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The energy dissipated when a dislocation moves in a random field of internal stresses is determined. Expressions 
for the average energy dissipated under various laws governing the loading of the crystal are obtained on the basis 
of a statistical analysis of the relief of the internal stresses along the dislocation-motion direction. 

Lattice defects, which are contained in all real crys
talline bodies, produce internal-stress fields in these 
bodies [lJ. A characteristic feature of crystal structure 
is the random disposition of the defects in their volume. 
The statistical properties of the internal-stress field 
a(x) produced in the crystal by the randomly disposed 
defects have been considered in [2-4J. The presence of 
random internal-stress fields has a strong influence on 
dislocation motion in crystals and on the evolution of 
crystal structure under mechanical, thermal, or other 
action. Allowance for the randomness of the dislocation 
disposition reveals qualitatively new regularities [5J , 

which cannot in principle be derived from any predeter
mined scheme. An important characteristic of the defect 
structure is the energy dissipated when the dislocations 
move through the crystal. Estimation of the energy dis
sipation is important in the study of dislocation mobil
ity[6J, strain hardening[7J, and other problems in crys
tal physicS. 

In this paper we determine the mean values of the 
energy released by motion of a linear dislocation, for 
the case when the field a(x) does not vary along the dis
location. This case is realized, for example, in a crys
tal containing an ensemble of linear parallel dislocations. 
This model of the dislocation structure makes it possi
ble to describe the characteristic features of the struc
ture of thoroughly annealed crystals. The methods de
veloped in the paper can be used to analyze the motion 
of charged particles, vortex lines, domain walls, etc. in 
random force fields. 

1. DETERMINATION OF ENERGY DISSIPATION 
UNDER MONOTONIC LOADING OF THE CRYSTAL 

We consider a linear dislocation with a Burgers vec
tor b; the dislocation is oriented along the z axis and 
glides in the y = 0 plane along the x direction under the 
influence of a stress 

S(x, t)~a(x)h(t), (1) 

where a(x) and T(t) are the components (in the y = 0 
plane in the b direction) of the internal and external 
tangential stresses, respectively, and t is a parameter 
of the external loading (e.g., the time). The equilibrium 
positions of the dislocation are determined from the con
ditions 

S(x, t)~O, as(x,I)/iJx>O. (2) 
We confine ourselves to the case where the dissipative 
forces acting on the dislocation are large in comparison 
with the inertial forces, i.e., the inertial forces do not 
influence the equilibrium position of the dislocation. 

The total energy diSSipated as the dislocation moves 
in the course of the loading, in the interval [t 1, t2], is 
determined by the functional 

x(tJ} 

w(';(t)]= b J S[x(t),t]dx, (3) 
x(t.) 
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where x(t) is the law of dislocation motion, x(t1) is the 
initial position of the dislocation, and X(t2) is the final 
position of the dislocation, defined as the point closest 
to x(t1), at which the conditions (2) are satisfied. The 
mechanisms whereb~ the energy is drawn away from the 
moving dislocation [ are not specified concretely. 

We distinguish between two simplest loading methods: 
infinitely rapid (pulsed) 

{ '1 .(I)~ 

" 
(4) 

and infinitely slow 

.(t)~-a[x(t)], 1,';;;;;'1';;;;;'1" "~T(t,), .,~.(t,). (5) 

The energy dissipated after a dislocation traverses a 
unit length under pulsed loading (Fig. 1a) is determined 
from (3) and (4): 

'" 
Wp(TI, .,) ~ bT,I(", .,)+ b J a(x)dx, (6) 

where Xl = X(TD and X2 = X(T2) are respectively the initial 
and final positions of the dislocation; l(T1' T) = X(T) 
- X(T1) is the dislocation mean free path when the ex
ternal stress is monotonically increased from T1 to T. 
The energy dissipated in the case of infinitely slow load
ing (5) (Fig. 1b) is 

" w, (", To) ~ WP(", '2) - b.f l( '" .)d •. (7) 

The loading can occur also at a rate intermediate be
tween (4) and (5), and then the plot of the dislocation 
loading T[t(X)] Fig. 1 would be a line intermediate be
tween lines 1 and 3. Since the field a(x) is random, the 
quantities X(T) and l(Tu T) are also random. If the dis
location moves in the course of infinitely slow loading in 
a region where a(x) decreases (-a (x) increases) mono
tonically, then the dissipation is equal to zero. In the 
case of a nonmonotonic relief of a (x), the region of 
values of X in which (5) is satisfied becomes multiply
connected, and then X(T) and l(T1' T) are multiple-valued 
functions of T and the dissipation is not equal to zero. 

We confine ourselves below to the case of stationary 
random fields <7(x) with mean value (a(x) = O. We de
note by W(T, L) the number of times that the relief -a(x) 
reaches the level T on the length L. The average number 

FIG. I. Energy dissipated when a dislocation moves in a random 
internal-stress field: a-pulsed loading; b-infinitely slow loading. The 
heavy lines I and 3 show the variation of the external stress along the 
path of dislocation motion; 2-relief of -a(x). The shaded area is equal 
to the released energy W divided by the Burgers vector b. 
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6(X) FIG. 2. Change of dislocation 
mean free path in the case of in
finitely slow increases of the ex
ternal stress from T to T + ilT. The 
shaded area is equal to the energy re
leased under such loading, divided by 
the Burgers vector b. 

of such events per unit length [8J is 
N+(.,L) 

[1+(,)= lim -~-'-
L"'H= L 

(8) 

On the set of all the events when the level T is 
reached, we define the random quantity I(T, .6.T) (the in
dicator of the maxima of the -a(x) relief), which is 
equal to unity if -a(x) has a maximum in the strip T, 

T + .6. T following attainment of the level 7, and to zero if 
there is no such maximum. For the loading (5), the 
change in the mean free path l(71' T) following an in
crease of the external stress from T to T + .6. 7 is 

{ lia[x(-c) l}-' 
1(-c,,-c+A-c)-I(-C,,-C)=- lix A-c + a(-c)I(-c,A-c), (9) 

where a(T) is the distance from the point where -a(x) 
reaches the level T (and which is followed by a maximum 
in the strip T, T + .6. T) to the next point where T is 
reached (Fig. 2). 

The first term in (9) determines the mean free path 
of the dislocation motion on the sections of X where a(x) 
decreases monotonically[9J. For such a motion, the po
tential energy of the crystal increases. The second term 
in (9) is determined mainly by the jumplike motion of 
the dislocations, during the course of which the energy 
released is 

WS(-CI, dAT)-WS(-CL, T)=bQ(T)I(T, AT), (10) 

where Q(T) is the area of the dip of the -a(x) relief 
under the level T (Fig. 2), following the maximum of 
-a (x). 

The integration of (9) determines the mean free path 
of the dislocation when the load changes from T 1 to T: 

J' { lia[x(u) 1 }-' r' 1('1'1,'1')= lix du+IJ a(u)I(u,du). (11) 
lj tl 

The first integral in (11) is determined on segments 
with random ends in the region [X(T1), X(T)], where x(u) 
is single-valued; the second integral in (11) is stochas
tic [10]. Integration of (10) in the interval [Tl, T] deter
mines the energy dissipation in the course of infinitely 
slow loading from T1 to T, of a crystal with a dislocation: 

, 
Ws(TI,T)=b JQ(u)I(u,du). (12) 

From (12), (1), and (11) we can also determine the en
ergy dissipated in the case of pulsed loading. 

2. DETERMINATION OF MEAN VALUES 
OF DISSIPATED ENERGY 

To determine the energy dissipated when a disloca
tion moves in a crystal it is necesary to find the average 
values of (12), (7), and (11): 

, 
<Ws (TI,T)=b J<Q(u) <I(u,du), (13) 

" 
" 

(Wp(TI, '1',) )=(Ws ('1'1, '1',) )+b J (1('1'" '1') dT, (14) 

f'({ aa[X(U)ll-') f' (I(T,,-C)= - ax • J du+ (a(u)(l(u,du), 
"tj 't', 

(15) 
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where (I(T, .6.T) is the probability of detachment of the 
dislocation from the restraining peak of the internal 
stresses when the external stress is increased from T 

to T + .6. T (the fraction of the number of times that the 
relief -a(x) reaches the level T followed by a maximum 
of -a (x) in the strip T, T + .6. T). 

To calculate (I(T, .6. T) we introduce the quantities 
N 1(T, .6.T, L) and N2(T, .6.T, L)-the numbers of maximum 
and minimum points, respectively, of the relief -a(x) on 
the length L. The quantity (I(T, .6.T) is defined as fol
lows: 

<I(T,AT» = lim N,(T,AT,L) . (16) 
L_+~ N+(T, L) 

The following relation holds: 

N+(T+AT, L)-N+(T, L)=N,(T, AT, L)-NI(T, A't, L). (17) 

We divide (17) by L and, taking the limit as L - + 00, 

we obtain with allowance for (8) 

(18) 

where 

are respectively the average numbers of the maximum 
and minimum points of the relief -a(x) in the interval 
[T, T + .6.T] per unit length. The probability distribution 
denSity of the values of the relief at the extremal points 
is 

(19) 

where f(y, z) is the joint distribution density of the quan
tities a(x) and aa(x)/ax at an arbitrary point x; f 1(z) is 
the distribution density of the random quantity aa(x)/ax. 
The average number, per unit length, of the extremal 
points that fall in the band [T, T + .6. T] is 

(20) 

where ,\ (0) is the average distance between the neigh
boring extremal points of the relief -a(x). 

From (18) and (20) we obtain 

(1: A't)= <p('t) AT _ AIl+('t~ 
Ill, 21.(0) 2' (21) 

1l,(1:,A't)= <p('t)A't + AIl+('t) 
21.(0) 2' (22) 

Relation (16), with (8) taken into account, assumes the 
form 

(I(t, A't)=Il,('t, AT)/Il+(T). (23) 

From (23) and (21) it follows that 

(I('t, At')=<p ('I') A't/21. (0)1l+ ('1')-';'''' In 1l+(T). (24) 

To find the mean values (13)-(15) it is necessary to 
determine the mean values (a(T) and (Q(T). For suffi
ciently large dislocation free paths (a(T) > 1/21.1:(0)), the 
event -a[x + a(T)] > T (stopping of the dislocation) is 
practically independent of the value of the derivative at 
the point x, so that the following relations hold: 

(a(T)=(£(-T), 
(Q(T»=(R(-T), 

(25) 

where ~ (T) and R(T) are respectively the width and area 
of the spike of the relief -a(x) over the level T, following 
an arbitrary attainment of this level by the relief -a(x) 
(Fig. 3). The quantity (~(T) was defined earlier [4J. 
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FIG. 3. Spikes of the relief-a(x) 
over the level T. HT) is the width of 
the spike of the relief over this level. 
The area R(T) of the spike is shown 
shaded. 

To calculate (R(T) we introduce the random quanti
ties 

> R(-.:) 
~ 

L 

representing respectively the total width and the total 
area of the spikes of the relief -o(x) over the level Ton 
the length L. According to [4J we have 

1 l' 
<£(-.:) > =1!~~N+(-.:,L)~)(-':)= f!+(-':) [1- S f(Y)dy], (26) 

L _~ 

where f(y) is the distribution density of the random quan
tity -o(x) at the arbitrary point x. Since the relief -o(x) 
is ergodic on sections of x where -o(x) > T, the average 
height h(T) of the spike of the relief over the level T 
satisfies the relation 

'r 1+00 

=[1- Sf(Y)dyr S (y--.:)f(y)dy=h(-.:). (27) 

The mean value of R(T) can be defined in analogy with 
(26): 

<R(-.:»= lim -:;:--(1 ) LR(-.:). (28) 
L_+ooN 'ttL 

I. 

Transforming (28) and taking (26) and (27) into account, 
we obtain 

1 +~ 

<R(-.:) >=h(-.:) <~(-.:» = --S (y--.:)f(y)dy. (29) 
f!+(-':) , 

The quantity b(R(T) determines the average value of 
the energy barrier that the dislocation must overcome 
as it glides under the influence of an external stress T. 
Substituting (24) and (25) in (13) and carrying out trans
formations with allowance for (26) and (29), we obtain 

<W (T »-bS' cp(u)du +S~ 
s 1, -.: - 2,,(0)[ +(u)]' (y+u)f(y)dy 

'. f! -u 

b' 1 +.~ 

+TSdL+(u)rs (y+u)f(y)dy. (30) 
T\ -u 

To estimate the energy dissipation in pulsed loading, 
we determine the dislocation mean free path (15). The 
first term in (15) was calculated in [9J, the average slope 
of the relief -o(x) being 

(31) 

Substituting (24) in (15) and performing transformations 
with allowance for (26) and (31) we obtain 

, ( ) +~ 

<I (-.: T) >- S cp u du S f(l ) d 
" - 2'-(0) [f!+ (u)]' Y Y 

"'"! _·u 

1 l' 1" 
+2 [f!+(T) _~f(Y)dY - f!+(-':1) Lf(Y)dY ]. (32) 

The average energy dissipation in pulsed loading is 
determined by substituting (30) and (32) in (14). In the 
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particular case Tl = 0 we get for 
+CID 1+l1li 

-.:, ~ [ S f(y)dy r S yf(y)dy 

-'. 

from (14), (30), and (32) the obvious relation 

<WS<O, T2»""b<1 (0, T2) >1:2. 

(33) 

(34) 

If f(y) is a Gaussian distribution with variance D2o, the 
inequality (33) is satisfied already at T2 ~ Do. We note 
that the presence of the random relief of the internal 
stresses limits the dislocation mean free path at a given 
external stress. 

For small external stresses (T2 « Do) we obtain 
from (30), (14) and (32) in first-order approximation 

bcp(O)T, +S· 
<W,(0,T2»",,<Wp(0,T2»"" 2,-(0)[f!+(0)]' 0 yf(y)dy. 

The mean free path is in this case 

<1(0, -':'»""cp(O)T2/4,-(0) [f!+(0) ]'. 

Comparing (35) and (36), we can write 

<Ws(O, -.:,»",,<Wp(O, -.:,»""bal<I(O, T,», 

where 
+~ 

01 = 2 S yf(y)dy 

(35) 

(36) 

(37) 

(38) 

has the meaning of the effective friction stress generated 
by the random relief of the internal stresses. For a 
Gaussian relief a(x) we have Of = (2/1T)1/2Do• 

The authors thank V. L. Indenbom for a discussion of 
the results. 
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