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We consider the properties of the non equilibrium state produced in a superconducting sample by laser radiation. 
We obtain the dependence of the change of the superconductor-spectrum gap on the temperature, radiation power, 
and the coordinates. The results agree with the existing experimental data. We investigate the behavior of the 
superconductor in an alternating field of frequency close to the value of the gap. 

A number of experimental results have recently been 
published concerning the influence of laser radiation on 
the properties of superconducting films [1,2J. In these 
experiments, thin superconducting films evaporated on 
substrates where they irradiated from one side by 
lase r light, either continuously or with sufficiently long 
pulses. Testardi [ll observed in this case the presence 
of resistivity below the transition temperature, while 
Parker and Williams [2J, using an He-Ne laser, observed 
a unique dependence of the gap on the temperature under 
the influence of the radiation. 

An alternating electromagnetic field, after penetrat­
ing into a sample, leads first of all to a simple heating 
of the latter via release of Joule heat. The electrons 
and the lattice are then in thermal equilibrium with each 
other. In addition, however, a change takes place in the 
electronic states because the electrons absorb quanta 
and go over into the region of higher energies. This 
process, generally speaking, cannot be described by 
introducing an effective electron temperature, since 
their distribution function becomes strongly nonequi­
librium and can differ greatly from the Fermi function. 
If goot heat-removal conditions are created, then the 
heating of the sample as a whole is negligible, and the 
action of the electromagnetic field reduces only to a 
change in the electronic states. This is precisely the 
case realized in [1,2J. 

Nonequilibrium electronic excitations were produced 
in the field-penetration volume by the laser source and 
penetrated, by a diffusion mechanism, into the interior 
of the superconducting film. Owing to the quaSiparticle 
energy relaxation, the picture remained stationary in 
time. The nonequilibrium distribution function of the 
quasiparticles leads, as is well known, to a change in the 
gap of the energy spectrum of the superconductor. The 
new value of the gap is determined from a relation analo­
gous to the BCS relation, but with the nonequilibrium 
distribution function 

·SD I-2n(e) 
1~A (e'-tl.')'" de . . (1) 

Parker and Williams [2J measured the gap as a func­
tion of the temperature with the field turned on. The re­
sults agreed with the phenomenological theory of Roth­
warf and Taylor [3J. In this paper we obtain an expression 
that is exact within the framework of the considered 
model and connects the change of the gap with the radi­
ation intensity and coincides in structure with the re­
lation given in [3J. In addition, unlike the earlier 
study [1-3J, where the distribution of the nonequilibrium 
excitations was assumed to be homogeneous over the 
film thickness, we consider the case of a coordinate 
dependence of all the quantities, which occurs in suffi­
ciently thick samples. 
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The formulation of the problem reduces to the fol­
lowing. Assume that laser radiation is incident on one 
side of the superconducting film (or half- space). The 
value of the magnetic vector at the practically permis­
sible radiation powers is much lower than the critical 
value at which superconductivity vanishes. The main 
effect is therefore the field-induced nonequilibrium dis­
tribution function. 

1. THIN FILMS 

We consider the case when the thickness of the ir­
radiated superconducting film is less than the field pen­
etration depth, so that the coordinate dependence of the 
considered quantities can be disregarded. The electrons 
absorb field quanta and go over far beyond the Fermi 
surface, after which they relax rapidly in energy and 
emit phonons. If the temperature is low enough, namely 
T « .:l (this is the case which will be investigated pri­
marily), and the radiation intensity is not too large, then 
the probability of quasiparticle recombination through 
the gap is exponentially small like e-.:l/T . 

The fact that the probability of simple scattering is 
larger than the recombination probability causes the 
excitations to accumulate directly above the threshold. 
By the same token, the principal part of the distribu­
tion function is concentrated in this region. This situa­
tion was considered by Owen and Scalapino [4J. 

To solve the problem, we use the :gliashberg kinetic 
equation [5J for the distribution function n( €): 

aUlD' [ [e(e+Ul)+tl.'J8(e-tl.) 
-A- [(e+ro)'-tl.'J'I'(e'-tl.')'" (nHo-n.) 

[e (e-Ul) +tl.'J8(e-Ul-tl.) + (n -n) 
[(e-Ul)'-tl.'l"'(e'-tl.')'" .-. • 

e(Ul-e)-tl.' 8 (e-tl.) 8 (Ul-e-tl.) (n +n -1)] 
[(Ul-e)'-tl.'l'" (e'-tl.') 'I, • 0-' 

: (ee' -tl.') (e-e')' ] , 
~J " "..., ,[n,(1-n,.) (1+N,_")-n.,(1-n,)N._,, de 

, (e'--:'.-) . (e--I\-) " 

S~ (ee' -tl.') (e' -e)' , + 'I [n,(1-n,,)N,,_,-n.,(1-n,) (HN,,_,) Jde 
, (e"-tl.'),I'(e'-tl.') , . 

~ (ee'+tl.') (e+8')' . 
+S [n,n,' (1+N,+o') - (I-n,) (i-n")N,+,, Jde'. 

A (e"-tl.')'"(e'-tl.') 'I, . (2) 

Here Wp=21/3S p, and a = 24/31T-ID(e/c)2AwA_w, where 
D = V2 T/3 is the diffusion coefficient, Aw is the vector 
potential of the field inside the film, s is the speed of 
sound, T is the transport free path time of the elec-

ron, and N€ is the Planck distribution function of the 
honons. 

It is seen from (2) that the recombination part of the 
ollision integral, which is described by the last term, 
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contains an additional exponential small factor e- ~/T 
in comparison with the principal terms of the scatter­
ing part. 

The quasiparticle energy distribution function ac­
quires a nonequilibrium increment n'(€)=n(€)-nF(€), 
which contains, besides the part nI( 10) localized directly 
above the threshold, also a part n2( 10) which is small in 
magnitude but decreases slowly with increasing energy. 
This last part is connected with the fact that at large 
energies there remain a certain number of quasiparti­
cles, owing to the finite relaxation rate. Thus, n'(€) 
=nI(€)+n2(€)' 

The function nI( 10) is the principal part of the non­
equilibrium increment to the distribution function, and 
should be obtained from the condition that the principal 
terms of the scattering part of the collision integral 
vanishes. Among the principal terms is the part linear 
in the electron distribution function: 

S• (ee'-ll') (e-e')' 
, ' [n,,(1+N,_,·)-n,,·N,_,·jde' 

(e '-ll') ,. . 
(3) 

The solution is a Boltzmann function nI€ = C exp[-{ 10 
- ~)/T], since allowance for degeneracy yields the next 
order of smallness. The constant C includes the change 
of the chemical potential. 

In accordance with the treatment given by Owen and 
Scalapino [4] , the slow recombination causes first a 
temperature equilibrium to establish for the excess par­
ticles coming from the region of high energies, fol­
lowed by a chemical equilibrium, so that a distribution 
with an effective chemical potential is established. 
However, the exact nonequilibrium distribution func­
tion will not have a Fermi form with effective chemi­
cal potential as assumed in [4]. Such a function would 
cause exact vanishing of only the scattering part of the 
collision integral, whereas the recombination part con­
tains terms that are larger in order of magnitude than 
certain terms from the scattering part. The next orders 
of the expansion of the nonequilibrium distribution func­
tion in terms of the small quantity e- A/T will there­
fore differ from the expansion of a Fermi function with 
an effective chemical potential. Only the first approxi­
mation, of the Boltzmann function, will be correct. 

To find the normalization of the function nI( 10), we 
integrate (2) with respect to E: 

,.-' ( ) ll' 2 CUilD S e Cil-e - 1- n, de 

" • [(Cil-e)'-ll'l'" (e'-ll')'" 

S• n,. de S· (ee'+ll') (e+e')' 
= (e'-ll')'" (e"-ll') 'I. [n,.+2(np,.+N.+,·)]de'. (4) 

4 • 

This equation expresses the balance of the total number 
of particles and for this reason it does not contain the 
scattering part. In the case of interest to us we have in 
n« 1, so that n€ in the left-hand side can be neglected. 
Recognizing also that n€ is strongly localized over the 
threshold in a scale T«~, we obtain for N the ex-
pression 

N ~ S~ n"d8 - 1 S~ n"d8 
- (e'-ll')'" - (2"') ", (8-"') 'h . . 

V T ' 2' 'I, 
= ~e_'iT[(1+aCilwD_Lle"/T) -1] 

211 8,,1l' nT . 
(5) 

From (1) we obtain the small change of the gap 
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(ll.-"')/ llo=2N, (6) 

where ~ is the equilibrium value of the gap at zero 
pump. Thus, both the correction to the gap and the 
change of the equilibrium particle-number denSity 
p = AmPoN/21T2 are expressed in terms of the quantity N. 

As to the small and slowly-varying part of the non­
equilibrium distribution function ll2( 10), it must be ob­
tained from the inhomogeneous equation (2). The func­
tion n2( 10) should be retained only in the principal part 
of the collision integral. At 10» wD, recognizing that 
the phonon energy does not exceed wD, we have 

3 WD Z 

Cil; n,(e) _ S e"n,(&+&')de' = a:v np(e-Cil). (7) 

At low temperatures, nF( 10 - w) can be replaced by 
8( W -10), and then the solution of the integral equation 
with the source (7) takes the form 

4a 
n,(e)=--. (Cil-e)8(w-e), e~CilD' (8) 

ACilD' 

In the energy interval ~«€« WD we have 
:I Q) " 

& () S "( ')d' aWD' an, & - e n, e+& e =-,,-, (9) 
• 

and we can neglect the right-hand side, which plays the 
role of a source, since the latter is important only in 
the range of sufficiently high energies (a). At low en­
ergies, the arrival of phonons due to radiation is more 
effective than the direct injection of quasiparticles by 
the field quanta. The solution of the homogeneous equa­
tion (9) is 

n,(e) ~awCilD'Ie'", (10) 

and the coefficient is determined from the condition of 
matching to the solution (8). We obtain analogously the 
solution in the remaining regions 

( &-TA ) -', e-ll A 1«:--«:-
n,(e)~ aCilCilD' (~)' T T 

"ll' T &-ll 
1, o <-T-«: 1 

(11) 

Relation (5) makes it possible to find the normaliza­
tion of the Boltzmann distribution function nI( 10). We 
ultimately get 

n(e) =nF(e)+ (:~ f e-(,-4)/T N+n,(e), (12) 

where n2(€) is given by formulas (8), (10), and (11). 

We present an expression for the relative change of 
the gap when the field is turned on, in the limiting cases 

ll.-ll = aCilCilD' (~) 'I. eMT 
A. 8"Il' nT ' 

CLuHJ)D2 «~e-'I.11IT. 
"A' '" ' 

ll.-'" = ( aCilCilD' ) '10 

ll. 2,,1l" 
(X.(J)(i)D

2 >~e-2fl/T. 
All' II 

In the experiment, at a given radiation power, the 
temperature varies, and therefore relation (13) can 

(13a) 

(13b) 

be regarded as the dependence of the gap variation on 
the temperature. The transition from one limiting case 
to the other is effected at the temperature in which the 
number of excess excitations becomes comparable in 
order of magnitude with the equilibrium value. The first 
case corresponds to the linear approximation in the 
intensity, and the effect was proportional to the expon­
entially large recombination time. Formulas (13) agree 
with the experimental data [2] . 

The question of the limits of applicability of the ob­
tained results calls for clarification. The splitting of 
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the collision integral into a large scattering part and a 
small recombination part is possible only at not too 
large values of the nonequilibrium increment to the 
distribution function. A simple analysis shows that the 
scattering is more effective than recombination if 
O!wwI/AA4 «(T/Af. At these values of the intensity, 
the main contribution to the change of the gap and of 
the particle number is made by the function nl( E), with 
n« (T/ A)3« 1. The role of the function Ile( E) will be 
made clear later on when electron-electron collisions 
are considered. 

If we introduce the effective chemical potential, as is 
done in [4], namely nF + nl = exp[-( E-I-')/T], then 

IL=Tln (1+ (!~ f e"" N), (14) 

and this yields, unlike [4] , a direct connection between 
I-' and the field intensity and the temperature. We see 
therefore that when the foregoing limitations are im­
posed on the intensity we have (A -I-' )/T « 1, and the 
situation is far from degeneracy. 

2. THICK FILMS AND HALF-SPACE 

When speaking of thick films, we have in mind pri­
marily a case when the sample thickness is much larger 
than the depth of penetration of the electromagnetic field. 
Nonequilibrium carriers are produced within this depth 
and then penetrate by diffusion into the remaining vol­
ume of the sample. The distribution of the excitations 
over the thickness can in this case be quite complicated, 
since generally speaking the diffusion length depends on 
the energy of the excitations. To take into account the 
spatial inhomogeneity it is necessary to add to the right­
hand side of (2) the diffUSion term 

where Df is the energy-dependent diffusion coeffi­
cient [5,6 

( , £\') 'I, , 
D,= e~ DB (e'-£\') , D=v3'C., 

Nonequilibrium excitations diffuse during their life­
time, and the characteristic distance to which they de­
part from the surface is proportional to the square root 
of this time. Since at low temperatures the lifetime with 
respect to scattering is much shorter than the lifetime 
with respect to recombination, the energy distribution 
function assumes its steady-state form at relatively 
short distances. As to the relaxation of the total excess 
number of particles, it takes place over a large length, 
where the distribution functions attune themselves "adi­
abatically" to the given number of particles at each 
point of space. Thus, at sufficiently large distances the 
distribution function contains a coordinate dependence 
in the form of an energy-independent factor. We em­
phasize that the possibility of such a factorization of the 
distribution function is due to the different scales of the 
scattering and recombination probabilities, and no 
longer exists when the temperature is increased. 

Integration of the kinetic equation with respect to 
energy eliminates the large scattering terms 

S~ n" de S~ (88'+£\') (e+e')' , 
(e'--'c.')'1. , (e"_/\2) 'I. [2(n,,+N<+,·)+n,,·jde (15) 
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In accordance with the foregoing, we seek the correction 
to the distribution function in the factorized form nl 
=C(z) exp[-(E-A)/T]. The energy part has the same 
form as before, since it is determined from the scat­
tering part without the coordinate dependence. The 
laser-radiation penetration depth is O=c/wp, and there­
fore O!(z) = O! exp(-2z/o). In the interior of the sample, 
at distances larger than 0, we have 

z,'8'CI8z'=C+'/.e"'''C', 

C( ) -f~ _AI' vexp(z/z,) _ £, roo AI'T (16) 
Z - -,e t zo=-----e 
, [vexp(z/zo)-1]' 2'/'nfi. £\ 

where ~o = (D/ A)l/2 is of the order of the coherence 
length. The constant v must be determined from the 
normalization condition. The condition anl/aZ = 0 should 
be satisfied on the boundaries of the sample. 

Integrating relation (15) with respect to the coordi­
nates in the case of a half-space, we obtain'the necessary 
normalization condition 

v(v+1) =~ aroron' ~e"/T~. 
(v-f)' 24 8",/\' nT 2zo ' 

It is convenient to obtain the solution in limiting cases. 
Recognizing that 

(,2nT)'I' 
C(z) T ' 

we obtain from (16) 

aroron' ( 2£\ ) ". 6/T Il (Z) -- - e -exp --
8",/\' , nT 2z, Zo 

at 

and 

£\,-/\ (z) 

/\, 
6'1. ( aroron' (~) 'l·e.IZT ~) 'I'(H~) -, 

8",/\' nT 2z, z, 

at 

where 

(17a) 

(17b) 

We have expanded the exponential in the last expression, 
since the main change of the distribution function is 
concentrated in the region z - Zl «Zo. 

The obtained solution nlE(z)=C(z)exp[-(E-A)/T] is 
valid at all points of the sample. The increments to 
this function, which are localized near the boundary, 
ensure the satisfaction of the boundary condition an/az 
= 0, and are obtained from the scattering part, are 
small in comparison with nl in proportion to the depth 
of penetration. 

The transition from one limiting case to the other in 
(17) occurs, just as in a thin film, at temperatures such 
that the number of excess quasiparticles becomes of the 
same order as the number of the equilibrium particles. 
The magnitude of the effect in a bulky sample is less 
than in a thin sample, since the quasiparticles go off 
into the volume. F or example, in the limit linear in the 
intensity, this attenuation amounts to o/2zo. The main 
feature of the solutions is the large penetration depth 
which, as follows from (16), exceeds ~o by many times. 
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The penetration depth reaches a maximum value 

when T =To and 

ctU}(ilD' 6 T ___ .- _exp-24/T 
All' 2z, Ll . 

If we take a film with thickness d larger than zmax 
then we obtain on the non-irradiated boundary, in the 
respective limiting cases 

(18a) 

(18b) 

Unlike the thin film, the temperature dependence of the 
correction to the gap is different. The curve reaches a 
maximum at the temperature To. 

The difference between the coordinate dependences 
of the two limiting cases in (17) is the consequence of 
the enhancement of the nonlinearity in (16), which sets 
in if the nonequilibrium increment to the distribution 
function exceeds nF. 

Just as for a thin film, it is necessary to indicate a 
criteria for the applicability of the derived formulas. 
The scattering remains more effective than recombina­
tion when 

ctU}(ilD' 6 . (T) "I, ---<t: - e-IJ../ZT 

All' 2zo Ll 

If the film thickness is less than the characteristic 
length Zo, but nevertheless exceeds the depth of pene­
tration of the radiation (this is precisely the case re­
alized in [2l), then the excess number of particles is 
constant over the cross section. Integrating Eq. (15) 
with respect to the coordinate, we obtain the expression 
of the preceding section, the only difference being that 
a should be replaced by ao/2d: 

( nT 'f, ( , 2Ll 6 'f, 
2 -) e-MT [ 1+_GtWWD _e"/T_) -1] (19) 

2Ll 8ALl' nT 2d . 

3. ROLE OF ELECTRON-ELECTRON INTERACTION 
AND SOME REMARKS 

An excitation with energy E can break up into three, 
knocking out at the same time a pair such as to satisfy 
the energy conservation law. For example, a quaSipar­
ticle with energy 3~ is transformed into three particles 
of energy ~ each. The cause of such processes in which 
the number of quasi particles is increased is electron­
electron interaction. As will be shown below, allowance 
for these processes leads to a renormalization of the 
quantity a, corresponding, as it were, to an additional 
source of excitations. 

Out of the entire electronic part of the collision inte­
gral [5,7], only the linear part responsible for the ef­
fects indicated above is of importance. This linear part 
comes into play starting with an energy 3~, and there­
fore does not influence the form of the main part of the 
distribution function. The same can be said also with 
respect to the form of the slowly-damped part of the 
distribution function, derived in Sec. 1, since the elec­
tronic integral contains a small effective coupling con­
stant wh/ ~EF. For this reason, only the integral con­
tribution from the electron-electron integral is of im­
portance; this contribution is determined by large values 
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of E. A new source of excitation is added to the field 
part of the kinetic equation, namely 

ctWWD' a. OlD'S- , ctWOlD' [ a. Ol (Ol )'] --+-- en,(e)de=-- 1+-- - . (20) 
A 6·2'1, e, A 6·2'/' e, OlD 

o 

Here al is the ratio of the electron-electron and elec­
tron-phonon coupling constants, and was introduced 
earlier in [7l. The renormalization may turn out to be 
appreciable at optical frequencies. Expression (20) 
is valid both for thin films and for thick samples, since 
excitations with energies larger than wD relax over 
lengths shorter than the penetration depth. The correc­
tion (20) will therefore attune itself to a(z) at each 
pOint. 

At optical frequencies, the condition w7« 1 may 
likewise not be satisfied (7 is the time of scattering by 
the impurities). For arbitrary WT, taking the foregoing 
correction into account, it is necessary to make in all 
the formulas the SUbstitution 

(tWWD' ctWOlD' 1 [ a. W ( W )'] 
---+---- 1+--- -

A A 1 +w',' 6·2'1, eF W D • 

(21) 

It was assumed everywhere above that the phonons 
are a thermal equilibrium with the thermostat. This 
will be indeed the case if the phonon relaxation occurs 
on the walls of the sample and not on the electrons. In 
the former case the corresponding mean free path is 
simply the film thickness, which is of the order of zoo 
The mean free path connected with the electron-phonon 
interaction is equal to 

~_1_e·IT. 
Cil w, 

From this, at W - T, the condition that Zo be rela­
tively small becomes 

and is always satisfied. Simple estimates show also that 
the rates of phonon relaxation on the walls exceeds the 
rate of their emiSSion by the quasiparticles. For this 
reason, the assumption that the phonons are at equi­
librium is justified. 

In concluding this section, let us discuss the case of 
a near-critical temperature. Let the thickness of the 
film be smaller than the field penetration depth. We then 
have in the approximation linear in the intensity 

( e~ .oox't.dx -x2 dx e&ITxdx 8 2 GIl dx 
12" -+2 --+2 --+4- --+2- --

31" S e"-l Sex+! T Sex+! T' Sex+! ) 
II t.IT u efT 

2 ~ " 4efT _IX 2e'fT' -
+ e'/T+1 S x-n.xdx+ e"T+1 S xfl.xdx+ e,/T+1 S n •• dx 

e/T I) efT 

+ S-~n. (x-~)dx- S- x'ex nl(x+~)dx- 'lsT~n. (~-x)dx 
eX _1 T e'-l T eX-1 T 

alT 0 0 

a ' !' th(el2T)-[e,w-,I/T+1]-' e<w 

"( [e,,-0)/T+1]-', e>w (22) 

We have introduced here the probability of inelastic 
scattering Y= AT 3/wh. We have neglected the quantity 
~, inasmuch as ~«T, and the principal part of the 
distribution function is concentrated in the region E - T. 
The function nl( E) should satisfy the normalization con­
dition (4) 
Gt W. S- de (2 S- x 2 dx S- x'dx B - x dx e' - dx ) 
--= n •• - --+ --+4-S--+2-S--
~ T T eX+! eX-1 T eX+1 T' eX+! '(23) 

o 0 ~/r 0 0 

At T - T c, the probability of recombination and of 
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scattering of the quasi particles is of the same order, 
so that the method of solving the kinetic equation for 
low temperatures does not apply in this case. However, 
just as at low temperatures, most nonequilibrium in­
crements to the distribution function are concentrated 
at € - T and should be determined from the homogeneous 
equation (22), while the source in the right-hand side is 
needed only for the normalization. The right-hand side 
of (22) can be neglected at €« w. Then nl at €» T is 
determined from the equation 

e' - ( e) 3T' n .. - S x'n. x + T dx=O, 

and at €« T we have 

Therefore, using the normalization condition (23), we 
obtain 

e<t:.T, 
a Cll { elT, 

n .. --:rT (Tie)', e>T. 

The increment to the Ginzburg-Landau equation is 
expressed in terms of the distribution function 

T,-T _ n(3) (~)' -U=O U=2S- n .. de . 
T, 8n' T ' (e'-II.')'" 

" 

(24) 

(26) 

(27) 

Taking into account the renormalization of the field in­
tensity (21) we get 

U_"::"~_1_[1+~~(~)'] (28) 
'Y T 1+Cll'1:' 6·2'/, eF CllD . 

Since the number of excess excitations increases at 
high pump frequencies, U is positive. This leads to a 
suppression of the superconductivity by the laser radia­
tion, unlike the stimulation of the superconductivity by 
relatively small frequencies, when the quasiparticles 
were diverted to the high-energy region [aJ. The form 
of nl( €) ensured in this case negative values of U. 

As follows from the Testardi data [lJ , the film re­
sistance vanished at temperatures lower than Tc in the 
presence of laser radiation. The lowering of the "transi­
tion temperature" became more effective with increas­
ing power. It is perfectly possible that this is an ef-
fect of the type considered above. 

4. DYNAMIC EFFECTS IN HIGH·FREQUENCY FIELDS 

We consider the case when the field frequency is 
equal to the gav; to realize this case, millimeter waves 
are necessary 9J. Let us find the change of the equi­
librium value of the gap under the influence of a weak 
alternating field of frequency w/2 = A: 

_ 1I..(k) = S~Sd dO, F ( -k) 
'A 4ni 6 4n •.• -0 p,p . 

This expression must be averaged over the impurities, 
and we can use for this vurpose the procedure of 
Gor'kov and ~liashberg 6J. As a result we obtain 

-+II..(k)= ~ K(4-)D(+)' A:/,(k) 

+1I..(k)~Sde{th e-Cll [e(e-Cll)+II.' +1] II"_ 
4i 2T s:s~_w . 1,1 II 
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e'>1I. 

e'<1I. 

The case of low impurity concentration was con­
sidered in [lOJ. At high concentration kl« 1 we have 

3 (1) (e)" [(ICll-211.1)'f' 1I..(k)=-;;:K 2' D --;- A./.(k) --11.--

Dk' II. -, 
x[8(211.-Cll)-i8(Cll-2L1.) l+-ln---] . 

2nll. I Cll-211. I 

(29) 

(30) 

The term with Dk2 was calculated with logarithmic 
accuracy. We see therefore that the harmonic of the 
gap at the frequency 2A has an anomalously large 
spatial-variation scale. For example, at w< 2 A we 
have 

1I..(z) = 3K!:!,) In-"'-II.-(-II.-) "'D (~)' j A;"(z.)e-,,JL~, (31) 
12n 211.-Cll 211.-Cll c £0 

o 

L=60-1-ln'" _11._ (_11._) 'f •• 
1'2n 211.-Cll 211.-Cll 

The increase of L as the frequency approaches 2A is 
limited only by the value of the dampin~ that must be 
introduced into the denominator of (30) 9]. At T - A we 
have Lmax- ~o(WD/ A)1/2. As seen from (31), in addition 
to the anomalous spatial behavior, enhancement of the 
nonlinear properties takes place when the frequency 
of the external field is close to A. 

It is of interest to consider the mixing of two laser 
frequenCies, for example two neighboring modes. The 
shift frequency is then Wo« A « w, and the correction to 
the gap varies at the beat frequency 

II. (e)' ( 2Cll) 11. •• = ~ D --;- A •• _.A. n+2i In 7 . (32) 

With decreasing frequency shift, Aooo increases and the 
transition to the static case (13) takes place at very 
small Wo, so that in practice it is impossible to observe 
the transition to the static limit. Nevertheless, an in­
vestigation of low-frequency gap harmonics is of inter­
est from the point of view of the nonlinear properties, 
which become enhanced at low shift frequencies. 

In conclusion, let us compare the experimental data 
of [2J with formula (19). The latter yields an exponential 
growth of the variation of the gap as a function of A/T, 
with subsequent saturation. The temperature at which 
the transition from one regime to the other takes place 
depends on the radiation intensity: 

_e-2~/T,...,~~ __ 1+-'-- -T ~. ~ 1 [ a Cll ( Cll )'] 
II. 'All.' 2d 1+Cll'1:' 6·2'" ey CllD . 

At a radiation power on the order of several tenths of a 
watt, the transition frequency is A/T - 10, which coin­
cides in order of magnitude with the data of Parker and 
Williams [2J. 

We are grateful to G. M. Eliashberg for valuable dis­
cussions and hints, and to S. G. Lisytsin for useful 
advice. 
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