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The development of instability in multibeam systems is investigated theoretically and experimentally. It is shown 
that during the linear stage the mutual influence of the electron beams is relatively weak and leads to certain 
changes in the increments of the unstable modes. The nonlinear stage, during which resonant particles are trapped 
and the amplitude growth is limited; is quite sensitive to changes of the initial velocities and of the beam density. 
This makes it possible to control the instability development and to vary the intensity of the excited oscillations 
in a wide range while leaving the average beam parameters and the total current practically unchanged. 

1. INTRODUCTION 

By now, as a result of extensive experimental and 
theoretical research, and also as a result of numerical 
computer calculations, many details of beam-plasma 
interactions have become known 1). During the initial 
stage, the beam instability develops in accordance with 
the linear theory, namely, an exponential growth of the 
unstable"'wave amplitude takes place, accompanied by 
bunching of the beam particles. Subsequently, when the 
wave amplitude becomes large enough, 

(1) 

(Vb is the beam velocity, vph is the wave phase velOCity, 
nb is the beam density, no is the plasma density, and k 
is the wave number), the nonlinear stage of the beam in
stability sets in: the beam is captured by the wave, is 
bunched, and the bunches move in the potential wells of 
the wave field, exchanging energy with the wave and 
becoming "smeared out" slowly in phase space. The 
exponential growth of the wave amplitude gives way to a 
slower growth, and then to oscillations, so that the maxi
mum value of the amplitude does not exceed a certain 
value whose order of magnitude is given by (1). 

The characteristic time scale of the processes con
nected with the capture is comparable with the charac
teristic time of development of the linear stage, T = 1/y 
(y is the linear increment of the beam instability), since 
the oscillation period of the captured particles is of the 
order of 

Thus, capture of resonant particles is one of the strong
est nonlinear mechanisms influencing the development of 
beam instability. This circumstance suggests that by 
varying the initial distribution function of the electron 
flow it is possible to vary the development of the beam 
instability in a wide range, i.e., to control this process. 

The simplest system that makes it possible to real
ize control of beam instability is a beam-plasma system 
with several electron beams, the velocity of which can 
be varied in a wide range. In this paper we report the 
results of a study of the possibility of controlling the in
stability in a multibeam system. 

2. THEORETICAL ANALYSIS 
We consider a beam -plasma system with several 

electron beams with initial velocities Vi and densities ni' 
placed in a strong magnetic field (wH » wP' with wH and 
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Wp the electron cyclotron and plasma frequencies), the 
direction of which coincides with the direction of the ini
tial particle velocities. We assume that the beams are 
weak, ni «no. In the linear approximation, this system 
is described by the well-known dispersion relation 

where k.L and kll are the transverse and longitudinal 
components of the wave vector, 

!J).'=4n n,e'/ m, 0).' =4nnoe'/ m. 

(2) 

It follows from the above dispersion relation that the 
number of unstable oscillation modes is equal to the 
number of beams whose velocities do not exceed the 
critical values vcr = Wp/k l' We assume that the condi
tion Vi < vcr is satisfied by the initial velocities of all N 
beams, so that there are N unstable oscillation modes. 
It follows from (2) that if the velocities of these beams 
Vi and vk are spaced sufficiently far apart, 

I Vi-V" I ::l>'l,vi+l1"Vt" '1,= (n/no) 'J., 

then an intense excitation of waves by each of the beams 
takes place, i.e., each beam corresponds to an unstable 
mode whose dispersion characteristics differ little from 
the characteristics of a single-beam system. 

In the opposite case 

I Vi-V. I <l1ivi+'l,Vt, 

we get, as it were, a merging of two beams into one with 
velocity v = (71ivi + 71kvk)(71i + 71krl, In this case there 
exists an unstable mode with a large increment 
y ~ [(ni + nk)/no]ll3wp' and a small-increment mode that 

vanishes in the limit as Vi - vk' 

To ascertain the character of the mutual influence of 
the beams at 

we examine the dispersion equation (2), assuming that 
the beam velocities Vi and vk are close to each other. In 
the case of the system with a single beam of velocity Vi' 
the maximum of the instability increment is reached at 
kll ~ wp lvi' where wp = wp(l + kilkP-l/2. The corre
sponding frequency is w!O = 2-4I3e21Tl!3T/ .w' • Injection of 

IIp 
two beams leads to deformation of this mode by the dis
persion curve, and it turns out that 

(3) 
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FIG. I. Dispersion curves for space-charge waves in a plasma with 
two electron beams at an initial frequency difference v, -V2 = O.2v,: 
I-Re(~/wp)~t;, =v,; I'-Im(w/wp) at v, =v,;2-Re(w,/wp)at 
v,-v2 - O.2v" 2 -1m (w,/wp) at v,-v2 = O.2v, ; 3-Re(w2/wp) at 
V,-V2 = O.2v,; 3'-Im(w2/wp) at V,-V2 = O.2v,; 4-constant-intensity 
wave at v, = v2; 5-same, at V,-V2 = O.2vl' 

This formula is valid when the second term is small in 
comparison with the first. It follows from the foregoing 
relation that the correction to the increment is propor
tional to the beam -density ratio nk /ni and depends 
strongly on vklvi' In particular, at V1 -Vz = 2-1/3171V1 we 
have for a system of two beams 

1m Ol,= 1m 6)~') (1-n,/6n ,), 

and at V1-VZ = -2-1/31)lV1, we have 

1m Ol,= 1m ro, (1+n,/18n ,). 

These conclusions agree with the results of a numer
ical solution of (2), carried out at N = 2, n1/nO = nz/no 
= 0.005, klVl/Wp = %, for the velocities (a) V1-VZ = 0 
and (b) V1-VZ = 0.2V1' The results of the calculation 
are shown in Fig. 1. In the case V1 = Vz we have in es
sence one beam with density Ilt> = 0.01no. The real and 
imaginary parts of W as functions of kll are shown in 
Figo 1 by curves 1 and 1'. When the velocity of the sec
ond beam decreases, two unstable waves appearo The 
phase velocity of one of them lies between V1 and Vz, 
while that of the other is smaller than the velocities of 
both beams. The wave increments are smaller than the 
increment obtained for the case V1 = Vz, with the slower 
wave (v2ph < V2) having the smaller increment. The 
dispersion curves of both waves at a beam-velocity dif
ference V1 - Vz = 0.2V1 are shown in Fig. 1 (curves 2 and 
2', 3 and 3'). With further increase of the velocity dif
ference, the dispersion curves of the unstable modes 
differ little from those for single-beam systems, in 
agreement with the analytic estimates given above. 

During the nonlinear stage, the distribution function 
of the beam particles undergoes rapid changes, the 
character of which is quite sensitive to changes of the 
initial conditions; this is a characteristic feature of 
systems with many degrees of freedom. We are there
fore forced to resort to numerical integration of the 
equations of motion or to be satisfied with a nonrigorous 
analytic descriptiono 

Excitation of (one or several) monochromatic waves' 
in a single-beam system was investigated by numerically 
integrating the equations of motion [1,2, 5J. A satisfactory 
qualitative description of this process was also ob
tained[3-sJ. We present below a qualitative investigation 
of the nonlinear stage of the excitation of narrow wave 
packets in a multibeam systemo 

The equation of motion of a charged particle in the 
wave field is given by 
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e x= -;;;E(x, t)sin[k (x-x.) -rot], 

where Xo is the particle coordinate at t = O. The wave 
amplitude E(x, t) is assumed to be a slowly varying 
function of x and t. In the rest system of the wave 
(x = ~ + vpht, vph = w/k), Eq. (4) takes the form 

.. e 
~= -;;;E (s, t) sin[k (s-~.) J. 

(4) 

(5) 

In addition, we use the continuity equation for the aver
age energy density 

(6) 

where gj and 6'p are the wave and particle energy densi
ties averaged over the wavelength: 

E? 1 ~+h/2 00 mvt. 
6',=--- 6' =- J J---t(y v)dydv ion' P f.. 2' , 

x_I./2 _00 

P is the particle energy flux: 
1 xH/2 co J 

P=T J J m~ t(y,v)dydv, 
x_J../2 _00 .... 

1.= 2n: 
k 

and v E is the field-energy transport velocity. 

In the spatially homogeneous case, the second term 
in (6) is equal to zero. In a steady-state time-indepen
dent regime, the first term of (6) vanishes. 

The analysis of the nonlinear-wave dispersion law (2) 
has shown that one can, with a certain degree of caution, 
set each of the beams in correspondence with one mode 
of unstable oscillations, so that waves belonging to the 
i-th mode acquire energy predominantly from the i-th 
beam during the nonlinear stage. The development of the 
wave of the i -th mode proceeds in the same manner as 
in the single-beam system, until the wave captures some 
"foreign" beam, or until the i-th beam is captured by 
some "foreign" wave. Of course, both can occur simul
taneously, and it is also possible for the i -th wave to 
capture several foreign beams or for particles of the 
i-th beam to interact resonantly with several foreign 
waves. We consider here only the simplest possibilities, 
which become manifest primarily in systems with a 
small number of beams that are well resolved in veloc
ity: IVi - vkl ~ 1)iVi + 1)kvk' To this end it suffices to 
consider a system of two beams that are simultaneously 
injected into the plasma. 

We consider the influence of the capture of the parti
cles of the foreign beam on the development of the insta
bilityo Let the wave belong to an unstable mode that 
vanishes as n1- 0; then vph < V1' The velocity of the 
second beam can be arbitrary. If 

( 2 2e (t) 
t'2-Vph) < km E max, 

then particles of the second beam can be captured. When 
Vz > vph' the development of the nonlinear stage is prac
tically the same as in the case of a single-beam system. 
The oscillations of the wave amplitude are then more 
complicated than in the single-beam system, but an esti
mate of the maximum field amplitude, given by the ex
pression 

(7) 

is apparently not far from the true value. 

If Vz < vph' the picture is significantly different. After 
the capture, the particles of the second beam begin to be 
accelerated by the wave and limit its growth rate. 
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Let us examine with the aid of (5) and (6) the later 
stage of development of the instability, when the wave 
captures particles from both beams and the field ampli
tude varies within a certain range about the mean value 
E. As already noted, the captured particles are gathered 
into bunches. The bunch can be regarded as a macro
particle with 

• 
N,= S n,(x)dx=n,h 

" 
electrons in it (,\ is the wavelength) and with an initial 
average velOCity Vi. If Vl > v h > Vz, then the wave draws 
energy only from the particlls of the first beam, and to 
determine the initial velocities vk of the bunches we can 
use the expression 

where 15k is the Kronecker symbol. 

The solutions of Eqs. (5), which describe the motion 
of the bunches, are 

where 

(8) 

and 8i is the average phase of the bunch particles. At 
the instant of capture, the distribution of the bunch par
ticles in space is almost homogeneous, and the average 
phase of the particles is equal to zero, but changes 
subsequently during the course of bunch formation. 

The solutions (8) enable us to trace the variation of 
the field energy with the aid of Eq. (6), from which it 
follows that 

(9) 

If we neglect the frequency difference n l - na, then (9) 
can be represented in the form 

/S1=~I-l!2mvph[nt'i>+n2'i>+2n,n, cos(8,-8,) [,[,]'" cos (Qt+8) , 

8 _ t (nl, sin 8, + n,[, sin 8, ) - arc g -,- -,- . 
n'G, cos 8, + n,s, cos 82 

(10) 

We see therefore that if (z < 0, then the changes of /Sf 
can be negligible. Thus, the capture of a slow foreign 
beam stabilizes the instability. 

An essential question is whether this stabilization 
can lead to establishment of stability of a linear wave of 
the Bernstein-Green-Kruskal type [9]. The possible es
tablishment of such waves in two-stream systems was 
investigated by numerical methods in [10, 11J and was 
considered for multibeam systems in [12 ] • 

~ 

It is seen from (15) that if 81 ~ 8a and nle ~ na{2, 
then tf ~ ;ff' thus indicating that a finite-amplitude wave 
can be establishedZ ). Relation (10) enables us to estimate 
the amplitude of the steady-state wave. Thus, it follows 
from (10) that 

(11) 

We see that when Va decreases E also decreases. It 
should be noted that our analysis is valid only so long as 
E exceeds the amplitude for the capture of particles 
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FIG. 2. Diagram of experimental setup: I-solenoid; 2 and 3-elec
tron guns; 4-collector; 5-electrostatic analyzers; 6-high-frequency 
probe; 7-supply electrode; 8-channel producing pressure drop. 

from the first and second beams, and also so long as the 
conditions n l ~ n 2 and 8 1 ~ 82 are satisfied, which is 
possible only if 

We now examine how the capture of the second beam 
by the first wave affects the instability of waves belong
ing to the second mode. As a result of this capture, the 
particles of the second beam initiate an intensive ex
change of energy with the wave that has captured them, 
as a result of which the coherence of their interaction 
with the waves of the second mode is disturbed. This 
should lead to a limitation on the growth of the second
mode waves. 

3. EXPERIMENT 

The experiments were performed using a setup with 
two and three electron beams. A diagram of the setup 
with two beams is shown in Fig. 2. Hollow electron 
beams with radii 1 and 0.25 cm pass through a metallic 
tube of 9 cm diameter placed in a homogeneous magnetic 
field H = 400 Oe. The electrons are injected with the 
aid of guns 2 and 3. The electron emitters are tungsten 
filaments 0.05 cm thick. The beam energies range from 
80 to 300 eV, corresponding to the velocity interval 
(5.3-10.4) x 108 cm/sec. The total current i = i l + iz 
was maintained at 8 mA in all the experiments. The 
pressure in the working region was 8 x 10-5 Torr, and 
was lower by one order of magnitude in the cathode reg
ion. The pressure drop is made possible by channel 8 
and by admission of xenon into the working part of the 
chamber. The plasma was a result of ionization of the 
gas by the electron beam. 

At equal velocities of the two beams (Vl = Va = 10.4 
X 108 cm /sec), oscillations are observed in the system, 
in a band 30 MHz wide with a maximum intensity at 
280 MHz. This is lower than the plasma frequency and 
much lower than the electron cyclotron frequency. The 
oscillations are amplified as they propagate along the 
plasma column. The intensity distribution of the oscilla
tions at 280 MHz along the length of the system was in
vestigated with a moving probe 6, located 1.5 cm away 
from the surface of the external beam. 

In the subsequent experiments, the velocity of the ex
ternal beam remained at 10.4 x 108 cm /sec, while that of 
the internal beam was varied between 5.3 x 108 and 10.4 
x 108 cm/sec. The current of the internal beam ranged 
from 6 to 25% of the total current. This was accompan
ied by a change in the oscillation intensity, whereas the 
bandwidth of the excited frequencies remained constant. 

The distribution of the oscillation intensity along the 
plasma column at different velocities of the internal 
beam and at a current ia = 0.06i is shown in Fig. 3. At 
an initial velocity of the internal-beam particles Va = V 1 

= 10.4 X 108 cm /sec, the wave was amplified over the 
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FIG. 3. Dependence of the oscillation intensity on the length along 

the plasma column for different internal-beam velocities v, (in cm/sec) 
at an external beam velocIty v, = 10.4 X J08 cm/sec and at i, = 0.06i: 
1-10.4 X J08, 2-9.6 X J08, 3-8.8 X J08, 4-8.4 X J08, 5 -8 X J08, 
6-7.5 X JOB, 7-7 X 108,8-6.5 X J08, 9-6 X J08, 10-5.4 X 108. 
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FIG. 4. The same as Fig. 3, 
but at k, = 0.2Si. 

entire length of the plasma column. The ampUtude along 
the setup does not reach a maximum value, although at 
the end of the plasma column the growth of the amplitude 
differs noticeably from exponential, and therefore the 
largest attainable amplitude is apparently close to E 
(7). max 

The phase velocity of the amplified wave was meas
ured by comparing the phase of the wave with the phase 
of a reference signal. To this end, a reference signal at 
280 MHz was applied to the diaphragm 7 (Fig. 2). Ac
cording to the measurements, the phase velocity is 8.7 
X 108 cm /sec. 

At Va = 8.8 X 108 cm /sec, the increment decreases, 
and at a certain distance from the start of the system 
the gain gives way to damping. The transition from gain 
to damping was also observed at smaller Va. With de
creasing Va, the maximum amplitude attainable in the 
system first decreases, and then begins to increase 
after going through a minimum in the internal-beam' 
velOCity region (8.0-804) x 108 cm /sec. 

At a current iz = 0.25i, the external probe 6 registers 
almost complete suppression of the instability over the 
entire length of the system in the velocity range Va 

= (6.4-7.9) x 108 cm /sec (Fig. 4). 

An electrostatic analyzer was used to plot the energy 
distribution of the electrons in the beamso To this end, 
a sawtooth retarding voltage with amplitude 450 V was 
applied to the analyzer grido The signal from the analy
zer collector was differentiated and fed to an oscillo
scope. Figure 5 shows oscillograms of the energy dis
tribution of the external-beam electrons in the regime 
where the oscillations are suppressed (a) and when 
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FIG. 5 FIG. 6 

FIG. 5. Energy distribution of the external-beam electrons: a-in the 
case of maximum suppression of the oscillations (v, = 10.4 X 108 cm/sec, 
v, = 8 X 108 cm/sec; i, = 0.2Si), b-in the absence of suppression (v, = v I 
= 10.4 X 108 cm/sec). 

FIG. 6. Energy distribution of internal-beam electrons at v, = 10.4 
X J08 cm/sec and v, = 8 X 108 cm/sec: a-in the absence of an external 
beam (i, = 0, i, = 2 rnA), b-in the presence of an external beam (i = 6 
rnA, i, = 2 rnA). I 

there is no suppression (b). The figure also shows the 
oscillogram of the sawtooth voltage applied to the 
analyzer grid. It is seen from the oscillogram that the 
energy scatter of the external-beam electrons is large 
in the instability regime and becomes much smaller in 
the regime when the oscillations are suppressed. 

Figure 6 shows oscillograms characterizing the en
ergy distribution of the electrons of a small-diameter 
beam in the absence (a) and in the presence (b) of the 
external beam, the beam current and velocities being 
such that the oscillation-suppression regime is real
ized. We see that the internal beam remains unstable in 
the suppression regime. The oscillations generated by 
this beam are not registered by the external probe 6 
(see Fig. 2), but an antenna placed in the space between 
the beams registered oscillations of 200 MHz frequency. 

As shown by oscillogram b of Fig. 6, an appreciable 
fraction of the internal-beam electrons is accelerated. 
The acceleration effect becomes more clearly manifest 
at a larger velocity difference, when oscillations again 
appear in the circuit of the external measuring probe. 

The absence of oscillations in the region of the ex
ternal probe is evidence that the oscillations belonging 
to the unstable branch connected with the external beam 
are suppressed. However, oscillations excited by the 
internal beam are still present and can be registered by 
a probe placed between the beams. The fact that the in
ternal beam generates oscillations is also evidenced by 
the smearing of the energy distribution function of the 
particles of this beam in the regime when the external
beam oscillations are suppressed (Fig. 6). The power 
level of the oscillations excited by the second beam is 
relatively low. It can be made much lower by injecting 
a weak third beam into the system (the beam currents 
are then i 1 = 6 rnA, h = 2 rnA, and h = 1 rnA), with a 
velocity V3 < Va chosen such as to suppress the oscilla
tions generated by the second beam. No oscillations 
were observed in the system in this case-their level 
was below the sensitivity of the recording apparatus, and 
the beam-particle energy distribution functions were 
slightly smeared out. 

This experiment Shows that in a multiple-beam sys
tem it is possible, by varying the velocities and densities 
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of the beams, to control the level of the excited oscilla
tions and to limit the beam instability at very small os
cillation amplitudes. 

4. DISCUSSION 

Let us analyze the experimental results and compare 
them with the developed theoretical representations, 

We note first that in the experiment the beam and 
plasma densities, and probably also the wave amplitude, 
depend strongly on the radius. The beams have annular 
cross sections and therefore ~ = 'ilio (r - ri)' The radius 
of the plasma column in the setup is ~ 1. 5 cm. As to the 
plasma density and the electric-field intensity, their 
radial dependences are unknown. It can be assumed that 
the quantities ~p and tr, like the plasma density no(r), 
are smooth monotonic functions at r ::s R, and decrease 
quite rapidly at r > R (R = 1.5 cm). By averaging over 
the cross section 

1 R 

(f(r)->- f= nR' J f(r)rdr) 
• 

we can obtain corresponding quantities that do not de
pend on r. By applying the formulas given in Sec. 2 to 
these quantities we can obtain certain estimates. Thus, 
to determine the average beam densities we can use the 
formulas 

where ik is the current of the k-th beam. We assume 
that k 1 ~ 7T/R ~ 1, and then wp = 0.8wp at kll = 2 cm-\ 
From the excited-wave phase velocity v h = 8.7 
X 108 cm/sec, measured at VI = va = 1.0! X 109 cm /sec, 
it is easy to determine the linear increment, namely y 
= W~(VI - Vph)Vil ~ 0.17w~. Ae) v gr = 2vph /3, the spa
tial increment during the linear stage is y d = YVg~ 
~ 0.25klJ = 0.5 cm-1• A similar estimate is obtained from 
the spatial dependence of the oscillation intensity at 
VI = Va (see curve 1 in Fig. 3), based on the formula Yd 
= (2Earl~Ea/~x, 

The character of the particle velocity distribution 
function (Figs. 5 and 6) and the development of the insta
bility in the two-beam system (Figs. 3 and 4) show that 
the particles of the second beam are captured, and that 
this imposes a limit on the instability, 

Recognizing that curves 1-3 in Fig, 4 correspond to 
Va >vph and curves 4-10 correspond to Va < vph' we 

see that the greatest effect on the development of the 
beam instability is exerted by the second beam at 
Va < vph' However, this influence is appreciable even at 
Va > vph' The reason is that at vph < Va < VI the capture 
of the second beam occurs earlier than that of the first 
beam, and consequently, by the instant the bunches of 
the first beam are captured, the particles of the second 
beam have had time to shift in phase in such a way that 
81 - 8a ~ 1, and consequently the maximum value of the 
amplitude, as seen from (10), should decrease. With in
creasing number of particles in the second beam (Fig. 4) 
the decrease of the maximum value of the amplitude be
comes more Significant and the wave field amplitude is 
no more than a few volts per centimeter already at na/nl 
= 0.4-0.6 (curves 5-8 on Fig. 4). 

The average amplitude of the steady-state oscillations 
can be estimated with the aid of expression (11). It ap
pears that at VI - vph ~ vph - Va the bunches Qf charged 
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particles differ little in average phase, so that 81 - 82 

« 1. Taking this circumstance into account, we obtain 
from (11) E ~ 6-8 V/cm, which is close enough to the 
second-beam capture amplitude. 

From the oscillograms of Fig. 6, which show the par
ticle energy distribution functions in the suppression 
regime, we see that the particles of the second beam are 
accelerated. The particles captured by the wave can be 
accelerated to 

V,mox=Vph+ (2e.E/km) 'I,. 

Substituting here the obtained value of E, we get v2max 
~ 9.8 x 108 cm/sec. It is easy to find from the oscillo
grams that the maximum energy of the second beam 
reaches 270 eV. This energy corresponds to v2max 
= 9.9 X 108 cm /sec, which agrees with the calculated 
value and enables us to verify the validity of the esti
mates. 

5. CONCLUSION 

The theoretical and experimental investigations of 
the development of instability in a multibeam system 
show that the mutual interaction of weak beams leads 
during the linear stage only to a negligible change in the 
increments of the unstable modes, whereas the develop
ment of the nonlinear stage of instability, in which the 
beam particles are captured and the growth of the ampli
tudes of the unstable modes is limited, turns out to be 
quite sensitive to the change of the resonant-particle 
distribution function brought about by varying the initial 
velocities and densities of the beams. Capture of reson
ant particles leads to establishment of nonlinear oscilla
tions, with amplitudes that depend strongly on the initial 
resonant-particle distribution function. This makes it 
possible, by varying the beam parameters, to control 
development of the instability of a multibeam system, 
and to vary the amplitudes of the excited waves in a wide 
range. The use of one or two controlled electron beams 
with currents amounting to small fractions of the current 
of the main beam makes it pOSSible, if the velocities are 
appropriately chosen, to lower the intensity of the os
cillations generated in this system by a factor of several 
times ten, i.e., practically to suppress the beam instabil
ity, 

We note that by modulating the beam parameters in 
the multibeam system it is possible to excite amplitude
modulated electron oscillations with large depth of 
modulation. The latter, in turn, can serve as a means 
of exciting intense ionic oscillations at the parameter
modulation frequencies. Thus, it is possible to control 
both the high-frequency and low-frequency oscillations 
in multibeam systems. 

t)From among the many publications devoted to this question, we men
tion [1-8], which are devoted to the nonlinear stage of excitation of 
narrow wave packets by monoenergetic beams. 

2)We exclude from consideration here the possibility of the development 
of slow instabilities with a characteristic time much larger than I h max. 

3)lhis relation holds true in a single-beam system for waves with maxi
mum increment. 
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