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The quantum theory of the electrical-conductivity tensor is used to investigate the drift oscillations of 
an inhomogeneous plasma in a quantizing magnetic field. Additional drift-oscillation branches due to 
the quantum nature of the orbital motion of the carriers are found. Both the potential and 
nonpotential quantized drift oscillations, the transparency regions, and the stability conditions are 
investigated in detail. 

1. INTRODUCTION 
The investigation of the electromagnetic oscillations 

of an inhomogeneous plasma located in a magnetic field 
is important for the solution of many problems in plasma 
physics itself, as well as in solid state physics, since a 
real plasma is, to a certain extent, always inhomogene
ous. It is known, for example, that the presence of in
homogeneities leads to the appearance of additional os
cillation branches (the so-called drift oscillations), 
which play an important role in the problem of magnetic 
confinement of plasmas. 

Under conditions when the quantization of the motion 
of the carriers becomes essential (e.g., in quantizing 
magnetic fields), we can expect the appearance of new 
effects in a homogeneous plasma. In particular, addi
tional drift-oscillation branches should appear in a 
quantizing magnetic field as a result of the quantized 
nature of the orbital motion of the particles. The ex
istence of these additional oscillation branches will be 
demonstrated by us in the investigation of the electrical
conductivity tensor of a slightly inhomogeneous plasma 
(Sec. 2). The frequency of these new OSCillations, given 
by wd=nn lllVT (n is the cyclotron frequency), is higher 

than the frequencies w~ of the ordinary classical drift 
oscillations, since nn >T. In contrast to classical drift 
OSCillations, these quantized oscillations can exist in a 
cold plasma (for T - 0) also, which is fully explicable, 
since, according to quantum theory, there is definite 
random particle motion even at zero temperature. The 
third, and last, section of the paper is devoted to a de
tailed analysis of the drift oscillations of a plasma lo
cated in a strong quantized magnetic field, the main 
attention being given to the investigation of quantized 
drift oscillations. 

2. THE ELECTRICAL-CONDUCTIVITY TENSOR OF 
AN INHOMOGENEOUS PLASMA LOCATED IN 
A MAGNETIC FIELD 

To consider the natural oscillations of a plasma, we 
must know the explicit expressions for the components 
of the electrical-conductivity tensor. We shall limit 
ourselves to the case of an inhomogeneous collisionless 
plasma located in a uniform magnetic field H= (0,0, H), 
the inhomogeneity being assumed to be one-dimensional 
and directed along the x axis, Le., perpendicular to the 
direction of the magnetic field. 

The solution of the quantum-mechanical problem of 
the interaction of such a spatially inhomogeneous plasma 
containing one kind of carriers with an electromagnetic 
wave (-eiwt) leads to the following expression for the 
electrical conductivity tensor Uay(q, q', w) (cf., for 
example, with the results of Appendix A in (1]): 
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cra,(q, q', (0) = ~.,6(q,+q:)6(q,+q:) ~ f""(X,)l,,. (q,+q:) 
mUJJ ~ 

nk,/lr 

e' 6( + ')6( + ') ~ fn',h,+q,(X,+")..'q/2)-f.k,(X,-")..'q/2) (1) 
+ -;-;;;- q, q, q, q, l.....J (e.',:,w-e.,,-lioo+is) 

lin' 

x (V.«) ,,'. (V.,') nn', 

Here (n, ky, kz) are the quantum numbers characteriz
ing the state of the electron, whose wave function is 

I " (X-X,) n,k.,k,>=exp(,k,y+,k,z)cD" -)..- , 

<I>n(x) is the normalized oscillator function, 

X,=")..'k" ")..'=cli/eH, e",,=IiQ(n+'/2) +1i'k.'/2m, 

n = eH/mc is the cyclotron frequency, fnkz(Xo) is the 
eigenvalue of the local-equilibrium statistical operator, 

/",.(q,) =(n' I cxp(iq,x) In>, 

(V.").'.='/2m-'(n'l [(p-eAolc)", exp(iq,x) l+ln> 

The vector potential of the magnetic field is taken in 
the form Ao=(O, Hx, 0). 

If the characteristic dimension of an inhomogeneity 
is significantly greater than the wavelength, then it is 
often convenient to go over to a mixed representation 
and introduce the electrical conductivity tensor 
UCly(q, w, r) of the slightly inhomogeneous plasma: 

cr",(q,oo,r)= S dQcra,(q,q',oo)e- iQ'. (2) 

Restricting ourselves to the geometrical-optics approxi
mation, we can write the matrix elements (Vq'hm' and 
Inn(qx + qx) in the form 

( 3) 

where Q = qx + qx. In consequence, the tensor Uay(q, '1), x) 
can be expressed as follows: 

N(x)e' e' 1 
cra,(q, 00, x) = --6.,+ ---

irnw iw 2nz,.} 

X ~ Sdk, fn',,,+q, (x+").. 'q.l2) -fnh,(X~")..Zq.l2) • 
~ ( Ii + ) (V.").'" (V.') n'". 
nn' B'Il'.IiI+qz-E nll t - (1) ~s 

(4) 

Here N(x) is the particle density: 

N(x)= 2n~")..Z 1:.5 dk,f",,,(x). 

Outwardly, the expression (4) looks like the analogous 
formulas for the homogeneous plasma (2-5]. There are, 
however, differences, the principal one of which con
sists in the fact that the distribution function has be
come dependent on the space coordinate. Furthermore, 
this expression manifests an additional dependence on 
x2qy, this dependence being responsible for the Larmor 
drift oscillations of an inhomogeneous plasma(6] This is 
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easily verified by considering the quasi-classical ap
proximation. For this purpose, we must expand 
fn ' ,kz+qz(X), assuming it is a Maxwellian distribution 
function, in a power series in qz and (n' - n). The com
ponents of the vector (Vq)n'n should be replaced in this 
expansion by their asymptotic expressions for large n, 
and, using the recursion relations for the Bessel func
tions, we can show that 

quantized, and, as a result, there appear in all the 
transverse components of the electrical conductivity 
tensor terms connected with the quantum drift frequency. 
It follows from (9) that the quantized drift oscillations 
lie in a region of higher frequencies than the classical 
frequencies for the same magnetic-field intensities, 
since 

",'q, iJ _ 0.,«1, w, x) = { 1- -;u;;-;;;T(x) } o.,(q, w, x), (5) and lin>T. 

where Uay(q, w, x) is a tensor that coincides in form 
with the corresponding tensor of the homogeneous 
plasma [2,7}, but in which the concentration and temper
ature are functions of the space coordinate x. 

This is a well known result, which consists in the 
fact that the classical electrical-conductivity tensor of 
an inhomogeneous magnetoactive plasma can, in the 
zeroth geometrical-optics approximation, be obtained 
from the corresponding expression (in which N and T 
are functions of the space coordinate x) for the homoge
neous plasma by applying to it the operator [6}: 

'2 T() iJ 
T-'(x) {l-~~}1'(x), 

Tlw dx 

In deriving this result we took into account only the 
terms that are linear in A2qy. 

(6) 

Returning to the case of quantitizing magnetic fields, 
and restricting ourselves besides to the linear approxi
mation in the wave vector q, we obtain from the formula 
(4) after simple transformations carried out under the 
conditions IJJ »qzvT, Aqy« 1 the expressions for the 
non-vanishing components of the electrical conductivity 
tensor of a slightly inhomogeneous Maxwellian plasma: 

l'>ie'w { ;,'q,Q 1 a [ ( Ii&J )]} o =0 = 1----- Ncth -
.x '" mi(w'-Q') 2w N rJx 21" 

0=-0 =--- 1----- Ncth -Ne'Q { ",'q,Q 1 0 [ (IiQ )]} 
., "" m\w'-Q') 2w N dx 21' 

Ne' { '" 'q, 1 a } 0,,=-. 1-------,--,(NT) , 
m!w liw N iJx 

In the case of strong quantizing magnetic fields, 
when lin »T, these expressions go over into the fol
lowing: 

0,,= ~ (1- 'J,,'q,T ~) l' Ne' . 
1 flu) ax mlu) 

It is evident from this that there arise in a quantizing 
magnetic field the characteristic drift frequencies: 

(7) 

(8) 

(9) 

which can respectively be regarded as the classical and 
quantum frequencies of the Larmor drift of the carriers. 

The presence of the new drift frequency in a quantiz
ing magnetic field is connected with the difference in 
the particle motion along and across the magnetic field. 
The nature of the motion along the field remained as 
before-classical. In consequence, the longitudinal com
ponent Uzz includes a term containing the classical 
drift frequency. The nature of the particle motion 
across the magnetic field, on the other hand, becomes 
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If, on the other hand, the energy of the Larmor quan
tum is comparable to the energy of the thermal motion 
of the particles, then the expressions for the transverse 
components of the electrical conductivity tensor are 
representable in the form 

0%>=0,,= Ne'w {i_f.'q,T Oln(NT) 
mi(w'-&2') flU) ax 

_.!'E... f.'q,Q..!.....ln!!.....} 
i2T w ax 1" 

0.,=-0",,= Ne'Q {i_f.'q,T Oln(NT) 
m(w'-Q') flw ax 

(10) 

_.!'E... f.'q,Q ..!.....In!!.....}. 
i2T U) iix l' 

Thus, in this case there should exist in the plasma both 
classical and quantized drift oscillations! since the 
second terms in the curly brackets -,,, all" , while the 
last terms -wd/I.tJ. However, until lin;s T, the quantized 
oscillations manifest themselves weakly, becoming 
noticeable only when lin > T . 

It should be added that it will be easiest to observe 
the quantized oscillations in a plasma consisting of light 
carriers, since it is easier to satisfy the conditions 
(lin >T) for a quantizing magnetic field in such a plasma, 
and, furthermore, the quantized-drift frequency is in
versely proportional to the carrier mass. Further, the 
quantized drift oscillations are, in contrast to the 
classical oscillations, also possible in a cold plasma 
(T - 0). This is connected with the fact that although 
the random thermal motion of the carriers, which is 
responsible for the existence of the classical drift 
oscillations, disappears as T - 0, nevertheless from 
the point of view of quantum theory the presence in the 
system of the characteristic inhomogeneity dimension 
Lo leads to an uncertainty in the velocity of a particle 
and, consequently, to a peculiar randomness in its mo
tion even at T = O. Therefore, it is quite natural for 
drift oscillations-albeit of a different nature-to exist 
in a cold plasma. 

3. DRIFT OSCILLATIONS OF AN INHOMOGENEOUS 
PLASMA IN A QUANTIZING MAGNETIC FIELD 

Let us now proceed to investigate the drift oscilla
tions in a quantizing magnetic field. We shall restrict 
ourselves here to the limiting quantum case (lin »T) and 
to the low-frequency region (I" «n), since the drift 
oscillations usually lie precisely in this region; we shall 
however assume the particle density to be fairly high 
(wo >n, where w~=41TNe2/m and N is the mean density). 
Further, using the fact that '''~ depends on the particle 

mass, we can restrict the analysis to only one type of 
carriers (light carriers), for which the quantization con
ditions are satisfied in the first instance. 

It should be noted that the investigation of the classi
cal drift oscillations in a plasma with one type of car-
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riers is not always possible, since '-"J is not mass de
pendent. Therefore, we shall study only the quantized 
drift oscillations in a one-component plasma in the fre
quency region "'~« "',:;; "'d' taking into account the fact 

that "'~» "'~ whenever nn »T. In this case the expres
sions for the nonvanishing components of the permittivity 
tensor Eay(q, "', x) with allowance for damping can be 
represented as follows ('" »qzvT): 

exx=e,,= ~~( 1- Il~l q,vx' d InN) 
Il' U ~lw ax. 

+i (~)'h ~~ex (_~) [1-~~ alnT] 
8 wlq,lvT l' P 2q,'vr' 2w g/' rJx ' 

,000'( hQq,v/alnN) 
e.,=-eux=W;;;- 1- "21' ~~ (11) 

+(~)'I' ~~exp(_~)[1_~~alnT] 
8 IJ)lg,I/JT l' 2q,'vr' 200 go' ox ' 

Knowing the explicit expressions for the components 
of the permittivity tensor Eay(q, "" x), and solving the 
eikonal equation: 

I g'6.y-q.qy- ;: e.,(q, 00, x) I ='0, (12) 

we can find the spectrum of the oscillations of the in
homogeneous plasma, as well as the damping constant 
y, from the quasi-classical Bohr-Sommerfeld "quanti
zation" condition [6J: 

S dxRe q.(IJ),x) =mt, 

1=- S dx rm q.(w, x) / S dx fj~ Re q.(w, xl. 

where n is an integer (n» 1). 

(13) 

We shall consider two limiting cases of the oscilla
tions: a) potential drift oscillations for c2qi» ",2 Exx, 
",2 Exy and b) nonpotential drift oscillations for c2q~ 
« ",2 Exx, ",2 Exy. 

In the first of these cases the eikonal equation (12) 
goes over into 

(14) 

and, taking account of the relations (13), we obtain the 
following dispersion equations for the determination of 
the spectrum of the potential drift oscillations of an 
inhomogeneous plasma in a strong quantizing magnetic 
field: 

S dx Re gx(x, w) 

= Sdx{ -g '+q '~( 1-~ g,VT' !!.lnN_)-1 }'I, =nlt 
y 'w' 2T S2w Ox ' 

(15) 
1(lt)'h(S OHeqx)-'sdx wQ' 

1=-2 8 dX------a;;;-- Reg, Iq,lv,' 

"'(1-~J!.". OlnT)exp( __ W_'_)(l_hQ qyvr' alnN)-' 
2Q qo' ax 2y,'v,.' 2T Qw ax 

It is important to note that the integrands in (15) 
should not have Singularities in the entire transparency 
region of the plasma, i.e., 

hQ q,vr' a InN 
1------*0. 

2T Qw ax 
(16) 

Let us consider the long-wave oscillations ('" »qzvT) 
in the region of frequencies lower than the quantized
drift frequencies of the carriers, but significantly higher 

1109 Sov. Phys.-JETP, Vol. 38, No.6, June 1974 

than the classical drift frequencies. Then it follows 
from Eqs. (15) that 

{ Q ( 0 In N ) -I}'/, 
SdxReq,(w,x)= S dx -q,'-2q,'---;;; ')..'qy----;;;;- =nlt, 

(It) '1, S dx w' (0 In N ) -I 

1=- 2 Re q, Iq,I'v,' ---;;;-

( w q. a In T ). ( W') [S dx (a InN) _I] -, x 1-_--- exp -.-- ----
2Q qo' Dx 2qo'vr' Re q. ax 

It can be seen that such oscillations are hydrodynam
ically stable starting from the transparency region 
limited by the condition 

, 2 ,Q (, a In N )-' -q, - g, -- ').. q,,-- ;;;,0. 
w Ox 

(17) 

The attenuation of these oscillations is exponentially 
small. Under certain conditions the oscillations de
scribed by the expressions (17) can become kinetically 
unstable. From the expression for y, we can find that 
for the instability to develop in the transparency region 
for the oscillations under consideration, it is necessary 
that 

OlnT/OlnN<O. 

The growth rate of these oscillations remains exponen
tially small, and only at the edge '" - qzVT of the fre
quency region under consideration can it attain values 
comparable to the frequency of the oscillations. 

Generally speaking, the potential oscillations of an 
electromagnetic field in a magnetoactive plasma are not 
natural oscillations. Therefore, it is necessary to con
sider the general nonpotential oscillations that are de
scribed by the eikonal equation (12), which, for our 
approximations, has the following form: 

qJ.'ex,+qJ.' [( q/- :: e,,) (e,,,+e,,) _ ;' e,;] 

It is easy to see that in the limit c2qi »w2EXX' ",2EX , 
this equation goes over into the eikonal equation (14) for 
the potential oscillations. In the opposite case, when 
c2q~« ",2 EXX ' w2Exy, the eikonal equation determines two 
functions q~(w, x) corresponding to two oscillation 
branches of the magnetoactive plasma-the ordinary 
and extraordinary waves: 

(18) 

The oscillation spectrum described by the first of the 
Eqs. (18), which contains no ~uantum drift waves, has 
been thoroughly investigated 6J; therefore, we shall 
study in detail only the second of these equations. In 
doing this, we need, generally speaking, to take into 
account terms of second order in the density and tem
perature gradients, and therefore the expressions (11) 
cannot justifiably be used to find the spectrum of such 
oscillations. Nevertheless, in our approximation the 
results obtained using the more general expressions (4) 
without expanding them in powers of A2qy coincide with 
the results of the linear theory, and we arrive at the 
following dispersion relations for the extraordinary 
wave: 

S S { , wo' ( hQ q,vr' a InN )}'7. dxReq.(w,x)= dx -q, --, 1------
c- 2T Qw ax 
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x ~In-+----( aN Q. alnT)] 
ax iT 2q,'v? ax 

I Q' ) ( dx w.' qyvT ' alnN)-' 
x exp C 2q/VT' S Re q. rg;;;-----a;- . 

It follows from the first of the Eqs. (19) that these 
oscillations are hydrodynamically stable, and that the 
frequencies of the oscillations are of the order of the 
quantized-drift frequencies: 

q /iQ qyv? 
w-wd----· 

T QL. 

(19) 

Taking into account the fact that the transparency region 
of the plasma with respect to such oscillations is, ac
cording to the first of the Eqs. (19), given by 

/iQ qyvT ' alnN 0 
1-2T~~< , 

we find from the expression for y the necessary condi
tion for the kinetic instability of the inhomogeneous 
plasma with respect to these oscillations: 

2T [ Q' a In T ] 0 1-- 1+---- > , 
/iQ 2q/VT' a InN (20) 

which is certainly satisfied when a In T / a In N < 0 in the 
transparency region. However, the growth rate of the 
quantum drift oscillations remains exponentially small 
even when the growth rate of the classical drift oscilla
tions can attain values comparable to the frequency, 
since n »w. On the other hand, the attenuation of the 
classical drift oscillations becomes appreciable when 
w - qzvT, whereas the quantized-drift oscillations still db 
not experience noticeable damping in this frequency 
region. 

In conclusion, let us note that the results of our in-
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vestigation can be extended to the case of several types 
of carriers (electron-ion or electron-hole plasmas). It 
may then turn out that the motion of one type of car
riers (the heavy ones) obeys classical laws, while that 
of the light carriers is described by quantum laws, 
which then introduces additional changes into the spec
trum of the drift oscillations of such a plasma. 

In conclusion, I wish to thank P. S. Zyryanov and 
Y. I. Okulov for constant interest in the work and for 
useful advice. I consider it my pleasant duty to express 
my gratitude to A. A. Rukhadze, whose critical and 
useful comments and attention led to the elimination of 
a number of unfortunate blunders in the work. 
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