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It is shown by means of statistical thermodynamics that a globule made up of a long polymer chain, depending 
on the length of the chain and on the temperature, can be either surrounded by a loose gaslike shell, or can 
have a sharp boundary outside of which the monomer density vanishes. Transitions between these states and 
also transitions from these states to the state of a loose random coil are first-order phase transitions. A detailed 
analysis is carried out of the phase states and of the transitions between them for the model of "beads 
interacting on a flexible filament." The corresponding phase diagram is constructed. The question of the 
reliability of the self-organization of a definite tertiary structure of a biopolymer globule is considered both 
from the thermodynamic and from the kinetic points of view. It is shown that from among all the possible 
sequences of monomers along the chain there is an exceedingly small fraction of those capable of forming a 
tertiary structure similar in its ordering to an aperiodic crystal, and capable by the same token of functioning 
biochemically. 

A long biopolymer chain is, by itself, a macroscopic 
system. This makes it possible to describe it by statis­
tical-physics methods and to consider the organization 
of its spatial tertiary structure as a phase transition 
from the coil state to the globular state. 

A consistent statistical-thermodynamic theory of 
polymer chains was developed by 1. M. Lifshitz. [1] By 
way of example of application of the theory, the coil­
globule phase transition was considered for an extremely 
long chain. The present paper is devoted to a detailed 
study of the structure of different globules (both large, 
in which the role of the surface is relatively small, and 
small, in which the "surface" and "volume" effects are 
of the same order of magnitude) and of the corresponding 
phase transitions. 

The microscopic theory of real biological globules is 
highly unique and is determined by the primary structure 
of the chain. Of course, the statistical desc ription is not 
aimed at determining such details of the structure of a 
particular globule. Nonetheless, many qualitative proper­
ties of real globules become clear even from a simple 
model theory, and we shall see, in addition, that this 
approach enables us to determine the conditions needed 
for the reliability of the self-organization of a strictly 
ordered tertiary structure, and by the same token for 
the possible occurrence of a native state of the globule. 

The present paper is entirely based on the results 
of [I] and is in fact its continuation. We therefore begin 
with a brief qualitative exposition of the principal prem­
ises of[l] in a form that is most convenient for the sequel. 

1. DESCRIPTION OF BASIC MODEL 

The macroscopic state of a polymer chain suspended 
in a solution (at fixed initial conditions) is a partial­
equilibrium state, in which the primary structure, i.e., 
the sequence of links along the chain, is assumed to be 
fixed and to form the "linear memory" of the system 
(see the Appendix). This memory can be described by 
correlations gj between neighboring links. In the general 
case, gj depends on the coordinates, orientations, and 
the internal properties of links numbered j and j + 1. 
We confine ourselves, however, to a very simple model 
in which the linear memory involves only memorizing 
of the location of each link in the linear sequence along 
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the chain, and all the correlations g' reduce to a Single 
function g( I Xj -Xj + 11 ), which depends only. on the dis­
tance between the neighboring links!) An illustrative 
sample of such a system is an elastic flexible filament 
on which beads are strung; this picture must always be 
kept in mind in the course of reading this paper (Fig. 1). 

Consideration of this model is expedient for two 
reasons. First, such a simple model theory clarifies 
many qualitative features of the more general case. 
Second, the model in question may be directly applicable 
to a heteropolymer molecule, in which certain monomers 
interact much more strongly than the others, for example 
to a flexible polymer chain with relatively widely spaced 
but strongly interacting "appendages." In this situation, 
the role of the "link" should be played by the entire 
segment of the chain between two strongly interacting 
monomers.2) 

2. FUNDAMENTAL PREMISES OF THE STATISTICAL· 
THERMODYNAMIC THEORY OF POLYMER CHAINS [1] 

The collapse of a chain to form a dense globule can 
be due to the action of an external compressing field and 
(or) to forces of "lateral" ("volume") interaction. The 
role of the external field can be played by a local change 
in the composition or in the state of the solvent. By vol­
ume interaction we mean lateral hydrogen bonds, Van 
der Waals, multipole, polarization, and other weaker 
interactions of links that are far from each other along 
the chain, but come close together as a result of bending 
of the chain. 

We denote by cp(x) the external field and by dr) the 

FIG. I. "Interacting beads on 
a flexible filament" model. The 
volume element v ~ a3 is framed; 
the particles inside this volume 
interact with one another but 
are very far from one another 
along the chain. 
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energy of the volume interaction (r = {Xl, ... , XN} is a 
point in the configuration space of the system). We em­
phasize once more that E(r) does not include the energy 
of the strong longitudinal bonds, which are taken into 
account by the correlations gj' The statistical equilib­
rium of a system with linear memory is described by 
the distribution 

(F is the free energy of the chain3 »), which differs from 
the ordinary Gibbs distribution in the presence of the 
factor TIgj' 

We consider now a volume element v <'< a3 , where a 
is the distance between links (beads) along the chain, 
Le., in other words, the characteristic length over which 
the correlation function g(x) decreases: 

a' = ~ S y'g(y)d'y. 

The longitudinal bonds (the thread) impose practically 
no limitations on the possible displacements of the par­
ticles (beads) within the limits of this element. On the 
other hand, if the number of particles in the considered 
volume is large enough, nv » 1 (n is the particle-num­
ber density), then it is clear that the picture of their 
lateral interactions is the same as if they were not 
bound into a chain at all. It is therefore natural to spec­
ify the macroscopic state of the chain in terms of a 
density distribution n(x) that has been "smoothed out" 
over scales smaller than a and varies over distances 
~a (see the Appendix). Then the foregoing statement 
can be formulated in the following manner: in a macro­
scopic state specified by a density distribution, the free­
energy change due to interaction with the external field 
coincides with the change occurring in a system in which 
the same particles are not bound into a chain. 

For an arbitrary form of interaction, even in an ordi­
nary system of particles without linear memory, there 
is no general method of calculating the free energy in 
the condensed phase. Howeve r, the arguments advanced 
above lead to the following natural formulation of the 
problem. We assume that we know the arbitrary thermo­
dynamic characteristics of an equivalent system of links 
having the same volume interaction E(r) but disconnected 
bonds (Le., without a linear memory), and attempt to 
construct the statistical thermodynamics of a polymer 
chain in te rms of these characteristics. To be specific, 
let f(n, T) be the free energy per unit volume of the 
equivalent system of disconnected links with density n 
and temperature T, J.L(n, T) = afl an of the chemical po­
tential of this system, and p(n, T) = nJ.L-f its pressure. 
We introduce the quantities 

where fid, J.Lid, Pid are respectively the free energy per 
unit volume, the chemical potential, and the pressure of 
an ideal gas of links (J.Lid = TIn n). 

In this notation, the free-energy change due to inter­
action and to the external field is 

E{n(x)l= S{f'(n(x))+rp(x)n(x)ld'x. (2.2) 

This quantity does not coincide, of course, with the sys­
tem energy, but will play the role of energy in the theory 
that follows (see the Appendix). The result (2.2), as 
shown in[l], holds in both limiting cases, both when the 
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radius ro of the lateral interaction is small (ro « a), 
so that almost all the particles that interact with one 
another belong to remote sections of the chain, and when 
the interaction radius is large (ro » a), so that any par­
ticle interacts with a practically constant number of 
other particles. We can therefore assume that the re­
sult (2.2) is valid, at least qualitatively, also for all the 
intermediate cases, i.e., for any real interaction. 

To express the configuration entropy of the system 
explicitly as a functional of a specified nonequilibrium 
density distribution, we proceed in the following manner. 
We consider a chain without volume interaction and 
place it in an external field in which the specified den­
sity distribution turns out to be the equilibrium distri­
bution. For such a chain we can obtain the free energy 
(by directly calculating the statistical integral of the 
canonical distribution, see[l]). Since the energy (2.2) is 
known, we obtain by the same token the configuration 
entropy (see the Appendix). As a result we get 

~ 

S g1/> 
S{n(x)l= n(x)ln--;p-d'x, (2.3) 

where the integral operator g is determined by the equa­
tion 

-g.1/>= S g(x-x') 1/>(x') d3x', (2.4) 

and the function l/i(x) coincides, apart from a normaliza­
tion factor, with the distribution function of the te rminal 
link of the chain and is expressed in terms of n(x) in the 
form 

An(x) =1/>(x) g1/>. (2.5) 

The constant A determines the normalization of the 1jJ 
function (the choice A = 1 was made in[l]). The meaning 
of these results becomes clear if it is noted that n(x)v 
particles can be situated in a volume v near the point x 
only if ~nv particles are distributed in one manner or 
another about the point x within a distance ~a; the ex­
preSSion (2.5) for the denSity therefore contains the 
operator g. The same circumstance can also be taken 
into consideration when calculating the number of micro­
scopic states realizing the specified distribution of the 
smoothed-out density (Le., in essence, the configuration 
entropy). More briefly speaking, the nonlocality of the 
entropy (2.3) due to the operator g is a direct manifes­
tation of the linear memory. It is precisely this nonlo­
cality which leads actually to the principal Singularities 
in the statistics of polymer chains. 

To find the equilibrium density distribution, we must 
minimize the free energy (see the Appendix )4) 

F{n}=E{n}-TS{n} 

under the additional condition that the total number of 
particles be constant 

N = S n (x)d3x. (2.6) 

As a result we get the equation 

g¢=1/>exp { ~ [,...·(n,T)+rp(x)-t.]} (2.7) 

(A is a Lagrangian multiplier), which must be solved 
simultaneously with (2.5). The solution of (2.7) must 
satisfy the natural requirement that its sign be constant. 
We see that the approximation (2.2) chosen for the energy 
is equivalent to the use of the quantity J.L *(n(x)) as the 
effective self-consistent field. 

Equations (2.5)-(2.7) constitute a complete system 
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for the determination of the equilibrium density distri­
bution and of the constant A. 

For the equilibrium value of the free energy, which 
is determined by substituting (2.7) in (2.2)- 92.3), we 
have 

F=N]..- J p'(n, T)d'x. (2.8) 

3. THREE MACROSCOPIC PHASES OF A POLYMER 
CHAIN 

At a relatively high temperature (or in the absence of 
interaction and of external fields), the state of the poly­
mer chain is that of a loose statistical coil. The charac­
teristic property of the coil state consists in the fact 
that while the coil does have an average denSity, the 
density fluctuations are of the order of the density itself. 
In other words, the coil executes continuous macroscopic 
pulsations, and the density is not a thermodynamically 
reliable quality. 

When an external compressing field or a sufficiently 
large volume interaction is turned on, the system goes 
over into a "condensed" state, namely a globule, the 
structure of which is determined by the particular char­
acter of the interaction or of the external fields. In the 
globular state, the density is thermodynamically reliable 
and the results (2.2)-(2.8) therefore become applicable. 

In view of the isotropy of the correlation function, 
i.e., in essence, in view of the assumed flexibility of the 
filament, it is natural to expect the globule produced in 
the absence of external fields to consist of a dense "con­
densed" core of spherical shape, around which the den­
sity gradually decreases to zero (Fig. 2a). 

Normalizing the 1/J function by means of the choice 

A=exp {-]..IT}, 

we can rewrite (2.5) and (2.7) in the form 

{. J.I (n) +cp (x) } 
1jl=nexp - 2T " 

~ _ \ {J.I(n)+cp(x) 1 
g1jl-j exp 2T J . 

(3.1 ) 

(3.2) 

It is seen directly from (3.2), in particular, that the 
total local chemical J1. + cp should be a continuous func­
tion of the coordinates, since the function g1/J is contin­
uous (and is even smooth to the extent that the kernel of 
the operator is smooth), regardless of the continuity and 
smoothness of 1/J(x). The qualitative reason for this is 
that the particle motion within the confines of the ele­
ment v « a3 is not limited by longitudinal bonds, so that 
the equilibrium condition within this element reduces to 

l ~a 

FIG. 2. a) Density distribution 
along the radius in a globule with 

r fringe at a temperature exceeding 
b ~Jun-~ 

n+-----nRO~ 
the critical temperature of the sys-
tem of disconnected links T > T 6 
b) same, in the globule with a fringe 

; at T < Tc; c) same, in the globule 
without a fringe. 

;~r ui 
L _______ ~L;~~~ ______ ~~ 
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the standard requirement that the local chemical poten­
tial be constant. Consequently, the local chemical poten­
tial can vary Significantly only over distances ~a; in 
particular, it can have no discontinuities in the absence 
of external fields. 

However, at temperatures T lower than the critical 
temperature Tc of the system of disconnected links, the 
function J1.(n) breaks up into two branches separated by 
a lability section. Consequently at T < T c the core of a 
globule produced in the absence of external fields has 
a sharp boundary, at which the density experiences a 
discontinuity (Fig. 2b), but such that the boundary values 
of the density n_ (on the interior side) and n+ (on the ex­
terior) are connected by the relation 

J.I(n_) =J.I(n+l 5OP.. (3.3) 

This relation, which expresses the requirement of equi­
librium relative to local displacements of the particles 
through the boundary, assumes, as is well known, the 
same form in the usual system without linear memory. 
We emphasize in this connection that the second boundary 
condition, which is due to the requirement that the bound­
ary itself be in mechanical equilibrium, does not reduce 
in our case to a continuity of the local pressure (as 
stated erroneously in [1]), since the longitudinal bonds 
can transmit a mechanical force over a distance ~a from 
the boundary. In the mathematical formalism, the second 
boundary condition is obtained by additional minimiza­
tion of the free energy (2.8) (see (3.5) below). 

We note that by virtue of (2.5) the function 1/J(x) has 
discontinuities in the same places as n(x). It is there­
fore convenient to introduce the following notation. We 
denote the 1/J function inside and outside the core by 1/Jin 
and 1/Jout, respectively, and introduce the operators 

g,.1jl = J g(x-x')1jl(x')d'x', 
", 

g,ut1jl = J g(x-x') 1jl(x') d'x', 
outside Yo 

where Va is the volume occupied by the core of the 
globule. In terms of this notation, we can write 

x inside Yo, (I) 

x outside Yo. (II) 
(3.4 ) 

The form (3.4) implies that the functions 1/Jin and 1/Jout 
lie respectively in (I) and (II). It is obvious when this 
form is used that Eq. (3.2) has a certain solution at any 
value il' of the chemical potential (3.3) on the boundary. 
It is therefore necessary to solve (3.2) with 71 assumed 
as a specified parameter, and then obtain the actually 
realized value of 71 by additional minimization of the 
free energy (2.8): 

iJFliJp.=O. (3.5 ) 

The concrete realization of this program turns out to be 
essentially different in the opposite limiting cases of 
large and small globules. 

Extremely large globules, at temperatures above the 
critical temperature of the system of disconnected links 
(T > Tc) were considered in. [1] We consider now the 
case T < Tc , and assume in addition n_ » n+, so that 
the density in the core of the globule is large and ex­
pression (2.2) is valid, while in the gaslike fringe the 
density is so small that the volume interaction of the 
particles in the fringe can be neglected completely. 
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The density in the gas like fringe decreases with de­
creasing temperature, in analogy with the density of 
vapor over a liquid drop. The very existence of the vapor 
atmosphere over the liquid drop at arbitrarily low tem­
perature is due to the fact that the vapor particles are 
capable of moving away to large distances (limited only 
by the vessel dimensions) from the liquid. In the case 
of a polymer chain, however, the longitudinal bonds do 
not permit the density of the gaslike fringe to become 
too small. Therefore, at sufficiently low temperature, 
the chain forms a globule without any gaslike fringe at 
all (Fig. 2c). A shorter chain can form a globule without 
a fringe directly from the coil. 

Thus, in the absence of external fields the polymer 
chain can be in three different phase states: coil, globule 
with fringe, globule without fringe. It is our task to plot 
the corresponding phase diagrams in terms of the vari­
ables N and T. 

4. STRUCTURE OF EXTREMELY LARGE GLOBULE 
WITH FRINGE 

A globule made from an extremely long polymer 
chain (without an external field) contains a spherical 
core of volume V 0 = 41TRV3 » a3 • In the interior of the 
core, the density varies very slowly (assume that the 
corresponding constant value is no), and therefore glji 
~ Iji, Le., 

A=!L·(n"T). (4.1 ) 

For the free energy we therefore have 

F ={N!L'(no, T)- Vop'(no, T)J+ {J p'(no, T)d'x - S p'(n, T)d'x }. 
v, 

The second term is obviously proportional to the surface 
area of the globule of volume Vo. Therefore the density 
no inside the core of a large globule is determined by 
the minimum of the first term. 

Recognizing that V 0 ~ Nino, we obtain 

p'(no, T)=O (4.2) 

(Le., p(no, T) = noT). The free energy is therefore 

F=N!L'(no, T)+F., F.=4nRo'a, (4.3) 

where a is the surface-tension coefficient. 

Proceeding to an analysis of the structure of the sur­
face layer of a large globule, we note that the problem 
of the density distribution in this layer is in essence a 
one-dimensional problem. Introducing along the radius 
the coordinate x = r-Ro, we can, in particular, express 
the surface-tension coefficient in the form 

a = - tp'(n, T)dx+ao(T), (4.4) 

where ao(T) is the surface tension in the system of dis­
connected links. 

If (4.2) is satisfied, then the fundamental equation 
(2.6) is the condition that the surface term of the free 
energy be minimal. Therefore the additional minimiza­
tion of (3.5) reduces to imposition of the boundary con­
dition (4.2) as x - -00 (in other wordS, we have mini­
mized F with respect to no, and must now find the con­
nection between no and /1., see (4.14) below). 

To abbreviate the formulas that follow, we introduce 
the notation 

'1'(1/» =exp (!L(n, T)/2T}=n/~). (4.5) 
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At the chosen normalization of the 1ji function, v and Iji 
are simply the thermodynamic variables of the system 
of disconnected links. They are defined by Eqs. (4.5), 
and it is more convenient to use them in place of IJ. and 
n. 

If the function 1ji(x) varies smoothly enough, then the 
integral operator Ii; can be approximately replaced by a 
differential operator, so that Eq. (3.2) reduces to the 
differential equation 

a'd'I/>ldx'+I/>-A'I'=O. (4.6) 

To obtain this result it is necessary in the expression 
(2.4) for g1ji first that 1ji be taken to be independent of the 
coordinates perpendicular to x and that integration be 
carried out with respect to them and, second, that 1ji(x') 
be expanded in powers of x-x' with only the first three 
terms retained. 

At T > Tc , when the 1ji function is continuous in the 
entire transition region, integration of (4.6) yields a 
complete solution of the problem (see[ll). 

At T < Tc , the apprOXimation of the integral operator 
by a differential one should be made more accurate near 
the discontinuity point of the function 1ji(x). It is conve­
nient to use the notation (3.4) for this purpose. We note 
that the expression ~ut(1jiout-1jiin), if taken at a point 
inside Vo, receives its main contribution from integra­
tion over the region near the discontinuity point, and in 
this region it is possible to expand the function 1jiout-1jiin 
in powers of x. We can proceed similarly with the ex­
preSSion gin(1jiin -1jiout) outside Vo. As a result we find 
that the influence of the discontinuity reduces to the ap­
pearance, in the right-hand side of (4.6), of "surface 
terms" that attenuate rapidly when a distance ~a from 
the discontinuity is reached: 

a'd'I/>ldx'+I/>-i\v=[I/>(-O)-I/>(+O) lao( Ixl). (4.7) 

Here and throughout we put 

a,(x)= k~kl (y+x)'g(y)dy. 
(4.8) 

Far from the discontinuity, where these surface terms 
vanish rapidly, Eq. (4.7) goes over into (4.6) and can 
therefore be readily integrated 

....:. = { x+ (I/» +const, x;;'a, 
a X_(I/»+const, x";-a, 

X ~ (1/» = - ~ 12 ~ {Av± (I/» - tPl dtPr" d'l', 
~ - w(t"") 

(4.9) 

where 

iji= [I/> (+0) +1/>(-0) ]/2, 1/>(+00) =0, 1/>(-00) =1/>0' 

On the other hand, near the discontinuity, where the 
right-hand side of (4.7) is appreciable, Eq. (4.7) can be 
linearized (by simply linearizing the function v ±(1ji) sep­
arately on the two sides of the discontinuity). Therefore 
the influence of the boundary terms reduces to the ap­
pearance in 1ji(x) of an additive increment that can easily 
be calculated in explicit form. The calculations yield 
ultimately 

x>O 

x<O' 

x±=1/>± [I/> (-0)-1/>(+0) ]a,(±x), 

(4.10) 

where a2(x) is defined by (4.8). It is assumed in (4.9) 
that the linear approxmations of the function v ±(1/J) are 
continued beyond the boundary 1ji(±O). 

I. M. Lifshitz and A. Yu. Grosberg 1201 



If we neglect the volume interaction of the fringe 
particles, i.e., if we put 1I(lj!) = lj! in the fringe, then we 
obtain at x > 0 

{ YA-l} 
1/1(x)~ipexp -x-a - -[1/1(-O)-1/1(+O)]a,(x). (4.11 ) 

Similarly, if the density n_ is close to the density no 
(4.2) in the interior of the globule, then at x < 0 (inside 
the globule) we obtain 

1/1(x)~1/1'-(1/1'-ili)exp{: [ 2Txn,'+2 ]"'} + [1/1(-0) -$( +0) ]a,( -xi, 
2Txn,'+1 . ( 

4.12) 

where K = -n~2(ap/anorl < 0 is the isothermal compres­
sibility of the system of disconnected links with density 
no. In this approximation we have, according to (3.3), 
for the limiting values of the density 

n+=exp {piT}, 

('1_ -II,) /n,= (f.l (n.,) - il) xno' 
(4.13) 

and, according to (4.5), for the limiting values of the lj! 
function 

1/1 (±O) ~n± exp {-pi2T}. 

This enables us to express the lower limits of integra­
tion in (4.9) in terms of /1. For the limiting value of the 
chemical potential 11 itself we obtain in this approxima­
tion the conditionS): 

n+/n,=- (2Txno'+1)/ (8Txno'+5). (4.14) 

We now use the obtained solution to investigate the 
behavior of the thermodynamic quantities near the coil­
globule phase-transition temperature. 

For a dense globule to be produced it is necessary 
that the globule be thermodynamically more favored than 
the loose coil with F = O. According to (4.3), this condi­
tion reduces to the simple requiremet 

f.l'(n" T) <0, (4.15 ) 

which denotes Simply that the self-consistent field should 
form a potential well. The phase-transition temperature 
To is thus determined from the conditions 

f.l·(n" T,) =0, p'(n" T,) ~O. (4.16) 

Near the transition point, when 0 < T = To-T « To, 
the free energy depends on T linearly, i.e., the coil­
globule phase transition is a first-order transition; it 
is represented by the line A on the phase diagram 
(Fig. 3). 

To determine the behavior of the surface tension near 
the transition point it is necessary to take into account 
the volume interaction of the fringe particles. Since the 
density profile in the fringe was obtained by us in the 

r 
I 

1202 

E 

FIG. 3. Phase diagram for a model 
of "interacting beads on a flexible 
filament." The lines EDC, EDBA, 
and CBA delimit the regions of a 
globule without a fringe, a globule 
with a fringe, and a coil, respectively. 
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zero-order approximation in the interaction, we should, 
when estimating the interaction itself, first take only 
pair collisions into account, and, second, assume that 
the pair-collision probability is not perturbed by the 
interaction. 

Since the number of particles in the fringe is vanish­
ingly small in comparison with the total number of the 
chain particles, it is clear that the fringe consists of 
loops separated by long sections of the chain lying in­
side the globular core. Therefore the motions of parti­
cles of different loops are practically uncorrelated, and 
since each particle collides mainly with particles of other 
loops, the boundary-collision probability is Simply equal 
to n2(x) (the correction due to collisions with particles of 
its own loop is of the relative order of magnitude ~N-1/3). 
Consequently, the energy of the volume interaction of 
the fringe particles is 

lmRo'TB(T) J n'(x)dx, , 
where B(T) is the second vi rial coefficient in the sys­
tem of disconnected links.6 ) 

This energy has the same local form as (2.2). There­
fore the corresponding refinement of the denSity profile 
in the fringe is contained automatically in (4.10), where, 
however, it is necessary to use in the fringe region the 
virial expansion for v(lj!) (v(lj!) "" lj! (1 + 2Blj!2)). 

To find the surface-tension coefficient it is obviously 
necessary to put in (4.4), when integrating over the fringe 
region x > 0, 

p'(n, T) =n'B(T). 

When the transition temperature is approached without 
restriction, we obtain 

d'(ddT'-cl-YT,-T+const. (4.17) 

Depending on the concrete form of the lateral inter­
action, the temperature To of the coil-globule phase 
transition can be either larger or smaller than the criti­
cal temperature Tc of the disconnected links. If To > Tc ' 
then the surface layer of the globule undergoes a second­
order phase transition on going through the temperature 
Tc; in this transition the distribution of the denSity be­
comes discontinuous (dashed line E on the phase diagram 
of Fig. 3). 

5. STRUCTURE OF SMALL GLOBULE WITH COIL 

The core of the globule is regarded as small if its 
volume is V 0 « a3 • Regardless of its smallness, this 
core can turn out to be macroscopic if the number of 
particles in it is large: noVo» 1. A globule with a small 
core can obviously be made up only from a sufficiently 
short chain, for which the number of particles is N 
« noa3 • 

In view of the smallness of the core (in the absence 
of an external field), the density everywhere in the in­
terior of the core is approximately constant and equal 
to its limiting value (in other wordS, no "" n_). Therefore, 
for an extremely small globule we have 

gin (1/1,,.-ljJou,) ~ v, {1/1in (0) ->1',". (0) }g(X) 55 v, (1/1--IjJ+) g(x). 

The function in the right-hand side of (2.7), as already 
mentioned, can vary Significantly only over distances 
~a, and consequently it is approximately equal to its 
limiting value in the interior of the core. Since, further­
more, we neglect the volume interaction outside the core 

I. M. Lifshitz ar.d A_ Yu. Grosberg 1202 



(Il(n) = T In n or v(1f!) = 1f! at 1f! <1f!+), the right-hand side 
of (2.7) can simply be replaced by 1f!out(x): 

g¢,,,,+ Vo(I!L-¢.!) g(x) =i\¢o,,'(x) 

(we recall that we are considering in this section the 
case cp = 0). The equation can now be solved easily with 
the aid of a Fourier transformation, and the result is 

( ) - Vo(IjJ--IjJ+) J _'h g. d'k (5.1) 
¢ou' x - (211) 3 e A-g.' 

where gk is the Fourier transform of the kernel g(x). 

The constants Vo and A are determined from the 
boundary condition 1f!out(O) = 1f!+ of the solution (5.1) and 
the normalization condition (2.6). Noting that in the as­
sumed approximation we have n(x) = 1f!~ut(x) outside the 
globular core, and integrating, we obtain 

NQ (A) =n+a', 
Vo (n_-n+)/N=P(i\), 

where 

I.(A)= (2~)' J ( A~~. ) P d'k, 

Q (A) =/,'/(1,+1,), peA) =J/ (J,+I,). 

(5.2) 
(5.3) 

To understand the meaning of the solution (5.1) and 
to use phYSical intuition, it is expedient to proceed in 
the following manner. We represent the integrand in 
(5.1) as a geometric progreSSion and note that the in­
verse Fourier transform of glr is the convolution of m 
correlation functions 

pm(x)= fg(x,-0) ... g(X-Xm-,)d'X, ... d'Xm-'=(2!)' f e'kxg.md'k. 

The solution then takes the form 

- A 1\lou,(x)=Vo(1\l--1\l+) l: exp{; }Pm(X). (5.4) 
m_' 

This result could have been guessed directly: the distri­
bution function of the terminalliim is Pm(x) if a "tail" 
of m particles is let out into the fringe. On the other 
hand, the probability of formation of an m-particle 
"tail" is proportional, according to (2.8), to exp{mA/T}. 
Finally, squaring the series (5.4) (in accordance with 
the fact that nout = 1f!~ut), we obtain a clear idea of how 
the fringe is made up of loops of different lengths. It is 
useful to bear the expansion (5.4) and the corresponding 
representations of the integrals J p in mind in the course 
of the calculations. 

To determine the densities n+ and n_ we must now 
minimize additionally the free energy (3.5). With an aim 
at comparing with a globule without a fringe, we take 
into account the contribution made to the free energy 
(2.8) by the volume interaction of the fringe particles. 
Since the density profile was obtained by us in the zero­
order approximation in the interaction, it follows that 
when the interaction itself is determined only pair col­
lisions need be taken into account. The calculations can 
be carried through to conclusion in the limiting case 
n+a3 «NQmax7 ), Le., A - 00. According to (5.4), this 
corresponds to a fringe consisting only of very short 
loops. In this case the main contribution to the volume 
interaction of the fringe particles is made by collision 
of particles from two different "single-link" loops. 
The local pressure p(n_) at the boundary of the globular 
core should be small in this case, because the number of 
particles in the fringe is small and the fringe is inca-
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pable of experiencing a noticeable mechanical force, al­
though the longitudinal bonds do distribute this force 
over the entire thickness of the fringe. In other wordS, 
the denSity n_ in the core of the globule is close to the 
denSity no determined by the condition p(no, T) = 0 (cf. 
(6.2) below). Carrying out additional minimization of the 
free energy with allowance for all the foregoing, we ob­
tain 

(n_-no)/no=2B(T)G,n//N, (5.5) 

where 

Gn = gn~o) f gn(x)d'x, 

B(T) is the second vidal coefficient in the system of 
disconnected links. The density n+ in the fringe is de­
termined by the condition for the continuity of the local 
chemical potential (3.3) (n+ ~ exp {Il (no, T)/T}). This 
yields for the equilibrium value of the free energy 

Ng(O) fen"~ T) , 
F=-NTln--+N----n+TG,-n+ TBG, 

e no 
(5.6) 

(for a Gaussian kernel gG(x) we have G2 = (21T)3/2a3, G4 

= 1T3/2a3). 

The condition under which this globule is thermody­
namically favored over a coil takes the form F < O. Ob­
viously, near the transition point To (F(To) = 0) the free 
energy (5.6) goes to zero linearly, Le., the denaturation 
of the globule, or conversely, its formation from a coil, 
is a first-order phase transition, as expected. This 
transition is represented by line B on the phase diagram 
(Fig. 3). 

6. GLOBULE WITHOUT FRINGE AND PHASE 
DIAGRAM 

We recall that to obtain the entropy of a macroscopic 
state specified by a density distribution it is necessary 
to consider a chain without volume interaction in an ex,; 
ternal field such that the specified distribution is at 
equilibrium in the field. As shown in Sec. 3, a globule 
without a fringe is produced when the longitudinal bonds 
do not make it possible to satisfy the requirement of con­
tinuity of the local chemical potential on the boundary of 
the globule core. Therefore a chain without volume inter­
action can form a globule without a fringe only if the ex­
ternal field outside the globule becomes infinite. This 
means that a globule without a fringe is descriOed by 
Eqs. (2.2)-(2.8), in which the operator g is replaced by 
the operator gin' In particular, the equilibrium denSity 
distribution is determined from the equations 

~ {ft'(n)-A} g,,,l/l=¢exp --T- , 
(6.1 ) 

An = ¢g",1\l. 

The limiting value of the density is determined by ad­
ditional minimization of the free energy (2.8). 

The description of the globule without a fringe is par­
ticularly simple if the fringe has extremely small dimen­
sions. The density in a small globule is practically con­
stant, so that Eq. (6.1) can easily be solved: 

g(O) Vo1\l(O) =1\l (0) exp{ ; [ft'(no,T)-Al}, 

after which the additional minimization of the free energy 
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yields the following condition: for the density no in the 
globule: 

pen"~ T)=O. (6.2) 

The meaning of this result is explained by the simple 
consideration that in a small globule without a fringe all 
the particles are contained in a small volume (much 
smaller than a3 ), and therefore the mechanical equilib­
rium of the boundary cannot be due to the tension of the 
longitudinal bonds (cf. (5.5)). 

For the equilibrium value of the free energy of a 
small globule without a fringe we obtain 

F=-NTln Ng(O) +Nf(n"T) , (6.3) 
e n, 

so that the condition under which the globule without a 
fringe is favored thermodynamically over the coil (F < 0) 
takes the form 

1 { !L(n" T) } 
N> g(O) exp --T-- + 1 . (6.4) 

For a Gaussian kernel we have l/gG(O) = (47T)3/2a3 • 

The corresponding first-order phase transition is repre­
sented by curve C on the phase diagram (Fig. 3). 

Comparison of the free energies of small globules 
without fringes (6.3) and with fringes (for which purpose 
it is precisely the expansion (5.4) and its corollary (5.6) 
that are well suited) leads to the following condition under 
which the fringe is not favored: 

-B(T)n+>G,IG, (6.5) 

(n+ ~ exp {u(no, T)/T}; for a Gaussian kernel we have 
GJG4 = 2Y2). We recall that at low temperatures the 
second virial coefficient behaves like B(T) ~ -exp 
{-uoIT}, where Uo < 0 is the characteristic energy of the 
lateral attraction between links. 

A phase transition in which the fringe is "hidden" in 
the globule is obviously a first-order transition. For 
small globules, it occurs when the equality is reached 
in (6.5). Refinement of (6.5) by taking into account the 
next higher terms in the expansion (5.4) reveals a weak 
dependence of the transition temperature on the number 
of links. This phase transition is represented by curve 
D on the phase diagram. 

It is likewise thermodynamically more convenient for 
an extremely long chain to form, at sufficiently low tem­
perature, a globule without a fringe. The distribution of 
the denSity in the globule can be obtained by approximat­
ing the integral operator ~in by a differential 'operator, 
in analogy with the procedure used for the operator g in 
Sec. 4. The expressions for the resultant unfavorable 
conditions for fringe formation are quite complicated, 
because the difference between the free energies of 
large globules with and without fringes is of the order 
of the surface energy. For an extremely long chain, the 
temperature at which the fringe vanishes does not de­
pend on the length of the chain, and this is represented 
on the phase diagram by the straight line E. 

The position of the triple point on the phase diagram 
(we deSignate its coordinates by N and if) are determined 
by the fact that the free energies of the globules, with 
and without the fringe, should vanish at this point. We 
see immediately, however, that the triple point lies in 
the region where the small-globule approximation does 
not hold (N « noa3 ). Its coordinates are therefore deter-
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mined by the equations 

eG,IG,g(O) =-B(1')N, Ng(O) =exp {!L(n" T)ITH}.. (6.6) 

Since Eq. (6.6) has a solution only at a sufficiently low 
temperature, and in particular at a temperature lower 
than the critical temperature T c in the system of dis­
connected links, the triple-pOint temperature is certainly 
lower than Tc: T < Tc' 

Putting 
N=NHN (15N«N), 

T=THT (I5T«T), 

we obtain equations for all three equilibrium curves 
near the triple point: 

1. The equilibrium curve B (coil-globule with fringe: 

{~ [at (no, T) _ t (no, 1,) 1 [1 + ~ Go] + G. Tn+ aB} I)!. = 6N . 
lIo aT T J N B (T) aT T~T l' N 

2. Equilibrium condition C (coil-globule without 
fringe): 

{..!. r at (no, T) _ t (no, T)]} l>!' = 6!!. . 
no,. aT T T~T T N 

3. Equilibrium condition D (globule with fringe­
globule without fringe): 

15T=O. 

Finally, to illustrate all the foregoing, we can plot 
the fraction of the particles in the globular core against 
the temperature. This plot is shown in Fig. 4 for a chain 
with more than N links. 

7. FORMULATION OF SMALL GLOBULE IN THE 
PRESENCE OF AN EXTERNAL FIELD 

In the case of a small globule, it is prefe rable to 
obtain the solution by assuming that both an external 
field cp(x) and volume interaction J.L*(n) are simultane­
ously present, since a potential field localized in a small 
volume can, for example, correspond to interaction of 
the polymer links with any particular particle. If the 
globule is formed by the "joint efforts" of the external 
field and the self-consistent field, then the regions in 
which each of them differs from zero do not in general 
coincide at all. Let us assume, however, that both fields 
are equal to zero outside the volume V, and assume fur­
thermore that this volume is small: V « a3 • Then the 
longitudinal bonds inside this line have no effect what­
ever on the density distribution: according to (3.2), the 
total local chemical potential J.L(n) + cp(x) inside the vol­
ume is practically constant and equal to its external lim­
iting value: 

!L(n(x»+'l'(x)=Tlnn+ (inside V). (7.1) 

this yields, in accord with (3.1), 

nix) =",,~,(x) (inside V) (7.2) 

(n+ and I/J+ are the values of n(x) and I/J(x) on the outer 
boundary of the volume V; n+ = I/J~). 

Unlike the case analyzed in Sec. 5, when there was no 

FIG. 4. Nc is the number of 
particles in the core of the glo bule; 
N is the total number of particles 
in the chain. 
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external field, the density and the 1/J function inside the 
volume V are not constant. Nonetheless, it can be verified 
that the 1/J function 1/Jout(x) outside V can be obtained in 
essence in the same manner as in Sec. 5. The resultant 
formulas differ from (5.1)-(5.3) only in that 1/J- and n_ 
are replaced throughout by the corresponding mean values 

1 S ' <Ijl>_=- Ijlin(x)dx, 
Vy 

<n>_=~ J n(x)d'x=Ijl+<Ijl>_. 
Vy 

If the self-consistent field of the volume interaction 
does not form an additional discontinuity of the density 
distribution, then these equations account for the problem 
completely. On the other hand, if such a discontinuity 
does occur on some surface (the temperature should in 
this case be lower than T c and there should be no exces­
sive compression on the part of the external field), then 
the value of the chemical potential on this surface should 
be determined by additional minimization of the free 
energy. 

For example, if the globule is formed around a parti­
cle and the interaction of the monomers with this particle 
consists only in that they cannot penetrate into the parti­
cle (<p is equal to + 0() inside the particle and to ze ro out­
side the particle) then, as expected, the density of the 
globular core around this particle is the same as the 
density of the free globular core, i.e., it is determined 
by (5.5) (of course, it is thermodynamically not profitable 
for the globule to absorb this particle, but this is already 
a purely surface effect). 

We now proceed to analyze the phase transition. The 
condition for the thermodynamic profitability of the glob­
ular state takes the form F < 0, and we should investigate 
the dependence of the free energy on the temperature 
near the transition temperature, i.e., at 0 < T'" To-T 
« To. 

For a chain without volume interaction we have 

so that the phase transition occurs as A - 1. Since 
P(A) ~ ...JA-1 as A -1, we have F '" CT2 at small T, i.e., 
the coil-globule transition is of second order. Mathemat­
ically, this transition is due to the appearance of a dis­
crete eigenvalue in (2.7). By the same token, the transi­
tion point is Singular for each of the phases. If the volume 
interaction is present but is small, so that the transition 
is due mainly to the action of the external field, then, 
owing to the second term of (2.8), the transition occurs 
at a value of A somewhat larger than unity, and becomes, 
strictly speaking, a first-order transition F '" bT + CT2 , 

but the coefficient b is small to the extent that the volume 
interaction is small. If there is no external field at all, 
then we obtain a genuine first-order phase transition, 
and the transition point, as for all first-order transitions, 
is by itself not Singular in any way. Finally, if both the 
external field and the volume interaction are not small, 
then two different first-order phase transitions will occur 
at different temperatures. 

The density distribution in a small globule without a 
fringe is determined in the presence of an external field 
by the condition that the chemical potential be constant. 
It must be remembered, however, that the continuity of 
the chemical potential is violated on the very boundary 
of a globule without a fringe. 
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8. PHASE DIAGRAM OF A REAL POLYMER GLOBULE 

Figure 3 shows the phase diagram for the "beads-on­
a string" model chain. Analytic expressions for all the 
equilibrium curves of this diagram were obtained in the 
preceding sections. Of course, in a real chain there is 
interaction not only between isolated beads, but also to 
a greater or lesser degree between all parts of the chain. 
Therefore the actual applicability of the derived formulas 
is limited to the case of a heteropolymer chain with suf­
ficiently flexible primary core and to loose monomers, 
which interact with one another much more strongly than 
the remaining sections of the chain. Nonetheless, the 
qualitative conclusion that three different macroscopic 
phases exist (coil, globule with fringe, globule without 
fringe) is itself valid for a real chain. It is also obvious 
that the transitions between these phases are of first 
order. A rough approximation of the corresponding phase 
diagram is shown in Fig. 5. 

The shape of the resultant globule is determined by 
the character of the primary structure of the chain. If 
the chain is very long and its primary structure is sta­
tistically uniform to a sufficient degree, then the globule 
is close to spherical. For a shorter chain, the inhomoge­
neity of the primary structure becomes important and 
the chain can form a globule of complicated shape. In 
particular, if the chain consists of several pieces, each 
capable of forming a globule, then a poly globule consist­
ing of several subunits is produced. The conclusion that 
the fringe vanishes remains in force in this case, too. 

Obviously, our entire analysis is valid only at tem­
peratures at which the solvent (water) is in the liquid 
state. The relation between the melting temperature of 
ice and the boiling temperature of water on the one hand 
and the characteristic temperature points of the phase 
diagram on the other depends on the concrete properties 
of the chain and can, generally speaking, be arbitrary. 

9. MICROSTRUCTURE OF THE GLOBULE CORE AND 
POSSIBILITY OF ITS SELF-ORGANIZATION 

For sufficiently large homopolymer globules, the 
microscopic structure of the globular core should differ 
little from the equilibrium structure of the equivalent 
homogeneous phase without linear memory but with the 
same density no. This qualitatively obvious circumstance 
is reflected in the results of Sec. 4, namely, by virtue 
of(4.2)the condition (4.15) under which the globular state 
is thermodynamically favored, takes the form f(no, T) 
< fid(no, T), i.e., it coincides with the condition under 
which a homogeneous condensed phase is thermodynam­
ically favored in a system of "beads" without a linear 
memory.8) Consequently j the core of such a globule can 

FIG. 5. Approximate form of the 
phase diagram of a real heteropolymer 
glo bule. The shaded regions are those 
where self-organization of the terti­
ary structure is impossible for one 
reason or another: horizontal shad­
ing-the solvent is in the solid or 
gaseous state; shading with lines in­
clined to the right-large probability 
of local topological irregularities on 
the surface of the globule or in its 
interior); shading inclined to the 
left-thermodynamically favored 
restructuring of the tertiary struc­
ture as a whole. T 
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be similar to a "liquid" or to a "crystal." When speak­
ing of a liquid-like structure, we have in mind not the 
mobility of its elements, but the disorder or amorphous 
character of this structure, by virtue of which it can be 
realized with the aid of a tremendous number of essen­
tially different conformations. To the contrary, when 
speaking of a crystal-like structure, we should pay prin­
cipal attention not to the fact of rigorous ordering, but 
the fact that this ordering corresponds to spatial perio­
dicity. 

If we mean by crystal-like structure an aperiodic 
rigorously ordered structure, which is realized, apart 
from thermal vibrations or deformations, with the aid 
of a single "optimal" conformation, then a similar sub­
division of equilibrium structures can also be used for 
heteropolymers with arbitrary sequence of the chain 
links. From this point of view, the possibility of self­
organization of the tertiary structure means that the 
equilibrium globule should have a crystal-like structure. 
Let us ascertain when this is possible. 

We note first that the chain can have an entire set of 
utterly different spatial arrangements (conformations) 
corresponding to one and the same value of the "energy" 
E. This "energy" includes both the chain energy and the 
entropy relative to thermal vibrations or other deforma­
tions that do not change the general character of the ter­
tiary structure. We denote by Eo the minimal value of 
the "energy" realized by the "optimal" conformation 
of the chain. We emphasize that we are dealing with ex­
tensive restructuring of the chain, for which the "exci­
tation" E-Eo is of the order of the volume energy, E-Eo 
= Nt:. The logarithm of the number of macroscopic con­
formations realizing the "energy" E is the conformation 
entropy S, which is a function of E: S = S(E). For a het­
eropolymer we need not expect the degeneracy at which 
the derivative as/aE would vanish at the "energy" Eo. 
Therefore at small E-EowehaveS(E)=(E-Eo)/y=NE/y, 
where the coefficient y is determined, in order of magni­
tude, by the energy of the lateral interactions per parti­
cle. The total free energy is consequently .r = NE(l-T/y). 
We see that at a relatively high temperature (T > y) the 
thermodynamically favored state is a mixture of a set of 
essentially different conformation states, i.e., the re­
sultant tertiary structure is liquid-like. 

Thus, in order for a crystal-like spatial structure 
to be produced it is necessary above all to satisfy the 
condition T < y. However, even when this condition is 
satisfied, local violations of order can also occur in the 
system and change the entropy (per defect) by an amount 
~ In c, where c is the concentration of the local defects. 
In an ordinary crystalline system, the local violation of 
the ordering (sayan interchange of a pair of neighboring 
particles), which is always present as a result of the 
thermal motion and is proportional to its activation 
energy, still does not disrupt the crystal structure. In 
a polymer globule, such a local violation is most fre­
quently connected with topological changes in the distri­
bution of the segments of the chain in the vicinity of the 
local disruption; it therefore calls for an essential change 
in the conformation as a whole. Naturally, a rewinding 
of the chain cannot occur in the already produced globule, 
but a large probability of such an event would mean that 
the equilibrium ensemble of globules constitutes a mix­
ture of systems with diffe rent spatial organization, i.e., 
there is no steady-state tertiary structure. The charac­
teristic energy Un of such a defect can be essentially 
different, depending on whether the defect is in the inte-
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rior of the globule (Uin of on its surface (UH»). Inside 
the globule, the minimal defect concentration is ~N-l , 
and on the surface this minimal concentration is ~N-2/3. 
Therefore the "volume" and "surface" topological dis­
turbances change the free energy by amounts 
~(Uj) -T In N) and ~(UH) - 2/3 T In N), respectively. It 
follows, therefore, that the requirement that the system 
be stable against local disturbances imposes a stringent 
requirement on the chain length, N « Nc ' where the crit­
ical chain length is Nc ~ exp {UniT}. 

The energy of a topological defect can be very small 
(for example, much smaller than the energy of one hy­
drogen bond) if the globule is not compact enough. Partic­
ularly dangerous in this sense are surface disturbances. 
Therefore compactness of the globule and its possession 
of a sufficiently large surface tension are essential if 
self-organization of its crystal-like structure is to be 
possible. This imposes very stringent limitations on the 
primary structure. 

In the case of proteins, a limitation of this type, in 
particular, is the relation noted by Fisher(2] between the 
concentration of the hydrophilic links and the dimensions 
and shape of the globule, and also additional correlations 
in the arrangements of these links. 

In a more concrete analysis of the tertiary structure 
of protein globules, an important role is assumed by the 
presence of the secondary structure, which we disre­
garded completely in the analysis of an arbitrary polymer 
chain (see(3]). We note in this connection that sections of 
kinks, where the helical secondary structure is violated, 
are most dangerous in the sense of the probability of 
local disturbances. 

An alternative to the discussed "equilibrium" char­
acter of the tertiary structure of the globules is the ki­
netic mechanism of its formation. This is equivalent to 
the assumption that the "optimal" conformation is not 
determined by the absolute minimum of the free energy, 
but corresponds kinetically to the most rapidly attainable 
relative minimum. For a long chain, the fastest organi­
zation takes place if it can occur independently in dif­
ferent sections of the chain. This is possible only in the 
case when the resultant spatial structure has the simplest 
topology, i.e., it has a minimal (zero) number of nodes 
(or quasinodes9 »). 

It appears, however, that for reliable self-organiza­
tion of a tertiary structure in a long chain it is necessary 
that the kinetic and thermodynamic requirements coin­
cide, i.e., that the energywise optimal conformation have 
the simplest topology. (In accordance with the statements 
made in Sec. 8, a polymer chain with a corresponding pri­
mary sequence can form a poly globular structure that is 
compatible with both requirements.) 

Indeed, it is obvious that the self-organization of a 
conformation that is kinetically difficult to achieve and 
is thermodynamically optimal is not reliable if this con­
formation is not kinetically optimal. On the other hand, 
however, if the kinetically-optimal configuration does 
not coincide with the thermodynamic minimum, then it 
cannot occur at all in the vicinity of the true transition 
temperature, and the more difficultly attainable thermo­
dynamic minimum must be realized. This contradiction 
makes the foregoing statement convincing (we emphasize 
that we are dealing with organization of the spatial struc­
ture of a ready-made chain, for example, after denatura­
tion of the globule, and not with organization during the 
course of synthesis on the ribosome). 
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Inasmuch as the overwhelming fraction of the confor­
mations corresponds to strongly knotted structures with 
increasing chain length, this requirement imposes an 
extremely stringent limitation on the character of the 
admissible sequences. In other words, only a negligibly 
small fraction of all the possible primary structures is 
capable of biochemical functioning. It is precisely these 
structures which were selected during the process of 
prebiological and biological evolution. 

APPENDIX 

THE CONCEPTS OF "PARTIAL EQUILIBRIUM" AND 
"SMOOTHED DENSITY" 

Partial equilibrium of a macroscopic system sets in 
in those cases when the probability distribution of some 
functions of the microscopic state of the system is spec­
ified by factors that are external with respect to the sys­
tem. If the relaxation time of a statistical system with 
respect to a certain parameter is much larger than with 
respect to all other parameters, then one can speak of 
a state of partial equilibrium (or incomplete relaxation), 
in which the value of the considered parameters is set 
from the outside (by the initial conditions), and the sys­
tem is in equilibrium with respect to all the remaining 
variables. Naturally, this approximation is valid only at 
times that are short in comparison with the total system 
relaxation time. The method of describing a state of 
partial equilibrium consists in choosing the regions of 
integration in phase space and ascribing suitable weights 
to them. 

The relaxation time of a polymer chain relative to 
breaking (i.e., relative to polymerization -depolymeri­
zation processes) is much longer than the relaxation 
time relative to kinks. Therefore, in the study of con­
formations of a polymer chain we should regard the 
thermodynamic equilibrium of the chain in a solution as 
a state of partial equilibrium with a fixed sequence of 
the chain links. This state of partial equilibrium is pre­
cisely the one described by the distribution (2.1). 

The macroscopic state of a chain is defined as a state 
of partial equilibrium with a fixed distribution of the 
smoothed density. The smoothed density can be defined, 
for example, in the following manner. We break up all 
of space into small cubes of volume v, and assume the 
"smoothed" density inside each cube to be constant and 
equal to the average value of the density in this cube. 
To be sure, the application of the word "smoothed" to 
the distribution obtained in this manner is quite arbi­
trary, since such a "smoothed" density takes the form 
of a pieceWise-constant function with steps. To avoid 
this, we define the smoothed density nO<x) at the point 
x as the mean value of the exact density function in a 
sphere of volume v around the point x: 

nr(x)=+ J Lr 6 (x+r-x;)·d3r. 

" ; 

Any of these or similar methods of defining the smoothed 
density leads, of course, to perfectly equivalent results. 
The convenience of the last definition lies in the fact 
that the smoothing volume v need not necessarily be the 
same for all the points x. It is only necessary that the 
number of particles in each smoothing element be suf­
ficiently large (nv » 1), and then the specification of a 
smoothed denSity denotes the fixing of only a relatively 
small number of variables N/nv « N (it is precisely in 
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this case that a state with a fixed smoothed density can 
be called a macroscopic state). Such a smoothed density 
corresponds to a large volume in configuration space. 
The logarithm of this volume is the configuration entropy 
of the mac roscopic state: 

Sin (x) }=In J 6(nr(x) -n(x» IT gjdr. 
J 

The free energy of the described macroscopic state is 

g.""{n(x)}=-Tln J exp {- 8~) }6(nr(x)-n(x)) IT g;dr. 
; 

In a thermodynamic description of the partial-equi­
librium state, the quantity 

E in} =g."" {n}+TS in} 

plays the role of the energy, although actually, of course, 
it does not coincide at all with the true energy of the 
system. 

The free total-equilibrium energylO) is obviously 
equal to 

F=-Tln J exp{-g.""{n}/TlDn, 

where the integration is carried out over all the possible 
distributions of the smoothed density. Actually, howeve r, 
the integration is only with respect to N/nv variables, 
which determine the smoothed denSity (this is particu­
larly clear for the first of the indicated methods of de­
fining the smoothed density). Since the number of parti­
cles in the smoothing elemet is large, the integral can 
be determined by the saddle-point method, and we obtain 
as a result 

F=min {g."" {n}} =g."" in}, 

where ii is the equilibrium distribution of the smoothed 
density. The saddle -point method introduces an error 
(In nv)/nv. Since most particles in the element v pertain 
to remote sections of the chain, natural fluctuations 
~(nvrl/2 take place in this element and are much larger 
than the error of the saddle-point method (in exactly the 
same manner as in an ordinary system without linear 
memory under the analogous situation). 

We recall that the Boltzmann entropy 

J n(x) 
s=- n(x)ln--d3x 

e 

depends on a density that is smoothed out in the same 
sense. 

OWe normalize the correlation function by the condition fg(y)d 3 y = I. 
2)Since the correlation function g between the positions of the ends of 

such a composite "link" is made up by convolution of several initial 
correlation functions, it begins to exhibit the influence of the central 
limit theorem of probability theory and, consequently, should differ 
little from the Gaussian function 

g, (x) ~ (4,,"') -'I, exp (-x' /4a'J, 

which can therefore be usefully regarded as the model of the correia· 
tion function. 

3)Here and throughout, when speaking of the free energy, the chemical 
potential, etc., we have in mind the configurational parts of these 
quantities. 

4)Expressions (2.2) and (2.3) were written down by us in such a way that 
the free energy is reckoned from the level of the free energy of the free 
coil. 

S)The conditions under which the radicand in (4.12) and in the right· 
hand side of (4.14) is positive are connected with the conditions under 
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which the integral operator g can be approximated by a differential 
operator. If these conditions are not satisfied, then the surface layer 
of the globule can have a complicated superstructure connected with 
the anisotropy of the density distribution. The characteristic dimen­
sion of this superstructure should be -a. This case is not considered 
in the present paper. 

6)It is given by the expression 

1 { {U(s) }} BITl-"2J l-exp --T- . d'!: 

where U(~) is the potential of the "bead-·bead" pair interaction. 
7)For purely arithmetic reasons, the maximum of Q can differ from 

unity in order of magnitude. For example, for a Gaussian kernel, nu­
merical integration yields Qmax "" 3 X 10-3 • 

8)We recall that the free energies of large globules with and without 
fringes differ only in the value of the surface energy, so that the phase 
transition connected with the vanishing of the fringe produces prac­
tically no change in the microstructure of the internal part of the 
glo bular core. 
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9)Strictly speaking, the concept of a node exists only for a closed chain. 
However, for very long chains, with length L much larger than the 
globule dimension R (L ~ R), it is always possible to "close" the chain 
by joining its ends with the aid of a suitably placed segment of small 
length -R and by the same token introduce the concept of quasinodes. 

IO)We have in mind total equilibrium relative to all possible distributions 
of the smoothed density, i.e., relative to kinks in the chain, and not to 
breaks. 

11. M. Lifshitz, Zh. Eksp. Teor. Fiz. 55, 2408 (1968). 
[Sov. Phys.-JETP 28,1280 (1969)]. 
~. Fisher, Proc. Nat. Acad. Sci. USA 51, 1285 (1964). 
30 . B. ptitsyn, Uspekhi Sovrem. Biol. 69, 26 (1970). 
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