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The electromagnetic and gravitational radiations emitted by an ultrarelativistic particle in an external 
gravitational field are considered. Estimates are obtained for the intensities of the radiations and their 
angular and spectral distributions for the cases of circular and infinite trajectories in a Schwarzschild 
field. 

Several papers have appeared recently [l-6] , discuss
ing the properties of the radiation (hypothetical scalar 
radiation, electromagnetic radiation and gravitational 
radiation) emitted by an ultra relativistic particle which 
moves in a gravitational field. The peculiarity of such 
problems consists in the fact that the external field 
affects not only the particle trajectories but also acts 
directly on its field, thus leading to a considerable 
modification of the character of the emitted radiation. 
In[l-4] the problem of radiation by a particle moving 
along a c;ircular orbit in a Schwarz schild field was con
sidered .. Use has been made of a separation of variables 
in the wave equation for the radiation field, a method 
whieh is applicable only for very special external fields 
and trajectories. Such an approach is not physically 
lucid and is rather complicated. This seems to be the 
source of the contradictory assertions regarding the 
time-dependence of the signal received by a remote ob
server, and regarding the angular distribution of the 
intenSity of radiation [l-3] • On the other hand, the equa
tions obtained in these papers are not by themselves in 
contradiction with one another nor with the qualitative 
results which are derived below. 

In the present paper we discuss qualitatively the 
character of the radiation and derive simple estimates 
for the total intenSity and for the spectral and angular 
distribution of radiation emitted in an external gravita
tional field. We do not restrict our attention to the case 
of motion along a circle in a Schwarzschild field, case 
which is of purely methodological interest, in view of the 
instability of a relativistic circular orbit. We also con
sider the case of infinite motion. The latter problem has 
been considered by Peters [5 ,6] for the weak field case. 
However, the expressions obtained by him for the total 
energy loss are erroneous l ). 

We start by considering motions along a circular 
orbit in a Schwarzschild field. The orbit radius is de
termined by the relation 

ro"" ~rl( 1 +_1_) , ,= (i-v')":''', 
2 3,' 

where r g is the gravitational radius. The velocity v is 
measured in local time, the velocity of light c is set 
equal to 1. 

The radiation of the particle is concentrated in an 
angular region J ~ l/y near the direction of its velocity. 
This fact is independent of the nature of the radiation 
and is a direct consequence of relativistic kinematics. 

We now determine the portion of trajectory on which 
a signal is formed which is received by a given observer 
at infinity. Making use of the well known expression for 
the trajectory of a light ray in the Schwarz schild poten
tial (cf. [7J), one can show that if the ray is emitted under 
an angle" to the particle trajectory, then going off from 
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a radius ro to infinity, it will describe an azimuthal angle 
<p ~ In ,,-1. The difference between the initial azimuthal 
angles of two rays emitted under the angles "1 and J2 
and reaching a given observer is obviously equal to 
t:..cp ~ In(J l /J2). Since the main fraction of the radiation 
is emitted into angles ~ 1/y we have t:..cp ~ 1. Thus the 
length of formation of the signal is Z(c) ~ ro.2) A Similar 
reasoning for the case of usual synchrotron radiation 
leads to the well-known relation Z(f) ~ roJ ~ ro/Y, i.e., 
the corresponding length turns out to be considerably 
smaller, It is just for this reason that the characteris
tics of radiation emitted in a gravitational field and in 
flat space turn out to be different. 

We now go over to an estimate of the characteristic 
frequencies of the radiation. The reception time t is re
lated to the emission time t' by means of the relation 
t '" t' + R(t'), where R(t') is the distance from the point 
where the particle was situated at time t' to the observa
tion point, measured along the trajectory of the light 
ray. Therefore the characteristic duration of the signal 
received by the observer is 

at 
!J.t=a?!J.t' -(I't'+,-')l. (1) 

In other words, the signal has the shape of a short pulse 
of duration 

(2) 

The corresponding characteristic frequency band Wc of 
the radiation is 

(3) 

We note that owing to the proximity of the trajectories 
of an ultrarelativistic particle and of a light ray in a 
gravitational field, the radiation in this case is reminis
cent of flat-space radiation for small deflection angles 
ll' « l/y. In particular, the duration of the received sig
nal turns out to be y2 times smaller than the character
istic transit time. 

Radiation on frequencies w »w is exponentially 
small. We also note that according ~o (1) radiation for 
w « Wc occurs into a cone with an opening angle 

(4) 

It should be stressed that all relations listed above are 
of a purely kinematical nature and are therefore valid 
for any kind of radiation. 

We now go over to the question of the intensity of 
radiation, which is usually defined by the relation 

dI-w'u'R'dQ(8tI8t') . (5) 

Here u is the potential of the radiation field and R2dn is 
the area element of a remote spherical surface. The 
last factor at/at' indicates that, as usual, one estimates 
the average intensity, and not the intensity in the pulse. 
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It is important that the contribution to electromagnetic 
radiation comes only from the three-dimensionally 
transverse component of the vector potential, i.e., the 
component which is orthogonal to the direction n of the 
propagation vector 

A.c -ev.JR(1-nv)-e~/RW+y-'). (6) 

In the case of gravitational radiation only the doubly 
transverse part of the perturbation of the metric is im
portant: 

hH -l'kBv.c'/R(1-nv) -l'ke~2/RW+y-'), (7) 

where k is the Newtonian gravitational constant and E is 
the energy of the radiating particle. The expressions 
(6), (7) correspond essentially to the Lienard-Wiechert 
potentials. 

Substituting (6) and (7) into (5) and taking into account 
(4) we obtain the following expressions for the angular 
distribution for" » l/y: 

dl;:.! /d~-e'/ro'~', dl.~) /dfi-e'/ro'~', 

dl,~') /dfi-ke'/ro'~, dl~~) /dfi-ke2/ro'~'. 

(8) 

(9) 

It is easy to understand that in this case the angle" co
incides in order of magnitude with the polar angle meas
ured from the orbit plane. 

Taking into account the relations (4) which relate the 
characteristic values of the angles" and frequencies w, 
it can be seen easily that Eqs. (8) and (9) imply the fol
lowing expressions for the spectral intensities for 
w «wc: 

dl.~) /doo-e'/ro, dl.~) /doo-e'(ooro)'/'/ro, (10) 

dl::) /doo-ke'/ro(oor,) , dl,~) /doo-ke'/ro (ooro) 'I.. (11) 

Taking into account the rapid decrease of intensity for 
w > wc' Eq. (3), we find from (10), (11) the total intensi
ties3 ): 

(12) 

(13) 

We note that from (11) it follows formally that I~Cj 
~ (kE2 /r~) In y. However, taking into account the logar
ithmic dependence on y seems to be beyond the accuracy 
of our estimates. Moreover, it can be seen from the 
first equation (9) that although the intensity of the radia
tion is concentrated near the orbit plane, in this case 
an important contribution comes also from angles 
" » l/y. In the same manner frequencies w « wc are 
also important. However the contribution of harmonics 
to the magnitude of the field, rather than its intensity, 
decreases with w slower than w -1. Therefore the rela
tions (2) and (3) which refer to the form of the signal 
are valid also for gravitational radiation. 

Let us now discuss the more realistic problem of 
radiation by an ultrarelativistic particle with impact 
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parameter p, passing through a Schwarzschild field. 
The duration of the signal is in this case equal to dt 
~ y""2p, and the formulas for the total intensity can be 
obtained from Eqs. (12c) and (13c) by the substitution 
l/r~ - r~/p4. Indeed, if before the acceleration was 
dv/dt' ~ r'~/, we now have dv/dt' ~ r /p2. The total en
ergy losses as the particle flies by tRe field have the 
orders of magnitude 

The spectral and angular distributions are obtained 
easily in this case also. 

(14) 

(15) 

The generalization of these estimates to arbitrary 
gravitational fieldS is obvious. 

The authors are sincerely grateful to G. I. Budker 
for posing the question which triggered the present pa
per and to A. I. Valnshteln for valuable discussions. 

1) According to Peters['] , the radiation losses in a Schwarzchild poten
tial are r times larger than in a Coulomb field. It is also clear that the 
influence of the field on the emission of radiation can only decrease 
the losses. 

2)For comparison we list in parallel with the estimates for a given prob
lem also the expressions for the radiation in flat space, indicating the 
former by the index c (curved) and the latter by the index f (flat). 

3)We note that the expressions (9), (II), (13) for the gravitational radia
tion in flat space refer to the case of the relativistic rotator[8. 9]. For 
the case of motion of a charge in an electromagnetic field the result 
is different[9], which is related to resonant transition of the electro
magnetic radiation into gravitational radiation [ 10]. 
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