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The spectrum of the collective excitations of a weak ferromagnet with easy-plane anisotropy and with spin S = I 
at each site is investigated in the zero-order approximation of the Vaks-Larkin-Pikin method [1,2). Exact allowance 
for the single-ion anisotropy produces in the spectrum a number of additional modes besides the usual spin waves. 
When the magnetic field is turned on, all the modes interact, and this is manifest, in particular, in the absence of 
a field intersection point for the AFMR frequencies. The field dependence of the frequencies at low tempera­
tures is calculated numerically. It is also shown that the anisotropy constant cannot exceed the value of the ex­
change potential. 

1. INTRODUCTION 

The main sources of anisotropic interactions in anti­
ferromagnetic crystals are the anisotropiC exchange 
interaction and single-ion anisotropy. The role of these 
interactions can become manifest differently in the for­
mation of the spin-wave spectrum. The anisotropic ex­
change interaction, since it takes place between unlike 
ions, is described sufficiently well by the self-consistent 
field approximation [1,2] and by the macroscopic theory 
described in detail in Turov's book [3]. At the same 
time, the fact that the energy spectrum of the isolated 
spin in nonequidistant character because of single-ion 
anisotropy calls for a consistent microscopic calcula­
tion of the spin-wave spectrum. Such an approach was 
attempted by us in [4] , where we considered in detail the 
case of a compensated anti ferromagnet in a zero mag­
netic field. It was shown that as a result of the exact 
allowance for the Single-ion anisotropy a new group of 
oscillations appears in the high-frequency region of the 
spectrum of the collective excitations and is due to the 
nonconservation of the projection of the isolated spin on 
the molecular-field direction. 

In this paper we consider a weak ferromagnet with 
easy-plane anisotropy under the assumption that the 
spin S of each magnetic line is equal to unity. It follows 
from the calculation that in the absence of a magnetic 
field the spectrum of the weak ferromagnet breaks up 
into two noninteracting groups of excitations, one of 
which, as in the case of the compensated antiferromag­
net, is connected with the nonconservation of the spin 
projection on the direction of the molecular field. Turn­
ing on the magnetic field leads to interaction of these 
groups of oscillations. The calculation is carried out 
with the aid of the Vaks-Larkin-Pikin (VLP) self­
consistent-field method [1,2] , which is generalized to 
include the case when arbitrary single-ion anisotropy 
is taken into account [4]. 

2. THE HAMILTONIAN 

If we neglect the interaction of the spins inside each 
of the sublattices of the weak ferromagnet, then the 
Hamiltonian, according to [5], is given by 

~J'€=~{VII(rJ-r,)S:IS:+V.L(r,-.r,) (S:S:+S: s:) l::...J g. g g ! g 

'I '. 
where VII (rf- rg) and V1(rf- rg) are the potentials of 
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exchange interaction of a pair of ions with S = 1, located 
at the site rr and rg of the sublattices f and g, re­
spectively; K(rf-rgJ is the Dzyaloshinskil interaction 
potential; y is the single-ion anisotropy constant; h is 
the reduced external magnetic field (the g-factor is as­
sumed for Simplicity to be isotropiC). The single-ion 
and exchange anisotropy interactions are chosen in such 
a way that they ensure anisotropy of the easy xy plane 
type. All the quantities in (1) are given for convenience 
in dimensionless form ({3 = T- 1 , where T is the tem­
perature). 

We separate from (1) the zero-order interaction 
Hamiltonians 

~J'€of=<S)(Vo.Lcosljl+xosinljl) 1:,s.;+<S) «;) -Vo.L sin Ijl+xo cos Ijl ) 

'I 

(2) 
" 

+<S)(~- Vo.Lsinljl+xocosljl)~ S: -2y~ (S; )', <S) £..;, ~ g 

which describe the behavior of the spins in the corre­
sponding molecular fields with allowance for the single­
ion anisotropy. In (2) (S) stands for the average spin at 
the site, and I/J is the angle between the average spin of 
each sublattice and the x axis. 

The self-consistency condition (equality of the angle 
I/J to the angle between the x axis and the molecular 
field) leads to a transcendental equation for the equi­
librium value of the angle: 

sin2tj h 

cos (tj+ljlo) <S(tj»Vo' 
(3) 

tj=Ijl-ljlo, ljlo=ljl(h=O), tg2Ijlo=xoIVo.L, vo=«Vo.L)'+xo')'''. (4) 

The explicit form of (S) will be obtained later on. 

As seen from (3), there is no critical magnetic col­
lapse field in this system. This corresponds to the ef­
fect of induction of antiferromametic order above the 
Neel point by a magnetic field 6]. 

When (3) and (4) are taken into account, expressions 
(2) for the zero-order Hamiltonians become 

-~J'€Of= .E [ :2 (e-i'S~ +ei'S~) -2y (S,~)' ], 
'I 

-~J'€,,=- 1:, [ :2 (e'·S;' +e-i'S~)+2Y(S:,)']' 
( 5) 

" 

Copyright © 1975 American Institute of Physics 1166 



where the square of the modulus of the molecular field 
is 

Y,'=(S)'V . .'+h' sin '¢o/sin 21'). 

3. DISPERSION EQUATION 

The spectrum of the collective excitations of the 
spin system is determined by the poles of the analytic 
continuation iWn - W of the matrix of the correlation 
functions K(q, iWn) with the matrix elements 

~ 

K .' '':( . )=_1 Se'."'~ exp[iq(r,,-rm ,)] 
I m q, Hil n 2~ ..--: 

(6) 

-1\ 'm' (7) 

The indices Z, m, Z', and m' in (7) label the spin-oper­
ator components and the sublattice to which the oper­
ator pertains. 

Introduction of the irreducible matrix part i(q, iwn) 
in the VLP method [7J makes it possible to represent 
K(q, iwn) in the form 

K(q, iUl n ) = (1-i(q, iUln)V.)-I~(q, iUln). (8) 

The dispersion equation then becomes 

S,+= ~ ~s: + --'-[ __ '''(8.+)'+ e''''(8,,-)']- -(1'A+YB) '. {'I 1 - -
f 1'2 () f 6 I f 2 

1 - - } x (e-"S,~-e"S'7)- 2(l'B-1'A) {(c'-S,;-e<>S'7),S,; 1+ . 

From this we easily obtain the average value (S) of 
the spin at the site: 

(S>=yb/6, b=2e" sh 6I(1+2e' ch 6). ( 13) 

In (12) and (13) we used the notation 

6= (y'+y')"', A= S6-y)126, B= (li+y) 126, ( 14) 

and { ... , ... }+ denotes the anticommutation operation, 

The blocks needed to determine the spectrum and 
obtained with the aid of (13) are given in the Appendix. 
After substituting them in (9) and calculating the sixth­
order determinant, the dispersion equation becomes 

1-V.'[a'r ,'-2a cos 21')r.'+cos' 21') (f,'+r"c) (15) 
+2 sin' 21')f,r,]+ V.'{a' (rlrs-f.') [cos' 21') (rlr,-f.') 

+2 sin' 21')r,r,]+r,'[r,'-2a cos 21')r,' 
+a' cos' 21')r,']}- V.'a'r,'(r,r,-f,')'=O, (16) 

V.'=(V • .L)'+x.', a~V."IV •. 

det[1-i(q, iUl n) v.] =0. (9) 4. SPECTRUM IN ZERO MAGNETIC FIELD 
In the zeroth approximation, i(q, iWn) constitutes a 

matrix made up of blocks r~~" which are obtained 

from formula (7) for K~~,(q, iWn) with replacement of 

.if' by the single-particle Hamiltonians (5). The calcula­
tion of the blocks is made difficult by the fact that the 
zeroth Hamiltonians (5) are not diagonal in the repre­
sentation of the operator SZ. Proceeding in analogy 
with [4J, we obtain the unitary transformations Uf,g that 
diagonalize .if' of ,g: 

Uf'~O.r,~UJ~g=~fJt,g, U"g= II Urf,g' ( 10) 
f/.g 

~ • Z 
In this case any T-ordered mean value (TSiz;( rz) ... 

sZn (rZ })o (T is the chronological-ordering operator) 
r Z' n n 

is expressed only in terms of the transformed oper­
ators: 

- I I "'-I -sin ( » (TSi. ('fl,) •.. St. ('fl »0 = (1 Se'. ('fl,) ... ,. 'fIn 0, 
11 In n 11 In 

(11) 

and the problem reduces to the case of a diagonal zero­
order Hamiltonian [aJ. 

For the f-sublattice, for example, we obtain 

1--.1--, 
/1, =---=-(1'A-1'B)S, +---=-(l'A+1'B) (S, )' 

f 21'2 f 21'2 I 

+ ~e-i" (1'B -~) S,++ ~ __ "'( 1B + ~-=) 
:0 12 f 2 V:! 

(12) 
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For h=O (1/=0), the dispersion equation (15) breaks 
up into three. The first two of them 

1± v. (r,-ar,) -aV.'(rlrs-r.') =0 ( 17) 

determine the two branches corresponding to the or­
dinary spin-wave theory, and the two branches con­
nected with the non-equivalence of the local transitions 
of the spin from the first to the second excited energy 
sublevel and from the second to the third, just as in the 

. t d t'f t [4,9J case of an easy-axIs compensa e an 1 erromagne . 
The frequencies of all four branches are given by the 
following expressions: 

b 
(~Ul1,2".')'=6'+'('(±)6 V.[6yR+y' cos' p+6' sin' p] 

1 ' {1 Y' )' 
-Zcos 2p ( ~ bV.) ± (2 cOS 2p 6' b'V.' 

-( tbV.)' [6'+Y'COS2P-2Y6Rsin'p ( 18) 

b ~] - y' sin' p (±)6 V. cos 2p (61 R+1' cos' p+6' sin' p) - !i'(6- i R cos 2p)' 

b ]}~ +416 (6(±)fbV.Rcos'P ) [1(±)/j V.(1+1lR sin' p) , 

where the signs in the parentheses are in mutual corre­
spondence, cos 2p = a, and 

R= (ch 6-e-')/sh 6. (19) 

It is easy to verify that the gap of the lowest-fre­
quency mode {3Wl vanishes, as it should. At p=O (com­
pensated antiferromagnet), the frequencies (18) 
coincide with the analogous ones in [4J. 

If y=O, then only the ordinary spin-wave modes re­
main in the spectrum (18), and {3W3,4 = I) corresponds to 
local transitions of the spin with a change of energy by 
I). In a magnetic field we easily obtain for {3Wl,2 

(~UlI. 2) 2~b'[ Vo'- V.' cos 21') cos 2p] ( ) 
+h' sin '¢o/sin 21')±bV.y (cos 2p-cos 21'). 20 

It follows from (20) that intersection of the spin-wave 
branches takes place at 1/ = p. 
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At low temperatures (b'" R'" 1), the modes {JW3,4 

= O-y in (18) correspond to local transitions from the 
excited energy sublevel, and therefore are excluded 
from the collective-excitation spectrum. The frequen­
cies {JUh,2 thus take the form 

(~Cil",)'=(H1»=F2 :. [1l1+1'cOS'PH'sin'pl-coS2p( : V.)'. (21) 

In the model considered by us, the projection of the 
spin operator on the direction of its molecular field is 
not conserved even in the zeroth approximation, and 
this leads to a mixing of the states of the isolated spin 
with different magnetic quantum numbers m. Con­
nected with this fact is the last dispersion equation 

1-v.'r,'=0, 

which is separated from (15). It determines the two 
modes of the spectrum 

(22) 

(~Cil"')'~41l(1l±;: bV.), (23) 

the frequencies of which coincide at y= 0 with the en­
ergies of the local spin transitions with ~m = 2. 

5. INTERACTION OF COLLECTIVE EXCITATIONS 
IN AN EXTERNAL MAGNETIC FIELD 

If the external magnetic field h '" 0 (11 '" 0), then 
Eq. (15) no longer breaks up into three separate equa­
tions, and the calculation becomes cumbersome. We 
therefore confine ourselves here to low temperatures, 
when the modes {JW3,4 are excluded from the collec­
tive-excitation spectrum. The solutions of the fourth­
degree dispersion equation (15) can be represented in 
this case in the form 

(~Cil" ,) '=4Il'+2x-2l'z=F2 {P,-z+ [ (2z-P,) '-P,l 'I,} "'. 

(~Cil",) '=4Il'+2x+2l'z±2{P,-z-[ (2z-P,) '-P,]"'} "'. 

P,=x'+2V.' [ Il'B'g'+2B'l' sin' 21] + ~: cos' 21]] , 

(24) 

p,=V.'( IlBg+ ~' cos 21]) { x( IlBg- ~' cos2T)) +2V.'1~ aABSin'2T)}, 

P,=[x'-(2V.6Bg)'] [ x'- (2V~ ~' COS2T)),] 

-8V.'l' sin' 2T){ B'x(2aAgV.'-x) +2V.' ~:[ 6'B (aA +B'g) cos 2T) 

-B'(Il'B'-a'A'V.') 1 }, 

x=6' (B'-1) -aABV.' cos 2T), g=aA-B cos 2T), 

and z is the root of the equation 

b 

i=J.6 

Z H 

z 

2 H' 

Dependence of the frequencies ni on the magnetic field for dif­
ferent values of the anisotropy constant: a) r = 0, b) r = 0,25, c) r = 
0.6 (ni and H are given in relative units). 

split, and the AFMR modes no longer have an intersec­
tion point, as a result of the interaction with these 
modes. In the case of a weak anisotropy, the frequen­
cies 0i at g = 0 are given by 

'{ r' cos 2T) } Q,,2"'4 L'1'+X± L'1X [L'1'(B'-1)-B'] , 

Q' -4[' r'B'COS21]Sin'2T)] 
5,'- L'1 ± L'1X . 

For r >ro (Fig. c), where 

r o=[L'1(Ha)]J(3+a), 

(26) 

(27) 

the high-frequency AFMR mode lies above the lower 
component of the doublet 0 5 ,5' It should be noted here 
that the anisotropy constant r cannot be larger than 
unity. From (6) and (13) we easily obtain at h = 0 

a=[r'+(yJVO)']'I,=1. (28) 

It is impossible to satisfy (28) at r> 1. This limitation 
on the value of r is due to the fact that the exchange 
interaction via the molecular field tends to "unmix" the 
states of the isolated spin with definite magnetic quan­
tum numbers, whereas single-anisotropy tends to "mix" 
them. Thus, when the anisotropy increases the anti­
ferromagnetic ordering of the easy plane axis becomes 
impossible starting with a certain value of r. 

z'-,-z'P,+ -{-z (P,'-P,) - P,'=O (25) 6. CONCLUSION 

with the initial condition z(h = 0) = x2 • 

The figure shows the results of a numerical calcula­
tion of the frequencies (24) in the homogeneous case 
(q = 0) at Ko = 0.5 vt(<po '" 13°) and a = 0.86. We have used 
here the notation 

{Q;, r, H, L'1, X}=Vo-'{~Cil;, 1, h, 6, x}. 

For r = (0) (Fig. a) we have OS,5 = 2~, and the antiferro­
magnetic resonance (AFMR) frequencies 0 1 ,2 behave in 
the manner predicted by the phenomenological 
theory [10,11 • The intersection point is determined, as 
noted above, by the condition 11 = p or g = O. At a finite 
value of the anisotropy (Fig. b), the modes ~2s,5 are 
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From the results obtained in this paper we can 
draw the following conclusions. 

1. To ascertain the role of single-ion anisotropy in 
the formation of the spectrum of the collective excita­
tions in antiferromagnets, it is necessary to use essen­
tially a microscopic approach. For example, in the case 
of a spin S = 1 there appear in the spectrum, in addition 
to ordinary spin waves, a number of additional branches 
connected with the nonequidistant character of the sys­
tem of energy sublevels of the isolated spin in the mole­
cular field, and with the nonconservation of the spin pro­
jection on the corresponding direction of the molecular 
field. Knowledge of the frequencies of all the collective 

V. N. Kitaev et al. 1168 



excitations may be useful in the interpretation of the 
spectrum of the magnetic-dipole absorption in the infra­
red region. 

2. Application of an external magnetic field leads to 
an interaction between all the collective excitations, 
which is manifest, in particular, in the absence of an 
intersection point in the field of the AFMR frequencies. 
At sufficiently large anisotropy, the energy of the high­
frequency AFMR branch may turn out to be larger than 
the energy of one of the modes connected with the non­
conservation of the spin projection on the molecular 
field. 

3. The anisotropy constant y cannot exceed Yo. 
Otherwise, the strong "mixing" of isolated-spin states 
with definite magnetic quantum numbers makes anti­
ferromagnetic ordering of the easy-plane type impos­
sible. 

A suitable crystal with which to check the proposed 
theory may be nickel carbonate, whose low-frequency 
AFMR branch was investigated by Prozorova [121. The 
nickel ion in this compound has a spin S = 1, and the 
Dzyaloshinski'i interaction amounts to "'0.5 of the ex­
change interaction [12,131. One should therefore expect 
also an appreciable Single-ion anisotropy constant. 

The authors thank Academician A. S. Borovik­
Romanov, E. A. Turov, and V. E. NaIsh for a discus­
sion of the results and for useful remarks. 

APPENDIX 

The Fourier components of the simplest blocks are 
determined by the following expressions: 

where 

r/'=r" r/+='/,e'2'[r,-r,j, r,--='/,e-12'[r,-r,j, 
r,+-=r,-+='/,(r,+r,), r/+=e"rJI'2, 

r/'=-e"rJI'2; r/-=-e-"rJI'2, 
r,-'=e-"r,lliz, 

(A.I) 

r.=B<p, (Gn'+G_ n') + A<p,(Gn'+G_n'), 

r, = :6[<P,(G,,'-G-n')+ <p,(G,:-G_n')]. 

i . )-1 Here G±n=(Yi'flWnJ3 ,Yl=/i+y, Y2=/i-Y, 

e6+ 1_1 

<p, = 1+2eT ch6 ' 
1-eT-' 

'p,= 1+2eTch6' 

The blocks with the sub lattice index g are obtained 
from (A.1) by replacing z/! with 7r-z/!. 
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