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A two-dimensional "mixed" state is observed at the inner surface of a hollow cylindrical 
superconductor with a current. The response of the system to a weak longitudinal magnetic field is 
investigated. Calculation reveals the presence of a paramagnetic effect under these conditions. 

1. A surface "mixed" state can arise upon destruc
tion of type-I superconducti vity by an electric current 
in a multiply connected sample. This surface "mixed" 
state, which was predicted by L. D. Landau in 1938[1] 
for a hollow cylinderical superconductor, was subse
quently discovered and investigated by I. L. Landau and 
Sharvin/2,3] and studied theoretically by Andreev and 
Tekel'[4] and by Andreev and the author.[5] The surface 
"mixed" state arises on the inner surface of a hollow 
cylinder in those cases in which the applied current is 
so strong that the radius of the region of the intermedi
ate state[6-8] becomes smaller than the radius of the 
inner surface of the cylinder. Here the purely normal 
state must be unstable, because of the fact that the 
magnetic field of the current is equal to zero inside the 
cylinder and is less than the critical magnetic field Hc 
near the inner surface of the cylinder. A purely super
conducting layer is also impossible, since, as a conse
quence of the limited conductivity of the sample and the 
condition of continuity of the electric field at the phase 
boundary, an electric field should exist in the entire 
region, right up to the inner surface of the cylinder. In 
the theoretical work of Andreev and the author, [5] the 
surface "mixed" state is described in terms of super
conducting fluctuations,[9,1O] which arise close to the 
inner surface and are amplified or destroyed by the 
electric current. The authors calculated the value of 
the fluctuation current under the assumption that it is 
much smaller than the normal current in the "mixed" 
state of the surface layer. This theory is applicable to 
pure metals near Jc2 and to alloys even in the case of 
currents that are small in comparison with J c2, where 
J c2 is the second critical current, the concept of which 
was introduced by Andreev)ll] 

The aim of the present work is to study the response 
of the system to a magnetic field applied in the direc
tion of the cylindrical axis for the case of alloys, where 
the applied current J is smaller than the second critical 
current. The calculations that are set down made clear 
the presence of a paramagnetic effect. A similar effect 
was discovered by I. L. Landau[14] in his studies with 
pure metals. 

2. In our calculations, we followed the method of 
calculation developed by Andreev and the author, [5] but 
in the present case we took into account the presence 
of a longitudinal magnetic field Ha. 

We consider a hollow cylindrical type-I superconduc
tor with an inner radius rl and outer radius r2, along 
the axis of which an electric current J and a magnetic 
field Ha are applied. As a consequence of our assump
tion that the fluctuation current is small, the magnetic 
field perpendicular to the axis of the cylinder is deter
mined prinCipally by the field of the normal current 
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2/ r'-r,' 
HJ(r)=----. 

cr r22-r/ 
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The mixed state arises only near the inner surface 
(r"" rl), where the magnetic field can be expressed in 
the form 

41 x 
HJ(x)=----,--, ; 

c r2 -r1 

x = r - rl is the distance from the inner surface. The 
total vector potential of the magnetic field and the elec
tric field is equal to 

A.=O, 
-2/ x' 

A,=----,-,--cEt. 
c r2 -rl 

(1) 

A convenient method for estimation of the fluctuation 
current is the introduction of an external force in the 
time equation for the superconducting order parame
ter,[12,13] which then takes the form 

a1jJ { ( 2ie)' 1 --v 1jJ-s' V--A 1jJ ~=/(.,t), at c J 

where m is the mass of the electron, i=, = i=, (T) is the 
coherence length, v = 8(Tc - T)/1T, and f(r, t) is the 
external force, which satisfies the condition 

(2) 

(/(', t)j"(.', t'»=4mTvs'6(r-.')6(t-t'). (3) 

We transform to the dimensionless quantities 

..' l=vt, 1=_1_(_S_)'" t, '=T' 2v mT 

1ji=~(_S_)'I'1jJ, e= 2eEs , (4) 
2 mT v 

2es' 
'(=--Ha. 

c 

Then Eq. (2) takes the form 

~-1ji+.2"1ji=I(r, n. at 

where 
(rei, nrCi', 1'»=6(r-i")6(i-l'), 

a' a 'iJ )' .2"=---- (-- i"lX) - (- +i8l+i~x' 
ax' aiJ I iJi. 

(5 ) 

(6) 

In the discussion that follows, we shall use only dimen
sionless quantities and can therefore omit the tilde over 
the corresponding letters. 

3. We seek a solution of Eq. (5) in the form 
~ (n) (n) 1jJ= .t.... a.,., (t) 1jJ., .. (', t), (7) 

where 

(k=k,+et) 

is the eigenfunction of the operator .2".: 

.2"1jJ:;,: (t) =1..~~)1jJ:,:: (t). (8) 

The function cpm) satisfies the normalization condition 

L is the normalization length. 
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Equation (5) is equivalent to the following condition 
for the function cpm): 

d'cp~;: (x) .,' In) -..!.7:..,.:...-'--+{A • • -(k,-lx) -(k+~x) )cp • • (x)=O. (9) 
dx2 II ,. 

In Sec. 4, we shall give the solution of this equation for 
the condition 

(10) 

In this case, the terms which are proportional to y and 
I'll make up only a weak perturbation relative to the 
system without the longitudinal magnetic field, and we 
can replace the terms 2 y kyx and yllXll by the expres
sions 2 Ykyx( k) and yllXll( k), where x( k) is the 
abscissa of the minimum of the potential U(x) = (k 
+ t3xll)ll. 

We introduce the quantity 

A.~:)=A.~:) - (k,-lx (k) )'; 

then Eq. (9) is written down in the form 
d' (n) 

~+(~n) -(k+" ')') .<n) =0' dx2 "k jJX CPltll'A • 

(11) 

(12) 

It is then seen that the functions CP~~)k(x) A~~k do not 
depend on kyat all. As a consequence, we can repre
sent them as 

We further assume that the electric energy eEl;; is 
small in comparison with the relaxation frequency, i.e., 
that 

8<1. (13) 

Substituting the expansion (7) in Eq. (5), we get, after 
simple transformations, 

8a.lt';1u (n) <nl (n) 
-a-t-+(Ao,.-1)a., •• =f., .. (t), (14) 

where 

f.~:; (t) = ~ f d're-ik,'_il"'cpt) (x) f(r, t). 

The new components of the external force satisfy the 
condition 

<t.';.: (t)f.~~::·, (t') >=6 ... ,,6 •••• ,6nn ,6 (t-t') , (15) 

In Eqs. (14), we have neglected the term with the time 
derivative of 1/Im). aIm a1/l(n) lat It is small inas-. kykz kykz' , 
much as the time dependence of the eigenfunction 1/I(n) 
is given by the time dependence k(t) for a given kz . 
This dependence is very weak in the case €« 1 and it 
can be neglected in comparison with the strong time 
dependence of the coefficients am)(t). 

The solution of Eq. (14) has the form 
t 

,n, ( ) {(nj ( » f {In, ( '» (n) (' , a., .. t =exp -p.,,, t exp p .... t f •••• t )dt , (16) 

where 

In) f (n), po, .. (t) =- [1-1..,., ]dt , k'=k.+et'. 
o 

The dependence of the fluctuation current is deter
mined by the well-known Ginzburg-Landau formula, 
which, in the usual units, has the form 

2e [( 2ie)] j=-;;;-Im .p' V--c-A .p . (17) 

We then express the components of the current density 
in our dimensionless units: 
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J.= 8~~ Im( .p.( aay -ilx).p) , 

J.= 8;,T 1m ( .p' ( :z +iet+i~x·).p ). 

Substituting the expansion (7) and the solution (13) into 
the above, we find 

~ = 8eT ~ f dk.dk. (k - x) 
" 6' ~ (2n)' ."( 

n_O 

t 

XI cp!n) (x) I' exp{ -2p.~:; (t)l f exp{2p.~:; (I') )dt', 

(18) 

• = 8eT ~ .f dk, dk. (k+ x') 
J. 6' ~ (2n)' ~ 

n=O 

• 
XI cpt) (x) I' exp{-2p!;~ (t» f exp{2pi;: (I') )dt'. 

Using (11), we can express the difference 2pm)(t') 
- 2pm)(t) in the following fashion: 

2p!::,(t')-2pt~,(t)=2 j O-A!;:,)dt'=2{ (t-t') (1_k.')+k,21 j x(k')dk' 
t' e,,_dt_f') 

-~ j (A'n)(k')+l'x'(k'»dk'} 
e '\-dt'-t) 

Carrying out the substitution T = €( t - t') and per
forming integration over ky, we obtain 

J.=V 2 eT{1 fdkjd~(ljx(k')dk' 
nB nl'·"::'" l'T T 

11=0 0 h-t; 

-F) Icp~n) (x) I·exp{ +[ T- f. (A'n)(k')+l'x'(k'»dk' .-. 
+ ~' ( j x(k')dk')']) , .-. (19 ) 

+l'x'(k'»dk'+ l~ dX(k')dk')']}, .-. (20) 

4. For calculation of the expressions (19) and (20), 
we must solve Eq. (12). The dimensionless parameter 
13 ~ J /J C2' In what follows, we shall assume the currents 
are small in comparison with the second critical current 
Jc2 : 

~<1. (21) 

In this case, Eq. (12) can be solved and the function 
A m)(k) can be determined for all the essential values 
of k. For k» 13 1/ 3 Eq. (12) is the Schrodinger equation 
for an oscillator with mass 1'l!, energy A (fi)( k) - kl!, 
eigenfrequency (8k 13)1/2 and small anharmonicities of 
third and fourth order. Using the well-known formula 
for the energy levels of an anharmonic oscillator, we 
get 

A <n) (k) =k'+ (32k~) 'I. (n+'/.) +3~k-' (n'+'/,n+'l,). (22) 

It must be taken into account that the function cp should 
satisfy the boundary condition of Ginzburg-Landau: 
dcpldx = 0 at x = O. Therefore, only the even solutions 
have meaning. In accord with this, we get formula (22) 
from the ordinary formula for the linear oscillator by 
the substitution n - 2n. 

At k < 0, I k I » 1'3, the potential energy (k + f3xll)ll 
has a sharp minimum for x = x( k) = (I k I 113)1/l!. intro
ducing the new variable x' = x - x(k) we can rewrite 
Eq. (12) in the form of a Schrodinger equation for an 
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oscillator of mass 1'2 energy Am) (k), eigenfrequency 
4( 1 k 1 f3}1/2 and small anharmonicities of third and 
fourth order. Again using the formula for the energy 
levels of an anharmonic oscillator, we obtain 

Nn)(k)=4(lkl~)V' (n+~) --~-(3n'+3n+1) (23) 
2 2/k/ • 

The argument of the exponential in the integrals (19) 
and (20) contains the large factor 2/ Eo Therefore, the 
immediate neighborhood of the point of th~ maximum of 
the function 

F.(k,-r:)=-r:- f A" (k')dk'-l' { f x'(k')dk'-+( j x (k')dk,n 
A-T It._T A-t 

makes the principal contribution to the integrals over k 
and T. With account of the fact that x( k) = (I k II f3}1/2 

for k < 0, x( k) = 0 for k > 0 and 1 To 1 "" 1 ko - To I, the 
position of the maximum (ko, To) is determined by the 
condition 

1 ' 4 ' 
1=A") (k,--r:,) + _llk,--r:,1 =A,n) (k,) + _Llk,--r:,I. 

q ~ q ~ 

Using Eqs. (22) and (23), we find 

k,=1- (8~)'/ (n+'1.) , 

k --r: =_ 1 ,+ l' 
" 4~(2n+1)' 72~'(2n+1)' 

(24) 

The maximum value of F n is then determined as 

F.(k, -r:,)= 1 +~-~(8~)';'(n+~)-- (n2+~n 
, 12~(2n+1)' 3 3 4 2 ( ) 

+~) In _ l' +0 +0 (l) 25 
12 ~ ~ 288~'(2n+1)' (~) ~,. 

We now expand the function Fn near the maximum 
in powers of k - ko and T - To up to second order and 
integrate expressions (19) and (20) over k and T. With 
account of the fact that the principal contribution to the 
integral is made by only the first term n = 0, we find 
the following expressions for the denSity of the fluctua
tion current 

j,= 2eTV ~ (l--'-lX) l<jl~) (x) l'exp{_1_+~ s' 2n 3~ 68~ 38 

8 ( ~ ) 'J, 5~ 1'} 
-S; 2 -6;ln~- 1441l'e ' (26) 

, 2eT 1/ e ,") , {1 4 
J'=-V-(k,-~x)I<jl .. (x) I exp -,-'+-s' . 2n 68~ 38 

8 ( ~ ) 'J, 5~ 1'} 
-S; T - 68 In~- 144~38 . (27) 

The spatial dependence of the fluctuation current density 
is determined by the function 1 cplt)(x) 12 with ko ;>;; 1 
and n = 0; cpiO)(x) is the wave fungtion of the oscillator, 
normalized in the interval (0, 00): 

/<p.") (x) /'=2(2~/n')'I. exp( -l'2j3 x'). 

The quantity d = (2tWl/4 plays the role of the thickness 
of the intermediate-state layer. The second term in the 
parentheses of Eqs. (26) and (27) is small in comparison 
with the first, and therefore it can be neglected. It is 
significant that the second term in the parentheses of 
Eq. (26) corresponds to a diamagnetic current. 

By integration of Eqs. (26) and (27) over dx, we ob
tain the total surface-current density:!) 

1 = 2eT,i e lexp{_1_+~ 
•• S V 2n 3~ 6e~ 38 (28) 

8 ( ~ ) 'I. 5~ 1'} 
-S; 2_ -6;ln~- 144~3e ' 

where Isy is connected with Isz by the simple relation 
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The additional magnetic field Hs produced at the mouth 
of the cylinder by the fluctuation current is determined 
to be 

4n - eT l'~ {1 4 
H.=-I.,=41'2n1--exp -+-

c Cs ~ 6e~ 3e 

8 ( ~ ) 'I, 5~ 1'} 
- 38 2 - 6; In ~- 144~3e . 

(30) 

5. We now attempt to determine the order of magni
tude of the paramagnetic effect. Our analysis was based 
on the assumption that the fluctuation current Isz is 
small in comparison with the normal current In, which 
flows through a layer of thickness d: 

1 .. <1., (31) 

where 

(32) 

K is the parameter of the Ginzburg- Landau theory. In 
the work of Andreev and the author, [5] it was shown 
that (31) is roughly equivalent to the condition 

(a.lA,) , exp (l/~'x's,) <1, 

where l is the mean free path length of the electron, 
Ao is the London penetration depth at T = 0, and ao is 
the interatomic distance. 

This condition is satisfied in the case of type-I super
conducting alloys (K ~ 1, l ~ ~ 0). Introducing the 
parameter 

1=2es'H,/c=H,/H;{2 x 

and (32) in Eq. (31), we obtain 

H. 1 I.. (a, )' (I) H. "" 7'1: ~ 1::; exp ~'x's, . 

In the limits of applicability of our theory, this corre
sponds to the experimental results of I. L. Landau 
(private communication), who found that Hs"" Ha for 
pure samples (K« 1). 
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I)We note that the factor 1/2y!f"is omitted in Eq. (22) of [51. 
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