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The problem of resonant scattering of a monochromatic electromagnetic wave by an atom in the ground state is 
solved without assuming that the incident field is weak. The cross sections for coherent and incoherent scattering 
are obtained. To obtain these cross sections it is essential in principle to take into account the relaxation of the 
excited level even in the case of a very strong field. The Raman scattering produced upon relaxation of an excited 
state via an intermediate state is considered. The results are generalized to include the case of collisions that lead 
to renormalization of the transition widths. 

The theory developed by Weisskopf for quantum fluo
rescence presupposes that the incident photons are scat
tered by the atom independently. As noted by Heitler [2J 
the resonant fluorescence is a Single-photon coherent 
process (the emitted wave is coherent with the primary 
wave), if the atom is not externally perturbed during 
the lifetime 1/y of the excited state. The collision of 
the atom with some particle during this time random
izes the phase of the radiating dipole, and this leads to 
the appearance of an incoherent part of the scattering, 
which has a finite line width. A similar situation arises 
also when the intensity of the scattered light is in
creased, i.e., when the density of the incident photons 
is increased. Scattering of one photon can no longer be 
regarded as independent of the remaining ones if the 
probability of the collision of the atom with other photons 
becomes noticeable after a time l/y. It becomes nec
essary to consider two-photon collisions which lead to 
non-monochromaticity of the scattered radiation. An 
analysis of the two-photon collisions was carried out by 
Rubin and Sokolovski'i [3J. When the intensity of the in
cident field is increased, it is necessary to take into ac
count the multiphoton process. 

The characteristic parameter of the problem, the 
smallness of which makes it possible to regard the in
cident field as weak, can be obtained by stipulating that 
the number of protons colliding with the atom in a time 
l/y be much less than unity, i.e., O'J/y« 1, where a is 
the resonance-fluorescence cross section (0'- >..2, >.. is 
the radiation wavelength) and J is the photon-flux 
density. This condition is equivalent to 

(dElliy)'<i;:.1, 

where d is the dipole moment of the tranSition and E 
is the incident-wave electric-field intensity. 

This' paper is devoted to resonant scattering of light 
by atoms in the ground state, without restriction on the 
intensity of the incident field relative to the parameter 
(dE/ny)2. 1) Allowance for the relaxation of the excited 
level plays the prinCipal role even in the case of high 
intensities. The cross section of the unshifted scatter
ing in a strong field breaks up into two parts, coherent 
and incoherent, which are determined in this paper. The 
sum of these parts can be obtained also without taking 
into account the level relaxation constant [4J. 

1. COHERENT-SCATTERING CROSS SECTION 

Assume that an electromagnetic wave of frequency 
W close to the frequency WlO of the transition between 
the excited state 1 and the ground state 0 (Fig. 1) is in
cident on an immobile atom (molecule). The wave is 
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FIG. I. Level scheme. The wavy lines cor
respond to the scattered photons. 
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linearly polarized, and the z axis is directed along the 
electric field 

E (t) =Ee-'·'+ c .c. 

The state 1 has a total angular momentum J = 1 and a 
z-projection of the momentum m = O. The equations for 
the density matrix of the atom are 

°Pl.liit+ypu=Ge-'·'pto·+G·e'·'pto, 

iiPoolot=- (Ge-'·'p,;+G'e'·'PIO) +ypu, 

oplOlot+ (iro,,+ r) pto=Ge-'" (poo-pu). 

( 1) 

Here y is the reciprocal lifetime of the level 1; 
r=y/2 2); G=idE/n; d=(Oldz ll) is the matrix element 
of the projection of the dipole-moment operator on the 
z axis. The term YPu in the second equation takes into 
account the arrival of the atom at the ground state. The 
presence of this term does not make it possible to use 
the Schrodinger equation to solve the problem. If we are 
interested only in the stationary solution (1), then, taking 
into account the normalization Pu + Poo = 1, we can easily 
obtain 

where 

x=4IGI'/yr, r o'=r'(1+x), Q=ro-roto. 

The average value of the dipole moment of the atom is 

where 

il,=dplO+K.C. =cu-'·'E+ c.c., 

Idl' Q+ir 
a=TQ'+ro' . 

The cross section of the unshifted coherent scatter
ing is expressed in terms of the polarizability Q' in the 
following manner: 
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da= (m/c) 'I a: I' sin' 8do, 

where do = sin lidlid<p, while Ii and <p are the polar and 
azimuthal angles in a spherical coordinate system with 
polar axis along z (see [6]). Consequently 

Q'+ ('(12) , , 'Sd 
[Q'+(1!2)2(1+x)]' sm o. 

At K« 1 we obtain the known resonance-fluorescence 
cross section [1,6]: 

d'm' 1 ' 
ri,a=---;w: Q'+(1/2 )2 sin'S do. 

for K» 1 we have 
d'm' Q' 

da - sin'S do. 
- c'Ii' (Q2+2IGI')' 

As already noted in the Introduction, the parameter 

(4) 

(5) 

K is a characteristic of our problem. When K« 1, the 
field is weak (the cross section does not depend on the 
field intensity). In the general case (4) the resonance
curve width, which is connected with the change of the 
frequency w, is determined by the width of the level and 
by the field- an additional "broadening by the field" 
takes place. At the maximum, i.e., at n=o, the cross 
section for the coherent scattering decreases by a fac
tor (1 + K)-2 in comparison with the weak field. If we 
separate the total cross section of the coherent scatter
ing O"c, then (4) can be rewritten in the form 

3 
d(J=ac 8n sin'S do, 

8n d'm' Q'+f' 
aC=3~ [Q'+f'(1+x)]' 

'J..' 3 ('(10)' Q'+f' 
2n 2"'" [Q'+f'(1+x)]" 

(6) 

where YIO = 4d2w3/3c 3ti is the probability of the radiated 
transition 1 - 0, with Yo ~ y, since the transition can 
proceed also via intermediate levels (Fig. 1). 

2. INCOHERENT PART OF THE SCATTERING 

The cross section for the incoherent scattering can 
be obtained by jOintly considering the system compris
ing the atom and the scattered photons. The Hamil
tonian of the system is expressed in the form 

H=lim lOa,!2+1i L, mOCk +c.-ili L, q (c.(J+-c. +a_) +ili(Ge-'·'a+-G·e'·'a_). 

•• (7) 

Here ck and ck are the operators for the production 
and annihilation of a photon with wave vector k, polarized 
linearly in the plane of the vectors E and k; wk = c I k I; 
q = (2wltiV)1/2d sin Ii; Ii is the angle between the z axis 
and k; V is the volume: 

a_ = (0 0) . 
1 0 ' 

The eigenfunctions of the states 0 and 1 are 

10)=(~), 11)=(~). 

We are interested in the power scattered by the atom, 

P=-Sp {pi,E,}, 

where 

i,=-imlOd(a_-a+), E,=i L, q (c.-c. +), 

• 
and p is the density matrix. The expression for the 
power can be rewritten in the form 

Writing down the equation itidp/dt= [Hpj in matrix form 
and omitting the matrix elements p containing states 
with two photons k, we obtain in the stationary case 3) 

(d) , , at - im,+6 po,o.=qp.'- (Ge-'·'pO,l.+G·e'·'pl,O') +'(P.,l" 

( ~t - im,-:imlO+f) p.,O.=qpll+Ge-'·'(po,o'-P""), 

(9) 

(~ - im,-im,,+ f ) po".=G·e'·' (Po,o'-P., •• ). 

Here Po ,ok = (I (0 I pi O)k), etc.; Pu and PIO are given 
by formulas (2) and (3). The infiniteSimally small 
damping Ii was introduced to determine the manner of 
circling around the pole in the integration with respect 
to frequency in (8). Solving the foregoing equations with 
allowance for the fact that 

and that Pl,ok does not depend on the time, we obtain 
p.,o.=nqp"Cjl (v), 

(10) 2IGI2[f-i(v-Q) ] 
<p(v)=...!...{ 1 

n [f-i(v+Q)] (l-iv) [f-i(v+Q)] (Q'+~') 

, 1 (f-iQ) [f-i(v-Q)] } + ,---'--,----'-',---'--":"'::'" 
2f (v+i6) (Q'+~2) , 

(11) 

where 
v=m,,-m, ~2=(f-iv) [r -iv+fx1/(1-iv)]. 

Substituting (10) in)8) and dividing by the incident-wave 
energy flux J = E2c 21T, we obtain the scattering cross 
section in the frequency interval dll: 

ace, v) do dv=aI (v) '8~ sin' 8 do dv, 

, lim, 3 2f ('(10 )' 1 
a=l IOP",='J.. 2n-1- 2 Q'+f'(1+x)' 

(12) 

(13) 

The function I( II) = Re <p( II) (normalized to unity) deter
mines the spectral distribution of the scattering inten
sity; 0" is the total scattering cross section. Expression 
(13) has a simple meaning. Under the influence of an 
external field, the atom is thrown on to level 1 (and 
radiates spontaneously YIOPll photons per unit time). 
To obtain the cross section it is necessary to divide 
YloPll by the incident-photon flux density. 

Naturally, formulas (11)-( 13) contain the results of 
the preceding section. Equation (12) can be easily di
vided into coherent and incoherent parts by using the 
formula 

3 
a(8, v)do dv= [ac6(v) +a, 1m' (v) ]·-sin' S do dv' 

mc c 8Jt I 
(14) 

O"c is given by (16), O"inc = 0" - O"c is the total incoherent
scattering cross section, 

2IGI'[f-i(v-Q) ] 1 {1 Iinc(V) = fie 
n (i-ac/a) f-i(v+Q) (l-iv) [r-i(v+Q)] (Q'+~') 

+i '( (f-iQ)[f-i(V-Q)]} 
2r v(Q'+~') . 

( 15) 

Figures 2a and 2b show plots of the spectral distribu
tion Iinc(lI) of the incoherent part of the scattering 
(normalized to unity). The ratio 

ainc/ac=x/[l+ (Q/r)'] 

P=2mlO L,Re{qpl,O'}' P.,o.=<I<llpIO)lk). (8) shows that the fraction of the incoherent part increases 
with increasing intensity. 
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At K« 1 we have 
2r(Q'+r') . 

line(v) = n[ (v+Q)'+r'][ (v-Q)'+r'] , ( 16) 

which coincides with the result of Rubin and Soklovski'i[3l. 
Expression (15) is also simplified in the case of K» 1: 

J. (v)=~ Q'+2G' {~~+~ b +-.!... b } 
inC n Q'+4G' Q'+2G'v'+r' 2 (v~C)'+b' 2 (v+C)'+b' ' 

where 

C=l'Q'+4G', 
~ Q'+2G' 
r="( Q'+4G' ' 

3. RAMAN SCATTERING 

Q'+6G' 
b="( 2Q'+8G' (17) 

As already noted in Sec. 1, the transition 1 - 0 can 
proceed via intermediate levels, and be accompanied by 
emission of spectral lines of frequency less than w. 
For example, a transition 1 - 2 with emission of a fre~ 
quency W12 can occur; this corresponds to Raman scat~ 
tering of a strong field of frequency w (Fig. 1). The 
total cross section for Raman scattering in the transi~ 
tion 1-2 can be written down, in analogy with (13) in 
the form 

( 18) 

where Yl2 is the radiative probability of the transition 
1 - 2. To find the spectral distribution of the intensity 
in this transition we use the method of Sec. 2, the only 
difference being that the scattered photons have frequen~ 
cies close to W12 (the strong field is at resonant, as be~ 
fore, with the transition 1 - 0). The radiated power is 
given by formula (8) with the substitutions 

1Il,,-+IIl12, P,.Ot-+Put, PI.,t=<1<1IpI2>lk>, 12>=(~). 

To find Pl,2k, we have the equations 

(d/dt-it.+ r ,,) PI,2k=qplI+Ge-'"'PO,2k, 

(d/dt-it.-illl,,+ roo) PO"k =qp,,' -G·e'·'pl,'k. 

Here r 12 =(Y+Y2)/2, r20=Y2/2, Y2 is the reciprocal life
time of the level 2, and ~=Wk-W12 is the emitted-phonon 
frequency reckoned from the transition frequency (the 
scattered-field frequency is reckoned in Secs. 1 and 2 
from the frequency w). Recognizing that Po,2k - eiwt , 
we easily obtain 

pl,'k=nqpllcp (t.), 

cp(t.)= ; (-it.+r+r,,) {(-it.+r,,) [-i(t.-Q)+r,,]+IGI'j-t. (19) 

for the differential Raman-scattering cross section in 
the frequency interval d~ we have in analogy with (12) 

() lilll () 3 ., 
(J e,t. dodt.="("PIIII'~1 t. ''&tsm edodt., 

where the function I2_1(~) = Re rp(~) is normalized to 
unity; this function is shown in Fig. 4. For weak fields, 
1 GI2 «( Y2 + Y)Y2/4, we have for the spectral distribution 
of the Raman-scattering intensity 

1 (t.) _ ,,(,/2 
'~I - n[ (il-Q)'+ (,,(,/2) '] 

_ [(,,(,/2)'- (t.-Q) '](,,(+,,(,) 12-t. (t.-Q)"('I I' 
n[t.'+("(+"(,)'/4] [(t.-Q)'+("(j2)']' G, 

(20) 

In the case of the scattering of a field of higher in
tensity, I GI2 »(Y+Y2)Y2/4, we have 

J (t.) _ 1 [ b+ + b_ ] 
'~I - n(v+ +v_) v+ (t.-v+)'+b/ v_ (t.+v_)'+b_' ' 

(21) 
r (,,(, Q ) b±=- 1+-=F . 
2 r YQ'+4IGI' 
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FIG. 2. Spectral distribution of incoherent scattering in the 
transition I --> 0: a) il = 0, b) il = 4. At ,,;;;. 50 it is possible to use in 
practice the asymptotic formula (17). 

The scattered field consists in this case of two lines 
with frequency difference v+ + v_. 

On going over to the ground state 0 from some inter
mediate level, say 3, the spectral distribution of the in
tensity in this transition depends on the incident strong 
field. The total scattering cross section is 

(22) 

where P33 is the population of the level and can be de
termined in principle if the Einstein coefficients are 
known for all the transitions that bring the atom to the 
ground state, and Y30 is the probability of the 3 - 0 
transition. The quantity YP3,ok=(1(3IpI0)lk) we need 
is obtained from the equations 

(d/dt-it. + r 3D) P'." =qp,,-Ge-'·'p.,tt, 

(d/dt-it.-illl lO+ r 3l ) P"lk=G·e'·'p.,Ok, 

where r 30 =Y3/2, r 31 =(Y3+y)/2, ~=Wk-W30. Recognizing 
that P3,lk - eiwt , we have 

p"ot=nqp"cp.~o (t.), 

cp,~o(t.) = ~[-i(t.-Q) +r,,] {( -it.+f,,) [-i(t.-Q) +r .. ]+IGI'J. (23) 
n 

The spectral distribution t>f the intensity Is-o(~) 
= Re rp3-o(~) is given for the case of a weak field 
I GI2 «(Y+Y3)Y3/4 by 

= __ "(~___ [("(,/2)'-t.']("(+"(,)/2-t.(t.-Q)"(, IGI' 
13~0(t.) n[t.'+ ("(312) 'J n[t.'+(,,(,I2)']'[ (t.-Q)'+(,,(,+,,()'/4]' . 

For a strong field, when I GI2 »(y+ Y3)Y3/4, 

I,_o(t.) = n(v+~v_) [(v+-Q) (t.-v:;'+c+' +(v_-Q) (t.-v:)'+c'] 

where 
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For transitions not connected with the levels 0 and 1, 
the spectral lines have, as usual, a Lorentz shape. 

4. DISCUSSION 

Our analysis makes it possible to separate two quali
tatively different field-intensity regions. In the region 
K« 1, the field is assumed to be weak and the expansion 
(13) with respect to this parameter corresponds to the 
single-photon, two-photon, etc., scattering processes. 

At K -1 it is necessary to take into account proc
esses of all orders, a meaningless procedure in practice. 
The strong-field region K» 1, however, admits also of 

. an interpretation wherein the problem of the interaction 
, of a monochromatic field with a two-level system without 

allowance for the relaxation constants is solved exactly 
(see [7), problem following Sec. 40). 

Let us discuss first the weak-field region. The 
resonance-fluorescence scattering cross section in the 
weak-field region is given by formulas (14) and (16). 
The spectral distribution of the incoherently scattered 
photons has two maxima at the frequencies w ± n, i.e., 
there are two broadened side components in addition to 
the coherently- scattered monochromatic component at 
the frequency w. 

An examination of the Feynman diagram for the indi
cated processes shows that the scattering of the two 
photons can be symbolically represented as shown in 
Fig. 3. The solid line corresponds to an absorbed ex
ternal-field photon of frequency w, and the dashed line 
to an emitted photon. Since the system is in the ground 
state before and after the scattering, the energy con
servation law should be satisfied exactly: 2w = w { + w; , 
but this admits of a possibility of a spectral distribution 
of w{ and w;. One of the incident photons can be re
garded as a perturbation that leads to the incoherent 
part of the scattering, a fact that agrees with the state
ments made in the Introduction. 

In a strong field, K» 1, the scattered field consists 
of the three lines (14) and (17). The result is con
veniently interpreted as a consequence of the level 
splitting in a rapidly-oscillating field [7). Assume that 
in the absence of the field the energies of the excited 
and ground states are respectively El and Eo. If the 
atom is acted upon by a monochromatic field, then each 
of the levels is split into two: 

E,±=E,+QI2+ l' (Q/2) '+ 1 G I', Eo±=Eo-Q/2~Y (QI2) ,+ 1 G I'. 

This splitting makes the possible frequencies of the 
transitions equal to WlO, WlO ± "n2 + 41 GI2 in accordance 
with (17). 

A principal factor in our problem is the allowance 

FIG. 3 
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FIG. 4. Spectral distribution of Raman scattering on the 
1 ..,. 2 transition: n = 0, r = "t2/2 = "t12, B = IGI 2/r2 

for the relaxation of the level 1. This makes it possible 
to find the widths and intensities of the scattered lines 
at the indicated frequencies, and, most importantly, 
separate the coherent and incoherent parts of the scat
tering at the incident-field frequency. The un shifted 
scattering cross section asc at K» 1 is the sum of 
ac (6) and,2f that mtrt of the total cross section which 
precedes r /7r( v2 + r2) in (17): 

d'w' 1 
a = 

sc c'Ii' Q'+4IGI' 

asc coincides with the regularly-scattering cross 
section obtained in [4) (formulas (23» without taking 
into account the level relaxation constant. The possibil
ity of experimentally separating the coherent incoherent 
parts depends on the measurement time. No matter how 
small the line width, the coherent part of the scattering 
can be separated within the measurement time T» l/y. 

A warning must be sounded against a Simplified so
lution of the strong-field scattering problem. The prob
lem of the two-level system in a strong field was 
solved in [7), i.e., the induced dipoles at the indicated 
three frequencies were actually obtained. 

Investigating the formula for the dipole radiation, it 
is easy to obtain the necessary cross sections. Such an 
analysiS is valid only for a time T« l/y, during which 
the phase difference rp between the incident field and 
the induced dipole is preserved. Owing to the relaxa
tion, the phase of the dipole becomes a random function 
with a correlation time on the order of l/y, and this 
leads to fluctuation of the scattered-field intensity, since 
the absorbed power is proportional to cos2 rp. 

The first term of (20) determines the spectral in
tensity of the weak-field Raman scattering. As should 
be the case, the width y of the intermediate level does 
not enter the width of the Raman-scattering line [8). 

The appearance of two lines in the strong-field 
Raman scattering (21) is the consequence of the splitting 
of the El level. Since the E2 level is not split, the ra
diation on the transition 1 ~ 2 occurs at the frequencies 
Er-E2: 

which agrees with (21). 

5. INFLUENCE OF COLLISIONS 

As indicated in the introduction, the collision between 
the radiating atom and extraneous particles (atoms in a 
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gas, phonons or other excitations in a solid) leads to a 
coherent scattering component. We shall take into ac
count the collisions in the simplest case when their in
fluence reduces to renormalization of the radiative 
transition widths, i.e., to introduction of collision fre
quencies {3ij on the corresponding transitions: 

1 ~ 1+~ 
l'=2+~'" 1'20=2+ ~zo, 1'''=-2-+ 13", 

1, ,13+1 
1'30=2+~30' I3I=-2-+~31' 

For the resonant and Raman scattering formulas (10)
(15), (19), and (23) remain in force, provided that r, 
r 20 , r 12 , r 30 , and r 3l are suitably defined. 

In a weak field, K« 1, in the case of resonance fluo
rescence we have from (11) for the spectral scattered
radiation intensity distribution 

( p" ) ~,,1' I(w.)= 1-- Il(w.-w)+------. 
i' "i' (w.-w,,)'+I" 

(24) 

The collisions lead to the appearance of spontaneous ra
diation, which is due to the appearance of incoherent 
pumping to the level 1. The fraction of the coherent part 
of the scattering decreases correspondingly. When 
y« (31Q, the light is incoherently scattered. 

For Raman scattering we obtain from (19) at 
I G I « r, r 20, r 12 

I'" PIO+P"-~" I'I21',,'-~ (~-Q) I'" 
I(~) = n[ (~-Q)'+i'20'l + "I'" (~2+I',,')[ (~-Q)'+1',,21 . (25) 

The first term describes Raman scattering with the 
line broadened by collisions. The second term contains 
the resonance denominators corresponding both to Raman 
scattering and to spontaneous emission on the 1 - 2 
transition. The appearance of a spontaneous-decay chan
nel is due to the appearance of incoherent pumping. The 
non-Lorentz line shape is due to interference between 
the spontaneous and Raman excitation channel 4). In the 
case of a detuning 0 »r 11, r 20 the second term in (25) 
decreases in proportion to 0-2, Le., we have the usual 
case of Raman scattering. 

The author thanks Y. P. Chebotaev for a discussion 
of the work. 
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')When both levels have finite lifetimes, the problem must be differently 
formulated-it is necessary to take into account the excitation of the 
atom on the upper and lower levels. Rautian [5] considered in this 
formulation the spontaneous emission of an atom in the presence of 
a strong field. 

2)We have introduced the transition width f to simplify the generaliza
tion of the results to include the case of collisions (see Sec. 5). For 
the same reason, we retain in formulas (2), (II), (13), and (15) the 
factor 2ff-y, which is equal to unity. 

3)The relaxation of level I is taken into account in (9) by introducing 
the constant 'Y, although it is more consistent to use only the 
Hamiltonian (7) without additional assumptions. It can be shown 
that the radiative lifetime remains unchanged in resonant interaction 
between the strong field and the atom. This enables us, in the deriva
tion of (I) and (9), to lake into account the level of relaxation as a 
complex increment to the energy (E I ~ EI - h/2), and the arrival at 
the slate 0 can be added phenomenologically by using the balance 
equation. Equations (9) can be obtained also directly from (7), but 
the required manipulations are quite cumbersome. 

4)For the case when the state 0 is not the ground state, the influence 
of the interference of the indicated channel on the Raman-scattering 
cross section was analyzed in [8]. 
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