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The stability of a monoenergetic electron beam that is continuously injected into a plasma layer 
whose thickness is small compared to the relaxation length of the beam in an infinite plasma is 
investigated theoretically. The problem of finding the spectra of the natural oscillations of the system 
is reduced to that of solving a transcendental equation whose coefficients are determined by the 
transformation tensors for the natural waves of the system at the entrance and exit boundaries of the 
layer. These tensors are computed analytically by solving integral equations for the field in the 
corresponding plasma-beam half-spaces, thereby generalizing the well-known Landau results to the 
case of the nonequilibrium plasma. Analytic solutions to the equation for the spectrum are obtained: 
The excitable frequencies and the increments are found in the limiting cases of large and small 
differences between the beam velocity and the phase velocity of the plasma waves in the layer. The 
physical mechanisms underlying the instability under consideration are discussed. 

1. The study of the interaction of high-frequency 
fields with a bounded plasma is important in connection 
with the many applications of the theory of collective 
processes in a plasma: beam and high-frequency heating, 
plasma methods of generation and amplification of 
microwaves, acceleration of charged particles, etc. The 
presence of plasma boundaries leads not only to the dis­
continuity of the wave-number spectrum and the distor­
tion of the field pattern of the natural and forced oscilla­
tions owing to the elastic scattering of the corresponding 
waves by the plasma boundary, but also to the appearance 
of new (surface) types of waves, as well as to the appear­
ance of a unique absorption, due, in particular, to the 
processes of inelastic scattering of these waves by the 
boundary with the generation of new types of oscillations 
(the interconversion of the waves corresponding to the 
various branches of the spectrum). 

The penetration of a bounded plasma by a high-fre­
quency longitudinal field was first investigated theoreti­
cally by Landau[ll, while the kinetic theory of transverse­
wave scattering by the boundary of a semi-infinite 
plasma was developed by Silin and Fetisov[21. The re­
sults obtained in the indicated papers pertain to the 
equilibrium plasma with a Maxwellian electron distribu­
tion function; they have recently been successfully gen­
eralized to the case of finite values of the high-frequency­
field amplitude[3-51. 

In many applications, the source of the plasma insta­
bility is an electron beam injected from without. The 
presence of the beam in the bounded plasma leads to the 
appearance among the possible channels for the inelas­
tic wave scattering by the plasma boundary of beam­
type oscillations- charge-density waves. The decisive 
role played by these types of waves in the collective­
interaction processes under the (!onditions of applica­
bility of the hydrodynamic approximation (6 »kll VTb) 
follows from the fact that the increment 6 (or the ampli­
fication factor a) is positive only for the slow charge­
density wave. Therefore, the extraction of the energy of 
the oscillations excited by the beam requires, in es­
sence, the conversion of this wave into waves of other 
types (in particular, electromagnetic waves) when the 
charge-density wave is scattered by the plasma inho­
mogeneitiesl). The effects of the interconversion of the 
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charge-density waves of the beam and the natural waves 
of the plasma essentially influence the natural-oscilla­
tion spectra of the bounded plasma-beam systems (cf. 
[101). In the present paper we investigate the collective 
interaction of a monoenergetic beam with a plasma layer 
whose thickness is small compared to the beam relaxa­
tion length in an infinite plasma: 

va (npv T / ) 'I, 
L<l~== - --,- , 

wp nbVO 

and show that the indicated effects ensure the develop­
ment of an instability in the system under consideration. 

2. Let us consider a plane layer (of thickness L) of 
an equilibrium plasma of density np into which a mono­
energetic electron beam with the equilibrium velocity 
and density values Vo and nb« np' respectively, is con­
tinuously injected perpendicularly to the plane of the 
layer. The self-consistent system of equations describ­
ing the interaction of the beam with such a plasma con­
sists of the kinetic equations for the beam and plasma 
particles and the Poisson equation for the field: 

.!.f., +v!..!.:.. + ~E~ = 0 at az m I}v 
(s""p, b), 

( 1) 
I}E S ~=43te dv (fp+/,) , 
I}z 

S dv / .. =n., 

where n.. is the denSity of the ion background (n+ = nb + np)' 

As boundary conditions for the plasma-particle dis­
tribution function, we use the condition for specular re­
flection from the boundaries of the layer; as to the beam, 
in the most interesting case when Vo» VTb (VTb and 
VTp are the thermal velocities of the beam and plasma 
particles, respectively) we can neglect its interaction 
with the layer boundaries[Ul, and consider the layer to 
be transparent to the beam particles. 

Under the conditions of applicability of the hydrody­
namic description: 

the spectrum of the natural oscillations of the corre­
sponding infinite plasma, given by the dispersion equation 

Wb' 
D(k)==1-K (k)- =0 

P (w-kVa)' ' 
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+00 
4ne'i S v dv df pO ,4ne'nb 

Kp(k)~-- ( ) dv' rob "'-m ' rom _00 i kv-ro +vp 

consists of two plasma and two beam waves (charge 
density waves). 

(2) 

For a fixed frequency w (1m w > 0), the dependence of 
the wave numbers of these waves on the frequency w 
is determined by the relations 

(3a) 

k ~"'k = ~[1+11 e~·il··l· 
b 1,2. VI) 0 , 

k.+""k,= ;:[1-11,), kp-"",k.=- ;:. 

ro,""rop (i-JL) -"', II, '" ( 2:~J 'I. < 1. JL'" ~ ;;' < 1. 

(3b) 

The equation for the spectrum of the layer under 
consideration can be obtained from the relations be­
tween the complex amplitudes of the waves scattered by 
the boundaries of the layer: 

A!->rO)=T~;>A;+> (0). A:+> (L)=T::>A;-> (L). 

A~~> (L) =A:±> (0) exp (ik,L). 
(4a) 

here the tensors T~d describe the transformation 
processes at the walls, where the beam respectively en­
ters (-) and emerges from (+) the plasma. 

The relations (4a) are equivalent to a system of 
homogeneous algebraic equations for the amplitudes 
A-(O): 

A~-> (0) =T!;> T::> A~-> (0) exp[i(k.-k.) L I. (4b) 

from which the required dispersion equation can be 
found by equating its determinant to zero[10J: 

1111.,-T~;> T::> exp[i(k.-k.)L] 11=0. (4c) 

Thus, the problem of finding the spectrum of the na­
tural oscillations of the system under consideration re­
duces to that of finding the tensors (the scattering ma­
trices) T~J, which can be computed on the basis of the 

solution of the scattering problems for the corresponding 
semi-infinite systems. Since the system is in a non­
equilibrium state, the conditions of applicability of the 
reciprocity theorem are not fulfilled in the present 
case, and therefore the tensors T~J and T~J cannot 

be obtained from each other, which leads to the necessity 
for a self-consistent treatment of the problems of scat­
tering at the entrance and exit boundaries of the layer. 

3. Let us consider the plasma half-space (z<O), from 
which the beam emerges into a vacuum (z > 0). The 
natural waves fC a exp(ikO'z) (a = 1,2,3; see (3)) of the 
system are incident on the plasma-vacuum interface 
from the z --«> side. From the plasma boundary, only 
one wave can propagate in the direction opposite to that 
of the beam's motion (let us call this wave the counter 
plasma wave); therefore, the tensor T~+) has only three 
nonvanishing components T~~ ({3 = 4). a 

We shall seek the resultant field E+(z) in the plasma 
in the form of the sum: 

, 
E+(z)=fC + (z) + .E fC. exp(ik.z). (5a) 

in which the first term describes the field that decreases 
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as we go to infinity, while the second describes the waves 
incident on the boundary. If the operating frequency w is 
such that the conditions for the amplification of the slow 
Charge-density waves (a = 2, 1m k2 < 0) are fulfilled, then 
the amplitude of this wave also vanishes at infinity, and 
the corresponding term in the sum over a in (5a) drops 
out. In that case the amplifiable charge-density wave 
contains the term fC +(z). 

Similarly, we shall seek the high-frequency correc­
tions fs to the equilibrium distribution functions fso in 
the form of a sum of two parts which differ in their be­
havior as z - -«> : 

e .E fC.exp(ik.z) df., 
/.(v.z)=F.(v.z)+- '(k )+ d . m z. a;V-CI) 'V~ lJ 

(5b) . 
Taking into account the vanishing of the total plasma 

current across the plasma boundary and the continuity of 
the beam current at this boundary, as well as the bound­
edness of the function Fs(v, z) for z --«>, we obtain for 
the determination of the field fC +(z) the following inte­
gral equation: . . 

fC+(z)- S fC+(z')Kb(z-z')dz'- S fC+(z)dz'{Kp(lz-zl) 

-Kp(lz+zl) ]+g+(z)=O. z<O, 

4ne' SOO dfpo ~ (iro-Vp) 
g+(z)"" iwm vdvTv L.i fC.exp --[-,-z (6) 

, " 

xL(W+k~V)-Vp - i(k"V-~)+VP]. 
4ne'i S· df., [iro-V.] K.(x)==-- vdv-exp --x. 
wm 0 dv v 

Equation (6) does not possess the symmetry that 
would allow us, in solving it by the Fourier method, to 
directly continue the functions in an even or odd manner 
into the region z >0 (see [1,2J); therefore, to solve it, we 
use a generalized Fourier method that allows us to re­
duce this equation to a boundary-value problem of con­
jugation of analytic functions [12,13J. With that end in 
view, let us continue fC +(z) to the semiaxis z > 0 by 
zero, and let us introduce the auxiliary function H+(z) 
in the following manner: 

H+(z) =0 z<O. '. 

. 
H+(z)=- S fC+(z)Kb(z-z')dz' (7) 

, 
- S fC+(z')[Kp(lz-z'I)-Kp(lz+z'I)]-g+(z). z>O. 

Then Eq. (6) assumes a form valid for all z: 

fC+(z)-.j fC+(z')Kb(Z-z')dz'- S· fC+(z')dz'[Kp(lz-z'l) -- -~ 

-Kp(lz+z'I)]-G+(z)=H+(z). -oo<z<+oo; (8) 

G+ (z) ""'g+ (z) sgnz. 

Performing a Fourier transformation of (8), we ob­
tain the problem of conjugation of analytic functions on 
the contour Imk=0[13J: 

e+(k)D(k) +e+ (-k)Kp(k) =h-(k) +g(k). (9a) 
or 

D(k) [e+(k)+e-(k)] =cp-(k)+g(k). 

Here we have introduced the notations: 
1 +00 

e+(k)'" 2nJ dzfC+(z)r .. •• 

1 +00 

h-(k)sa 2nJ dzH+(z)riA" 
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1 +-
g(k)"'2~J dzG+(z)e-"", 

D(k) =l-K,(k) -Kp(k); <p-(k)""'I-(k)+e+(-k) [K,(k) -1], 

(Kb(k) is analytic in the lower half-plane of k). 

The solution of this boundary value problem depends 
on whether or not the condition for amplification of the 
slow charge-density wave (O! = 2) is fulfilled. in the pres­
ence of amplification, the index K (see [13]): 

1 D(-k) 1+-
x""2;"arg ln D(k) _oo' 

of the equivalent (to (9)) boundary value problem for 
cp-(k) : 

D(-k) [D(-k) ] <p-(-k)=---cp-(k)+g(k) 1---
D(k) D(k) , 

(10) 

is equal to +2, and therefore its solution has the form 

cp-(k) = X,-(k) ~k-iP)2 {Ak + 2:i s xa:.k g(x) 
c 

X [X,+(x) (xHp)'-X,-(x) (x-iP)'l}, 
(lOa) 

where the contour C lies along the real axis, bypassing 
the point x = k from above, A is a constant, which will 
be determined below, Xo± (k) are the bounded (at in­
finity) solutions of the homogeneous conjugation prob­
lem with zero index: 

X,+(k)= D~~l) (~~::rX'-(k); (lOb) 

and p is an arbitrary positive number. 

Substituting (lOa) and (lOb) in (9b), we obtain the 
Fourier amplitude of the sought field. The constant A 
is then uniquely determined by the known value of the 
amplitude (52 of the amplified wave: 

A = :, { x, -(k,) (k,-ip)' [ g (k,) + 2~~ D' (k,) ] 

1 +oo dx 
--2 . S -k-g(x) [x/ex) (x+ip)'-X,-(x) (X-iP)'l}. 

.1tL_1XI x- 2 

(lOc) 

Computing with the aid of the relations (9) and (10) 
the residues at the pOints k = kO!, we obtain the final ex­
pressions for the tensor components T( +) in the pres-
ence of amplification (1m k2 < 0): 40! 

D',,", dD 
dk ' 

F (k)~ Kp(k.)-Kp(k) 
a k2-kr/' a=1,3. 

(lla) 

In the absence of amplification (1m k2 > 0), the index 
of the problem (10) is equal to zero. Repeating the 
above-described computations for this case, we obtain 
the following expressions for T~~ (O! = 1, 2, 3): 

r.'+)= 3k,v T .' { ~ k, X::) (k,) K,(k,)-K,(-k,)} (12) 
•• w'D' (k,) 1 + ~ k, X'-) (k,) (k,-k,)D' (k,) , 

11=1 00 

where X~o are the bounded (at infinity) solutions of the 
homogeneous problem 

(12a) 

4. In the problem of transformation at the entrance 
boundary, an unmodulated electron beam with the same 
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parameters (Vo, nb) enters from a vacuum (z < 0) into 
the plasma half-space (z >0). From the interior of the 
plasma, in the direction opposite to that of the beam's 
motion-toward the interface-propagates the counter 
plasma wave J!J 4 exp(i~z). Let us determine the tensor 
components T( -), which characterize the effectiveness 

0!4 
of the transformation of this wave into the natural waves 
of the system that propagate along the direction of motion 
of the beam. 

Let us seek the resultant field Ejz) in the plasma and 
the high-frequency corrections to the distribution func­
tions in a form similar to (5): 

L(Z)=0_(Z)+ ,E0.exp(;k.z), (13a) 

I ( )=F ( )+--=- dl., ~ 0.exp(ik.z) 
, v,z • v,z m dv ~ i(k.v-w)+v, . (13b) 

0:=2," 

In the absence of amplification, we do not separate 
out the slow charge-density wave from the term 0 _(z). 

Solving the kinetic equation for the plasma and beam 
particles with the same boundary conditions as used in 
the preceding section, and substituting the corresponding 
expressions for fs in (1), we obtain for the determina­
tion of 0 _(z) the integral equation 

, . 
0_(Z)- S dz'iL(z')K,(z-z')- S dZ'0_(Z')[Kp(lz-z'l) 

o , 

-Kp(lz+z'l) j+g_(z) =0, z>o, 

() ~ 4ne'0. SOO [dfp/dV (iW-V p ) g_ z "" ~ -- vdv -exp --z 
._'.' iwm, i (k.v+w) -V p v 

(14) 

1: dl/dv (iW - V • )] - exp --z 
i(k.v-w) +V. v . 

s=p,b 

To solve (14), we continue 0 _(z) into the region z < 0 
by zero and introduce the auxiliary function H_(z): 

H_(z) =0, z>O, 

I-I 

H_(z)=- S 0_(z')dz' K,(lzl-z') (15) 
, 

-J dz' 0_(z')[Kp(lz-z'I)-Kp(lz+z'l) l+G-(z), z<O, 

G_(z)~g_ (I z I )sgn z. 

The Fourier transformation of (15) leads to a bound­
ary value problem for the determination of the Fourier 
component e-(k) of the field: 

D(k) ~ 0. { 1 D(k)} 
e-(-k)= D(-k) r(k)+ ~ 2,ti k+k. + (k-k.)D(-k) . (16) 

0:=2," 

At 1m ~ < 0, the index K of this conjugation problem is 
equal to -2, and the solution to (16) that decreases as 
we go to infinity takes, according to [l3l, the form 

1 ~ { 2k. 
e-(k) =2,tiX.-(k) (k-ip)' ~ 0. X,-(k.) 

X (k'-k.') (k.-ip)' 

if the condition 

a=2,'" 

1 1 } 
k-k. Xo-(k) (k-ip)' ' 

(17) 

+S· kdk ~ 0 [_1_+ X,+(k) (k+ip)' 1 ] - (1) 
Xo+(k) (k+ip)' ~ • k+k. Xo-(k) (k-ip)' k-k. - 0 8 

_"" a=Z," 

is fulfilled. The last relation gives the equation for the 
amplitude 02 of the amplified wave in terms of the am­
plitude 04 of the incident wave. Their ratio is equal to 
the coefficient of transformation of the counter plasma 
wave into the amplified wave 
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(19) 

Let us find the field in the region z > 0 by perform­
ing the inverse Fourier transformation with the aid of 
(17) : 

. [g. s+-' D(-k) X,+(k) ( k+ip )' [2k. 2k.] [g_(z)=- dke' ,----- --- ------. 
2ni__ D(k) Xo-(k.) k.-ip k'-k.' k'-k,' 

(20) 
The residues at the points k = kl and k = k:! of the 

integrand in (20) yield the coeffiCients of transformation 
of the counter plasma wave into a fast charge-density 
wave and a plasma wave respectively: 

T{-)= 2k,D(-k.) X,+(k.) (k.+iP )' [_1 ___ 1_] (21) 
., D' (k.) X,-(k.) k.-ip k.'-k.' k.'-k,' . 

In the absence of amplification (Imk2 >0), the counter 
plasma wave [g 4 exp(i~z) is transformed in the follow­
ing manner 

(±) 2k. X .. +(k.) [K,(k.)-K,(-k.)] (22) 
T •• = k.'-k.' x .. (k.) D' (k.) ,a= I, 2, 3, 

in the bulk of the plasma into a wave propagating along 
the 1;leam. 

The general expressions obtained above for the con­
version coefficients T~J are valid for arbitrary beam 

densities. In the limiting case of low beam densities 
(nb« np), these formulas can be substantially Simplified. 
Introducing the dimensionless frequency 

and the dimensionless corrections to the wave numbers 
of the natural waves of the system 

k.""..<"...(1+llo/l..), a=1,2,3, 
Vo 

we obtain: 

T;;)=T~:) =-{1 + /I.,' 
. (/1.,-/1.,)(/1.,-/1.1) 

(+) ( 2 ) /I.,' (23) 
T", = - 1 - T,3 (/1.,-/1.,) (/1.,-/1.1) 

(-) -1 T{-) _ /I.,' 
Ta, ='"""1=2//l.a" ,,- - (/1.,-/1.,) (/1.2-/1.1)' a=1,3. 

The dispersion equation (2) then assumes the form 

/l.a'-Q/I..'+1=O, a=l, 2, 3; /I.,=Q. (23a) 

T,~-) = - ( 1 + ~,), T::) =-1, a=l, 2, 3. 

Substituting these expressions in (4c), we obtain in the 
case of a relatively thin plasma layer (wpL« 50 Va) of in­
terest to us the comparatively simple equation for the 
spectrum: 

exp [-2ik,(w)L]=1+f(8)R', 

w'-w' woL woL w-w, 
k,'(w)==-v:' e(w}""k,L--=---, (24) 

I-l , V. V, I-lWo 

2(1-cosO)-8sin8 wpL 
t(O)"", 8' ' R ... llov:;-<1. 

In the zeroth approximation in R, we find from this 
equation the spectrum of the natural oscillations 

_ [ , ~ ( nnVT. )' ] '/. 
Wn - W. + 2 L ' n=1,2,3; ( nnvr)'« 1, (25) 

wpL 

and allowance for terms of order R3 yields the incre­
ment 

(26) 

Thus, those oscillations of the plasma layer for 
which f( en) > 0 grow in time with increments propor­
tional to the beam density. The frequencies of the un­
stable oscillations then lie, according to the condition of 
applicability of the formulas given above (I en I »R), 
within the confines of the Cerenkov-amplification region 
in an infinite plasma: w <Wb==Wo(1+ 3J.J.oo/22/3). 

Physically, the quantity en is the phase gain of the 
(0'= 3)-wave field relative to a particle, positive en cor­
responding to waves whose phase velocities vkw == wnL/ 1Tn 

are higher than the beam velocity Va. As en (the detun­
ings Vo-VW) decrease in the region lenl <1T, the incre-

ment (26) first increases and then decreases, becoming 
zero as Ie 1-0. But for lenl,$ R, Eq. (24) and its solution 
(26) are not applicable, since the distortion of the field in 
the plasma by the charge-density waves cannot be neg­
lected in this region of the parameters. Therefore, the 
resonance case (Va - v(nh)) requires special treatment. p . 

As can be seen from (23), in the vicinity of the point 
W = Wo, where the phase velocity of the plasma wave is 
equal to the beam velocity, the effectiveness of the in­
terconversion of the charge-density and plasma waves 
turns out to be high. Thus, in the zeroth approximation 
in the parameter 0, we have: 

(27) 5. Substituting the analytic expressions obtained 
above for the components of the T~±) tensors in the de-

f3 It follows from this that for 0 = 0 and en = 0 Eq. (4c) 
terminant (4c), we obtain an equation for the spectrum becomes an identity up to quantities of the order of 
of the system under consideration. In the general case R «1. Therefore, for I en 1« 1, we can seek the function 
this equation turns out to be complicated, so that it can O( e) in the form of a series in powers of e. We find 
apparently be solved only by numerical methods. We up to terms of order e 
therefore consider below the limiting cases in which 
the analytic expressions for T~J are so much simpli- (w-wo) " = 2~ I-lilowo (nn- W~~) , 
fied that the dispersion equation (4c) can be solved ex- (w-wo)'=l'3(w-wo) ". 

(28) 

plicitly. As can be seen from these formulas, in the resonance 
Let us first consider the frequency region sufficiently case the field b.uil~up ?ccurs at parameters for :vhich 

far away from the point Wo where the condition of equality the beam ~eloclty IS h~gher than the phase velOCIty of 
of the beam velocity Va to the phase velocity of the the wave; In th~ OppOSIte case the be~m absorbs !he 
plasma wave (0'=3) is fulfilled: 1» Iw-wol/wo »J.J.oo. In energy .of the field, as a result .of WhiCh the amplItude 
this region the general expressions for T~J assume the of the held attenuates exponentially. 
form: Although formulas (28) were obtained under the as-

(_) 1 ( 2) 
T, .. =- 2Q'/; 1- ~t/, ' 
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sumption of small e, they can nevertheless be used at 
the limit of the region of applicability (I e 1- R or 0 -1) 
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to estimate the order of magnitude of the increment. By 
such means we can verify that the maximum of the in­
crement in the system under consideration is, for 8n -R, 
proportional to the % power of the beam density: limax 
- 61Tnliolioo. For not too low beam currents, this incre­
ment is, in order of magnitude, comparable to the incre­
ment of the Cerenkov instability in an infinite plasma 
(lioo == v'3lioWoll/2). 

Analysis of the foregoing results and the conditions 
for their applicability shows that the exponential growth 
of the amplitude of the field in the system under con­
sideration is ensured as a result of the accumulation, in 
the plasma resonator, of the energy successively lost 
by the beam particles entering the resonator2). For large 
differences between the beam velocity and the phase 
velocity of the plasma wave (18 I »1), the dominant con­
tribution to the positive part of the increment is made 
by the interconversion, accounted for by the last term on 
the right-hand side of Eq. (24), of the charge-density and 
plasma waves at the ends of the plasma resonator. Un­
derlying such a transformation are the direct and in­
verse effects of the transition radiation of longitudinal 
waves by the beam particles: the amplification of the 
longitudinal wave ensures the transition radiation of a 
coherent succession of bunches (formed by the charge­
density wave fields) at the exit end of the resonator, 
while the feedback, which is necessary for the exponen­
tial growth of the amplitude of the field, is an inverted 
transition-radiation effect (the modulation of the beam by 
the counter-wave field at the entrance to the plasma). 
The interference of the fields of the fast and slow charge­
density waves in the process decreases the increment, 
so that it turns out, as a result, to be proportional to the 
beam density, although each of the products T~4)T~~) 

(l = 1, 2) is proportional to wb. In the resonance region, 
the effectiveness of the interconversion of the plasma 
and beam waves is, as can be seen from (27), enhanced, 
while the interference effects are so weakened that the 
contributions of both longitudinal waves to the right-hand 
side of (4c) coincide and turn out to be equal to the con­
tribution of the plasma waves. In consequence, the in­
crement increases to a value comparable to the incre­
ment W:;, == f3 liowpll/2 for the infinite plasma. 

The results presented above are valid for sharp 
plasma-layer boundaries; in the case of a finite denSity 
gradient it is necessary to take into account the weaken­
ing of the intensity of the transition radiation [lBJ, a 
weakening that leads to a decrease in the increment. 

The author expresses his gratitude to Ya. B. Fa'in­
berg, B. B. Kadomtsev, and A. B. Mikha'ilovskiT for in­
terest in the work and for useful discussions of the 
results. 

[)The transformation of charge density waves in a nonequilibrium plasma 
was first investigated in [6] ; plasma-wave transformation in an equilib-
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rium plasma had been studied earlier (see, for example, the reviews ["-9]). 
2) A quasilinear theory of beam relaxation in a plasma half-space with al­

lowance for the effects of the energy storage has been developed by 
Vedenov [[4] for the steady-state regime; the dynamics of the establish­
ment of this regime has been investigated by Famberg and Shapiro [[5] . 
The growth of the amplitude of the normal oscillations in a resonator 
with a short transit time is considered in [[6] in the specified spatial 
field pattern approximation; the corresponding experiment is described 
in [[7]. 
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