflects the symmetry of the CLC. In analogy with the 
derivations of Lubensky [3J, we can demonstrate that 
when the next higher terms of the expansion of the free 
energy in the deviations from equilibrium are taken 
into account, qi is cancelled out as before. To this end 
it is necessary only to have a sufficient short-range ac­
tion, namely, the effective radius of the forces should 
be much shorter than the period of the produced struc­
ture. But if, for example, the van der Waals forces are 
taken into account, terms -qi are added to the Franck 
free energy, and there are no divergences. Of course, 
the van der Waals forces can stabilize the CLC only if 
the cubic term is significant at the same values of the 
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wave vectors at which the divergences come into play 
(CJ.i -a). 

We note in conclusion one more circumstance. At 
T > T~ the self-consistent-field approximation is vio­
lated in the immediate vicinity of Tt (provided that no 
first-order transition has taken place earlier). It fol­
lows from (1) that this violation takes place at 

,In (al'Ti-1. (21) 

The presence of fluctuations makes the very transition 
with order parameter (m) impossible. The self­
consistent-field approximation "knows nothing" of this. 
Therefore the character of the correlation functions 
should change in the region (21) near the temperature 
T~. Instead of formula (13) we should have an expres­
sion in which the mode does not "soften" at KZ =-2a. 
This can be taken into account qualitatively with the aid 
of the following artificial strategem. Formula (13) is 
the result of choosing the order parameter in the form 
(10) corresponding to the ordered phase of the CLC. 
The fact that such a phase is impossible means that in 
the vicinity (21) of Tt the order parameter is of a dif­
ferent form. We choose in place of (10) the represen­
tation 

Ii = (CP' CP') . 
cP' -cP' 

Here <Pl and <P2 are already independent quantities 
(unlike in (10), where <p~+<p~=const). 

(22) 

Substituting (22) in (8) and carrying out simple inte­
gration, we obtain 

(A.2) 

We seek the solution in first-order perturbation theory 
in the form E± = E~O) + E~l) , where the zero-order solu­
tion (A .2) has a renormalized frequency k± = ko + ~l) . 
The renormalization is analogous to the condition for 
the absence of resonance in nonlinear systems [6] 

RcX± C q+ko) ] 
k " . (A.3) 

" -q 

Here E~)(q) and X±(q) are the Fourier components of 
the corresponding quantities. It is seen from (A.3) that, 
as expected, there is no optical activity in first order 
in the fluctuations. The frequency renormalization 
comes into play only in the quadratic expansion in terms 
of small inhomogeneities 

k±=ko+k~2) • 

dE;") +ko'E~') =2k.k;') E~) -k.'{jx±E~o . 
(A.4) 

Hence, changing over to Fourier components, we have 

k (')= - (j'ko' J x+Cko-q)x-Cq-ko) d' 
+ 2 ko'-q' q. (A.5) 

Making a change of the integration variable, K == (ko - q3, 
Q..l), we obtain 

(A.6) 

and analogously 

(A.7) 

<<PI')=<<p2')=T ['t"+k.'+k '+ 4a'k.' ]-' 
.i 't"+k,'+k.i' . 

At 7«k~ and kl «k~ we have from (23) 

<<p') =TI (k.'+4a'). 

Therefore the phase difference, which is the cause of 
(23) the differential rotation of the polarization plane, takes 

a form that coincides with formula (7) of the text. 

(24) 

The form of formula (24) (the absence of a real pole) 
agrees with the fact that there is no transition into the 
helical state of the CLC. 

The author is deeply grateful to I. E. Dzyaloshinskil, 
S. A. Brazovskil and D. E. Khmel'nitskil for a useful 
discussion of the work and for criticism. 

APPENDIX 
Maxwell's equations take the following form in terms 

of the components E±: 

(A.l) 

In the zeroth order in the fluctuations, the equations for 
the circular components of the field separate, and there 
is no optical activity: 
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