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The two-level approximation of the perturbed-stationary-states method is employed for calculation of the pe + d 
.... de + p charge-exchange reaction cross section. The cross-section curve oscillates, and low-frequency and high
frequency components can be singled out. A partial analysis of the high-frequency component is performed. 

1. INTRODUCTION 

Study of one-electron molecular systems and the 
collision processes corresponding to them permits in
vestigation of a large number of interesting physical 
phenomena which, as a rule, are characteristic also of 
the more complex scattering problems. At the present 
time it is possible to calculate for one-electron systems 
not only the electronic energy as a function of the inter
nuclear distance but also the matrix elements which 
take into account the coupling between different elec-. 
tronic states. These calculations lead to the equations 
of the method of perturbed stationary states in the 
scattering problem (the adiabatic representation).[1,2,3] 
Solution of the equations obtained in turn permits in
vestigation of the features of the adiabatic representa
tion or any other representation obtained from it by 
means of an appropriate transformation_[S,4] 

In the present article we calculate the cross section 
for the charge-exchange process 

(pe) ,,+d-+(de) ,,+p (1) 

(p is a proton, d is a deuteron, and e an electron). In 
the region of collision energies E 5 1 eV in the center
of-mass system the two-level apprOximation of the 
method of perturbed stationary states is sufficient. 

Previously we used similar equations in calculation 
of the reaction[5] 

(la) 

but technical difficulties associated with the large re
duced mass in the case of process (1) did not permit 
us to use the old algorthm. To overcome these difficul
ties it was convenient to go over to the adiabatic repre
sentation. [3] Then the wave function of the nuclear 
motion was parametrized in the spirit of the method of 
phase functions.[6] The equations for the phase functions 
were integrated numerically, and the successful choice 
of parameters permitted avoidance of the difficulties 
characteristic of the algorithm which we used in the 
previous work.[5] 

All of the potentials used are readily available, and 
the technical details given in our report[7] make it pos
sible to carry out the present calculations. 

2. ADIABATIC REPRESENTATION 

The two-level approximation of the method of per
turbed stationary states in discussion of process (1) 
leads to a system of radial equations[5]: 
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KII (R) =M(W,+Wu) + (K .. +Kuu-Kgu-Ku,) 12, 1 
K 12 (R) =M(W,-Wu) + (K,,-Kug+Kgu-Kuu) 12, 

K" (R) =M(Wg-Wu) + (K .. -Kuu-Kgu+Kug) 12, 
KZ2(R) =M(Wg+Wu) + (K .. +Kuu+Kgu+Kug) 12, 

QI2(R) =-Q,u. 

(3) 

The matrix elements Kgg, ..• , Kug, Qgu are deter
mined by the equalities (i, j = g, u) 

and together with the terms (eigenvalues of the elec
tronic energy operator) W g( R), Wu (R) are calculated 
in the solution of the quantum-mechanical problem of 
two centers. The remaining quantities are found from 
the equations 

lIM=1IMp+1IMd,1/m=1/m,+1/(Mp+M,,), 

",'='2ME, k,'=",'+ (lYld-M,,)1 (Md+ M p). 

Here E is the collision energy in the center of mass, 
and the system of units is determined by the condition 
e=n=m=1. 

(4) 

(5) 

Graphs of the matrix elements and terms of the two
center problem are given in a previous article.[5] The 
effective potentials determined by Eqs. (3) are shown in 
Figs. 1 and 2. A distincti ve feature of the equations in 
the adiabatic representation is the presence of a term 
with the first derivative of the wave function, and also 
the asymmetry, related to this Circumstance, of the 
matrix (3). 
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FIG. I FIG. 2 
FIG. I. Adiabatic matrix elements Kll (R) '" K" (R)-curve I and 

- K" (R) '" - K" (R)-curve 2; see Eq. (3). 
FIG. 2. Coefficient of the first derivative of the wave function from 

the equations in the adiabatic representation (2). 

Copyright © 1975 American Institute of Physics 1082 



3. DIABATIC REPRESENTATION 

We will rewrite the system of equations (2) in matrix 
form 

LX=KX+2Qd-x/dR, (6) 

where the free motion operator L has the form 

L= (~_ l(lH») (1 0) +,(k •• 0) 
dR' R' ° 1 . , 0 hi' .' 

(6a) 

and we will go over to a new basis which is determined 
by the transformation 

X(R) =W(R).p(R). 

Here W(R) is the unitary matrix: 

W (R) = ( cos q sin q ) , 
-smq cosq 

and the function q( R) is expressed in terms of the 
matrix element Q12: 

~ 

q(R)= S Q,,(x)dx. 
R 

(7) 

(8) 

(9 ) 

The transformation performed permits elimination 
of the terms with the first derivative in Eq. (6), which 
now takes the form 

LIjJ=R\jJ. (10) 

The matrix K( R) is given by the equation 

K=W-'[K_.!!I_Q,_(kt' O,)]w+(k •• 0,) 
dR 0 ~ ° ~ (11) 

and turns out to be symmetric. 

Equation (10) is the two-level approximation of the 
scattering problem in the diabatic representation, and 
the matrix (8) determines the relation between the dia
batic and adiabatic bases,tsl The system (10) is com
pletely equivalent to the initial system (6), but for 
various types of problems one of them may turn out to 
be preferred. In the present work the diabatic repre
sentation was chosen as the result of the diagonality in 
it of the potential energy matrix (11). The matrix ele
ments Kij(R) are shown in Fig. 3. 

4. THE VARIABLE PHASE METHOD 

We will look for a solution of the matrix equation (10) 
in the form L6] 

Ijl= (uS,-vS,)A 

with the additional condition 

1jl/=(u'S,-v'S,)A. 

Here 

= (u. 0) 
u 0 Uz ' v= (~. ~) 

are the regular and singular solutions at zero of the 
free equation 

L<jl=O, 

normalized in such a way that 

uv'-u'v=1. 

(12) 

(13 ) 

(14) 

(15 ) 

(16 ) 

The matrices SdR) and S2(R) determine the para
metrization of the wave function, and the matrix A( R) 
is arbitrary. 

If we assume fulfillment of the condition 

(17) 
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FIG. 3. Diabatic matrix elements 
defined by Eqs. (8), (9), and (II). 
Curve I-for KII , 'curve 2-K,. , 
curve 3-for -K". 

then, substituting the solution in the form of (12) into 
Eq. (10) and taking into account conditions (13), (16), 
and (17), we obtain the equation 

S, Ir ~_s,tr ~=(S.lru-s,ttv)K(uS.-vS,). (18) 
dR dR -

Discussion of the orginal scattering problem (10) by 
means of Eq. (18) is known in the physics literature as 
the variable phase method (method of phase functions).l8 j 

Giving a specific form of the matrices SI and S2 is 
equivalent to choice of different sets of phase functions, 
which in turn leads to a definite parametrization of the 
scattering matrix S or the reaction matrix T. For the 
latter we have from the definition (12) 

T=S, (00) S,-' (00). (19) 

5. WORKING PARAMETERS 

For problem (1) it was convenient to use the parame
ters 01(R), o2{R), and E(R) given by the matrices 

S _ ( cos e cos 0, 
1- -sinBsin6, 

S,=- ( cos e sin Il. 
sin e cos 0, 

-sin e sin 0, ) 

co:) t', cos 0'2. 

SineCOSIl,) 

cos e sin 6, 

It is easy to see that the left-hand side of Eq. (18) in 
this case takes the form 

SIrs '-S Irs ,_ ( Il,' 
, 2 2 • - e' cos(Il,--Ii,) 

and identity (17) is satisfied. 

e' COS (6, .-1),) ) 
Ii: 

(20) 

(21 ) 

The suitability of the parameters (20) is determined 
by the fact that for reaction (1) over the entire integra
tion region 0 < R < 00 the quantity cos (01 - 02) does 
not go to zero and, consequently, the system of equa
tions (18) can be solved for the derivatives. This fact 
is to a substantial degree a fortunate accident, although 
we counted on its existence, on the basis of the quasi
symmetry of the reaction being studied. 

6. DISCUSSION OF RESULTS 

Figure 4 shows the cross section for the charge-ex
change reaction (1) O'ex as a function of the relative 
velocity v of the nuclei. The general behavior of the 
curve is characteristic of processes of this type: a 
sharp drop in the region v < 0.2, a broad maximum at 
v ~ 0.4, and a smooth decrease of the cross section 
with increasing velocity (v is in units of 10 6 cm/sec, 
v = 1.695 x 106 fETeV] cm/sec). At low velocities a 
transition is observed to the resonance scattering 
region. The cross-section values at certain points are 
given below: 

v ·10-', cm/sec: O.O[ 0.04 0,:;65 059 0.62 0.64 0.675 0.695 0.73 1.5 ,1.7 
u",1()I6,cm2 : ;;0 6[ 48 61 51 60 52 60 51 48 46 

Substantially greater interest is presented by the 
oscillations in the total cross section. They are located 
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beginning with v ~ 0.3, and their amplitude first rises, 
reaching a maximum at velocities v ~ 0.5, and then be
gins to drop. The period of these oscillations increases 
with increasing velocity from Av ~ 0.09 to A v ~ 0.11 
for the velocity interval 0.3 '- v < 1.2. Considerably 
less apparent is the presence of a low-frequency com
ponent of oscillations with a period A v ~ 0.38, although 
without this it is difficult to explain the sharp minimum 
in the cross section at v = 0.565 and the not so apparent 
maximum at v = 0.76. 

The results of the calculations permit a partial 
analysis of the oscillations in the charge-exchange 
cross section to be performed without difficulty. In Fig. 
5 we are shown the partial cross sections for v = 0.565 
(the minimum in the cross section) and v = 0.59 (the 
neighboring maximum). It is easy to see that in the 
case of the minimum the group of waves with [ = 30,31, 
and 32 does not contribute to the total cross section, 
while the sum of the cross sections for 0 s [ ~ 30 pro
vides a smooth component of aex for a velocity interval 
of the order of the period of oscillation. As seen in 
Fig. 6, with increasing v there appears in the cross
section plot a stable tail whose relative contribution to 
the total cross section increases. Now the oscillations 
are provided by a group of waves with [ appreciably 
smaller than [max' As a result the amplitude of the 
oscillations decreases. 

With increasing collision energy the accurate solu
tion of Eq. (18) becomes impractical as the result of 
the large number of partial waves contributing to the 

a.xlO'~CIl12 

70 

20 --'--'- • 
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..... t1XI06 ,cm/sec 

FIG. 4. Total cross section for the charge-exchange reaction (1) as a 
function of the relative velocity of nuclear motion v. The arrows show 
the minimum and maximum in the cross section, which can be explained 
by the existence of low-frequency oscillations of the total cross section. 
The extreme right-hand point in the graph corresponds to E = 0.5 eV. 
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FIG. 5. Partial cross sections for charge exchanges for the minimum 
of the cross section (a-v = 0.565) and the neighboring maximum (b-v = 
0.590). In the case of the minimum the group of waves hardly takes part 
in the charge-exchange process. 
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FIG. 6. Partial cross sections for charge exchange for the case where 
more than 70 waves contribute to the cross section: a-v = 1.15, b--v = 
1.20. A stable tail is fonned which leads to a decrease in the oscillation 
amplitude with increasing collision energy. 

cross section. ApprOximate, more rapid methods of 
calculation[4] are appropriate here. The maximum 
value of E for which calculations were carried out was 
1 eV, lmax ~ 100, v = 1.7. 

7. CONCLUSION 

A considerable number of accurate experiments l9 ] 

have been carried out recently in which oscillations of 
the total cross section for charge exchange have been 
observed, in particular, for alkali atoms. It is quite 
interesting that in the case of the simple reaction (1) 
the charge-exchange cross section behaves in a similar 
way, In our opinion there is no satisfactory interpreta
tion of this phenomenon at the present time. In this 
connection it is particularly valuable that one-electron 
systems provide the possibility of calculation with high 
accuracy of a number of phYSically interesting problems, 
and simultaneously the investigation of various types of 
coupling in the equations of the scattering problem. We 
hope that this program of research, together with the 
experimental study of the same processes, will turn out 
to be interesting and productive. 

We take pleasure in thinking L. 1. Ponomarev for his 
constructi ve suggestions, which were invaluable at the 
time of starting this work. 
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