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The susceptibility of an impurity spin interacting with nuclear spins of a dielectric is determined 
under the condition that the radius of this interaction is large enough. Expressions are presented for 
the static adiabatic susceptibility and for the isothermal susceptibility, which are different in this case. 
The impurity-spin paramagnetic-resonance line shape is investigated. It is shown that the line is 
neither Gaussian nor Lorentzian, but has an exponential shape. The results have been obtained under 
temperatures much higher than the interaction of the impurity spin with the nuclear spins. 

1. INTRODUCTION 

At the present time there is no consistent microscopic 
theory of paramagnetic-resonance line shape, and it is 
customary to use phenomenological or semiphenomeno­
logical approximations, as well as a number of other 
methods, the most frequently used among which, in the 
high-temperature region, is the method of moments 
(see, e.g., the book by Abragam(l]). In the method of 
moments the line shape is estimated, as a rule, from 
the ratio of the fourth moment to the square of the sec­
ond moment. Thus, the line is taken to be Gaussian if 
this ratio is close to three and Lorentzian if much larger 
than three. This raises the question whether it is possible 
to calculate the line shape accurately even if the model 
employed is simplified, and to compare the result with 
the line shape as stimated by the method of moments. 
The present paper is devoted to this question. 

We consider the following model. An impurity para­
magnetic atom is situated in a dielectric lattice, and 
the spin relaxation of the atom is due to the interaction 
with the spins of the surrounding nuclei. The radius of 
this interaction is large, so that the atom interacts with 
a large number z » 1 of nuclear spins, which do not 
interact in turn with one another. Finally, since the mag­
netic moments fJ.N of the nuclei are small, we neglect 
their interaction with the external magnetic field. This 
means in fact that T » fJ.NH. Thus the Hamiltonian of 
the system takes the form 

H=- L V,I,S-gftoHS, (1 ) 

where S is the spin of the atom (with S = 1/2), Il are the 
spins of the nuclei, Vl is the potential of the interaction 
with the l-th nucleus, g is the g-factor of the atom, and 
fJ.o is the Bohr magneton. Within the framework of this 
model, using the spin-temperature diagram technique 
(see the papers of Abrikosov(2] and of Vaks, Larkin, and 
Pikin(3]), we can sum the principal terms of the pertur­
bation-theory series and obtain a formula for the dynam­
ic susceptibility. It turns out here that the line has an 
exponential shape, whereas an estimate by the method 
of moments would lead to the conclusion that its shape 
is Gaussian. 

Before we proceed directly to this solution of the 
problem, let us discuss briefly the question of the pos­
sible realization of our model. If we assume that the 
interaction is due to the magnetic dipole forces, then, 
as follows from the formula given below, our parameter 
turns out to be of the order of the number of the nearest 
neighbors. Thus, this approach makes it possible to 
estimate the influence exerted on the line shape by the 
dipole-dipole mteraction. Another possible interaction 
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mechanism is exchange of virtual electron-hole pairs 
(see(4]). In this case, if the forbidden band is narrow 
enough, the radius of this interaction is large, and if 
the exchange parameters are of the appropriate value, 
we obtain a situation corresponding to the considered 
model. We shall not discuss this question in greater 
detail, Since, in our opinion, this problem still has 
mainly the character of a theoretical model. 

2. IMPURITY-SPIN SUSCEPTIBILITY 

To determine the susceptibility we shall use a tem­
perature diagram technique based on representation of 
the spin operators in the form(2,3] 

where afJ and bl(\' are Fermi operators, and S~fJ' and 
If (\' (\" are the spin matrices of the impurity and of the 
nucleus. 

We determine the temperature Green's function of 
the impurity spin 

!IT 

G'j(W") = S eiO"'<Si('t)S;(O) >d't, 
o 

(2) 

(3) 

where wn = 2n1TT and ( ... > is the Gibbs averaging with 
the Hamiltonian H. 

In the limit of low impurity concentration No, the 
magnetic susceptibility tensor Xij is connected with the 
retarded Green's function Gij, which is an analytic con­
tinuation of (3), by the relation 

(4) 

The temperature Green's functions of the noninteracting 
impurity and nucleus, which are needed for the calcula­
tions, are given by 

(5 ) 

(6) 

where wn = (2n + 1) 'ITT and h = - gfJ.oH. In the calculation 
of the contributions of the diagrams it is necessary, 
after summing over the frequenCies, to let A and A go 
to infinity. 

We proceed to analyze the diagrams for Gij . Some of 
them are shown in Fig. 1, where the solid line corre­
sponds to the Green's function g(O) of the impurity, the 
dashed line to the Green's function fiO) of the nucleus, 
and the wavy line to the interaction Vl. Since there is 
only one impurity, each diagram contains only one im­
purity loop. The vertices of this loop are set in corre­
spondence with the impurity spin operators Sk, and the 
vertices of the nuclear loops are set in correspondence 
with the spin operators If of the nuclei. The Gibbs aver-
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FIG. I 

age in expression (3) should be suitably normalized[2 1• 

Accordingly, for each interacting nuclear spin one)'n­
troduces in the diagram a normalization factor eA T / 
(21 + 1). An impurity-spin normalization factor pertain­
ing to the entire diagram expansion will be determined 
in the next section. It is the product of two parts, one of 
which is independent of the field and of the interaction 
with the nuclei. This part can be taken into account di­
rectly by introducing the factor e~/T/(2S + 1). We note 
also that diagrams of the type shown in Fig. 1 c, con­
taining a nuclear loop with one vertex, are equal to zero. 

We shall show now that at z » 1 in the temperature 
region T » yzl/\ where Vis the characteristic energy 
of the interaction of the impurity spin with the nuclear 
spin, the principal role is played by diagrams obtained 
from diagram a of Fig. 1 by all possible insertions of 
the Simplest two-vertex nuclear loops. Indeed, the dia­
gram h of Fig. 1 and the other diagrams with the nuclear 
four-point diagram are smaller by a factor of z than the 
diagrams f and g of Fig. 1, which are taken into account 
in the main sequence, and can therefore be neglected. 
It is easy to see that this reasoning also holds true for 
more complicated diagrams. Further, diagrams d and e 
of Fig. 1 are of the order of zy3/T4 , and are small in 
comparison with diagram a of Fig. 1 in the indicated 
temperature region1) • Therefore the series obtained 
from them by means of all possible insertions of two­
vertex nuclear loops should be small in comparison 
with the series generated by diagram a of Fig. 1. In 
fact, however the region of applicability of the results 
obtained in this manner turns out to be narrower. Namely, 
inasmuch as the diagrams taken into account by us con­
tain in each succeeding order an additional factor 
zy2/T2, it follows that the region in which the summa­
tion of these diagrams can be carried out is T,2:: Y rz. 
Thus, in the indicated region the susceptibility is de­
termined by the series shown in Fig. 2. We note also the 
following. At finite frequencies, the total aggregate of 
the diagrams yields for the susceptiblity a series in the 
moments (w2n)/w2n, where the numerator contains a 
moment of order 2n. Our summation procedure is equiv­
alent. to reconstructing the susceptibility from its mo­
ments, each of which is calculated approximately accu­
rate to terms of order zy3/T3 and l/z relative to the 
principal terms. 

Let us proceed to sum the series shown in Fig. 2. 
Since the two-vertex nuclear loop is proportional to a 
1) function in the frequency[31, its insertion in the impu­
rity lines does not change the frequencies that corre­
spond to these lines. It is this circumstance which en­
ables us to sum the series. Indeed, single differentiation 
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FIG. 2 

of the Green's function of the impurity gO(wn , h) with re­
spect to the field is equivalent to the appearance of a 
vertex in the corresponding line of the diagram. This 
leads to the following relation between the terms of the 
series: 

A ( {))Z (P) (p+l) 

2" Th Gj ; (OOn, h) =G,; (00., h), (7) 

2 
where A = 1(1 + 1 )~~1/3 is a factor from the two-vertex 
nuclear loop and('1~P is a sum of diagrams of order p. 
The tilde indicatei1hat we are considering diagrams 
without taking into account the general normalization, 
which depends on the field and on the interaction with 
the nuclei. Taking (7) into account, we arrive at the fol­
lowing equation for the entire series shown in Fig. 2: 

(8) 

Thus, as a result of summing the series we have ob­
tained a second-order differential equation with a free 
term (}1j> determined by the zero-order diagram (a of 
Fig. 1). 

The function (}ij(Wn, h) is a second-rank tensor, and 
can therefore be expressed in the form 

O,;(ro., h) =K(ron,h')6,;+L(ron, h')h,hj+P(ro n, h')ie,j/<h., (9) 

and as a result Eq. (8) reduces to a system of the fol­
lowing three equations: 

uP"(ron, u)+'/,P'(OOn, u)-P(ron, u)=-P")(ron, u), 

uL"(ron, u)+'I,L'(ron, u)-L(ron, u)=-£<')(OOn, u), 

uK" (ron, u)+'I,K'(ron, u)-K(ro., u) =-K") (rom u)-AL(OOn, u), (10) 

where we have introduced the dimensionless variable 
u = h2/2A and the functions pIa) L(O) and K(O) are the , , , 
coefficients in the expansion (9) for (}lj': 

iron sh Y Aul2T' 
PI') (ron, u) =- -==----_ 

Y2Au(2Au+ron') 

£")(00 u)=- 1/2 8h Y~ 
no V Au 2Au+ron' , 

K") (ro u) = II A u shY AUf2Ti . 
n, V 2 2Au+00! 

(11 ) 

(12) 

(13) 

Let us consider the first equation of (10). We express 
its solution in the form . 

P (ron, u) = (ch 2Y;) " S (sh.2Y-;;)" PI') (OOn, v) d;; dv 

• . 
-(shU;;)" S (ch 2Y-;;) "P,O) (ron, v)vl';;dv 

o 

(14) 

Here Cl(Wn) and C2(Wn ) are functions that do not depend 
on the magnetic field and are chosen by starting from 
the following two conditions. The first is that the suscep­
tibility be finite in a zero field. It follows from this con­
dition that Cl(Wn) = O. The second condition is that (}ij 
is determined in the absence of interaction by diagram 
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a of Fig. 1. This means that as A - 0 we have 

limP(ro., u) =pc') (ro., h'), 

and leads to the following expression for C2(Wn): 

c,(ro.) = S (e-'/;) " PC') (ron, II) 1I'1~ dll. . 

(15) 

(16) 

We note that by virtue of (11) this expression diverges 
at T ~ (A/S)1/2. 

It will be shown later on that the other functions K and 
L also contain such a singularity. At the present time, 
the physical nature of this divergence is not clear. It 
may be connected with a restructuring of the entire sys­
tem in such a way that the directions of the nuclear spins 
are correlated in the interaction region with the direction 
of the impurity spin. We shall assume here that the di­
vergence indicates at least the region of applicability of 
the obtained representation for the susceptibility, which 
is determined by the condition T » fA/B. Finally, since 
fA "" ..;zV, the region of applicability of our approxima­
tion is T »';z/SV and z » 1. The analytic continuation 
of the expression for P(wn, u) from discrete frequencies 
to the real axis is in this case trivial and reduces to the 
substitution iWn - W + Hi. Thus, we have for P(w, u) 

P(ro,u)=- ro (ch2Yii)" jll(8h2'l;;-)"Sh YAVI2T'dll 
'I2A • ('I 2.1 II-ro-ill) ('I2AII+ro+ill) 

+ ro ,(sh2'lu)" J lI(eh2'l;;-)"sh'l~dll 
'I2A • ('I2A1I-ro-ill) ('I2AII+ro+ill) 

ro -. II (e-";) "sh 'I AII/2T' dll 
- -=(eh 2'1u) " S . 

Y2A 0 ('I2AII-ro-ill) ('I2AII+ro+ill) 

The remaining two equations of the system (10) are 
solved analogously and the solutions take the form 

L(ro,u)= V2 (eh2'1u)'''S 1I'(sh2'1v)"'shYAVf2Tidll 
A 0 U2;1I1-ro-ill) (Y2AII+ro+ill) 

,/2( ,i"" '" SU v'(eh2Yv)''' sh 'IAvi2T'dv - r - sh2.u) 
A • ('I2Av-w-ill) ('I2Av+w+ill) 

V'2- S~ v'(e-'h)'" sh '1AvI2T'dv 
-t- -(eh 2'1 u)' " , 

A • ('12Av-w-ill) ('12Av+w+i/) 

K(oo, u)= 11~ (sh 2'Iu)' J i;;(ch2Y~)' . 

{17) 

(IS) 

( Y;;-sh '1AvI2T' - ) ,/--;1 -
x +Y2A L(w, v) dv- V -(eh 2'Iu)'· 

('12Av-oo-ill) ('12Av+w+ill) 2 

:: - - ( Yvsh'lAv/2T' - ) xJ Yv(sh21'v)' " H2AL(w,v) dv 
• (Y2Av-w-ill) (Y2Av+w+ill) 

,/A' _ Joo ( Yosh YAv/2T' - ) + V-(ch2fu)' e-"" +Y2AL(w,v) dv. 
. 2 0 (Y2Av-oo-ill) (Y2AlI+oo+ill) 

(19) 

Expression (9), together with (17)-(19), determines 
the susceptibility tensor, apart from a normalization 
that depends on the field and on the interaction with the 
nuclei. This normalization factor is determined in the 
next section, and is equal to 

N(u)=e A / 8T' (Ch -V Au + -V A sh -V Au ) 
2T' 8T'u, 2T' 

(20) 
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We thus have ultimately 

x,,(oo, h) = N~~:,;) , (K(oo, h')/)'i+L(oo, h')h,hi+P(oo, h') ie,jkh.) , (21) 

where K(w, h2), L(w, h2), P(w, h2) are given by expres­
sions (17)-(19), in which it is necessary to put u = h2/2A. 

The line shape is determined by the imaginary part 
of the susceptibility tensor. We usually consider the re­
sponse of the system to the transverse magnetic field. 
If the z axis is taken to be the direction of the constant 
magnetic field, and the x axis is taken to be the direction 
of the alternating magnetic field, then the line shape is 
determined by the imaginary part xXx(w, u). Since X~ 
is an odd function of the frequency, it suffices to con­
sider the region w » 0, where 

:rr.N. (gil.) 'e-"-;; ( ro) , ro 
x="(w,u) -'- sh-· 

N(u)Yu 8A 2T 

x [( 'I~ + -; ) (eh 21'v) "'v'l~+2sh 2Y~- (eh 2Y-;;)'''Yv] , 

0,.;; 00";; 'I2A U= ll.gH. (22) 

" :rr.N. (gil.) , ro 00 
Xxx (oo,u)= N(u) 8A sh W ' 

--[ 1 ( - sa 21'u ) x,e-M/2!A - eh2'1u---_- . 
u 21'u 

- ,- - sh 2Y U ( 1 1) 
xe2/'(e-Zl·)'''v'lv+--_- 2+-=-+- , 

'Iu 'Iv 2v 

where it is necessary to put v = w 2/2A after the differ­
entiation. We not,~ that the X;x(w, u) are continuous at 
w = llogH, but dXxx(w, u)jdw has a discontinuity. 

We consider the expression for the line shape in cer­
tain limiting cases. Let h = llogH » ..f2A., i.e., the inter­
action of the impurity spin with the field is much stronger 
than the interaction with the nuclei. In the region w » 
I2A we have 

x="(oo) 
/(00)= "() Xxx 000 

= 00 sh(ro/2T) exp {-V 2 loo-oo,I}, 
&l. sh (w./2T) A 

(24) 

where Wo = llogH. It is seen from (24) that the line has 
a resonant character, with an absorption maximum at 
the same frequency as in the absence of the interaction. 
The line is symmetrical near the maximum woo The in­
fluence of the interaction has led to the appearance of 
an absorption band of width .6.w "" ..flA. A characteristic 
feature of the line is the exponential dec rease of f(w) 
with frequency. This circumstance takes place not only 
in the considered limiting case, inasmuch as the argu­
ments of the exponentials in the general expressions 
(22) and (23) for X~x(w, u) contain w in the first degree. 
Thus, the line is neither Gaussian nor Lorentzian. The 
reason is that in our case S = 1/2 and in the magnetic 
field there are only two spin states between which tran­
sitions with change of spin projection not exceeding 
unity can take place as a result of the interaction with 
the nuclear spins. On the other hand, if S » 1/2, we 
shall actually have a classical spin that precesses in a 
magnetic field acted upon by the random field of the nu­
clear spins, and the line should then be Gaussian. 

The method of moments yields in our case for the 
ratio of the fourth moment M4 to the square of the sec­
ond moment M2 
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M. 
M,' 

Sp(lH;." [H;:"Sx]']') ~3+ 
{Sp([H: •• ' oSx]'))' 

L:,V". (9SP[,' 1) 
(L:, V,,)' 21+1 

~3++ (9~;~,: -1). (25) 

Here Hint = SZ~vlil7 is the so-called secular: part of the 
interaction Hamlltonian relative to Ho = -glloSzHz . In 
the derivation of (25) we have put Vl »J V. In our approx­
imation (z » 1) this ratio is equal to 3, which coincides 
with the result for the Gaussian line. 

Assume now that the interaction of the impurity spin 
with the nuclei is of the same order as the interaction 
with the field. In this case the general character of the 
line is preserved. The maximum, with the exception of 
a very weak temperature shift, will occur at the fre­
quency Woo The shape of the right-hand line wing at w 
» ru, apart from a numerical coefficient on the order 
of unity, will be determined by (24). The line shape will 
change somewhat only near the maximum Woo 

We now proceed to the susceptibility in a zero field. 
Substituting L(w, u) from (18) in (19) and taking the 
normalization (20) into account we obtain at u = 0 

2l'2 N,(gf,to)'e-A/'T''I'A 
X'i(ro)~ 3 HAI2T' 

~ '1'-;; e-"-;; sh 'I' Av/2T' dv x! (Y2Av-ro-i6) ('I'2Av+ro+i6) 6;;. 
(26) 

The maximum value of xii (w) is reached at the frequency 

roo~Y2A(HA/12T'). (27) 

For the line shape we obtain 

ro sh(ro/2T) {1/ 2 } 
f(ro)~ ro, sh(ro,I2T) exp - VA(ro-ro,) . (28) 

Let us discuss the static limit of the susceptibility. 
As is well known (see the paper by Kubo(5]), either 
isothermal or adiabatic static susceptibility can be con­
sidered. The isothermal susceptibility describes the 
reaction of a system in thermal contact with a thermo­
stat to the external field, while the adiabatic suscepti­
bility describes the reaction of an isolated system to 
which an external field is applied adiabatically. Generally 
speaking, the two susceptibilities are not equal. In our 
case the expression (21) for Xij (w, h) at w = 0 yields the 
adiabatic susceptibility. Indeed, in the determination of 
Xij we summed diagrams at nonzero external discrete 
frequencies and continued the resultant expression ana­
lytically to the real axis. We have thus obtained a sus­
ceptibility that yields at w I 0 the reaction of the system 
to an adiabatically turned-on alternating field, so that 
the continuation of the solution to w = 0 yields the adia­
batic susceptibility. It follows therefore that when the 
interaction with the nuclear spins is turned off we should 
obtain a zero value for the parallel part of the static 
susceptibility, since an infinitesimally slow turning on 
of the stationary field cannot lead to a transition between 
states of the system. It is easy to show that this does 
indeed take place in our case. To this end it suffices to 
substitute the functions (11), (12) and (13) with wn = 0 
into the expression obtained from (21) for the parallel 
part of the susceptibility. 

On the other hand, to find the isothermal suscepti­
bility it is necessary, in view of its definition, to set 
the external frequency equal to zero from the very out-
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set, and then to sum over the internal frequencies. In 
the expression for the zeroth-order diagram this changes 
only the function L (0): 

chYTu72T' 
L'°)(O,U) .... L'°)T(O,U)~V')(O,u)+ ATu (29) 

(the superscript T labels isothermal quantities from 
now on). Consequently, the function pT(O, u) is given by 
expression (17), the function LT(O, u) by expression 
(18) with L(O) replaced by L(O)T, and the function KT(O, u) 
is determined by (19) with L replaced by LT. Thus, the 
isothermal susceptibility xTj is determined by expression 
(21), which contains in the right-hand side the isother­
mal functions pT, L T, and KT, which have been defined 
above. 

We present, in particular, expressions for the static 
susceptibilities in a zero field. 

.. T(O)~ .. (0)+ N,(gf,t,)'Texp{-(TJT)'} (30) 
Xu Xu 12(T'-T/) 

~ N,(gf,t,)'Texp{-(TJT)'} {1+~}. 
12(T' - Tc") T'+T/ 

Here Tc = ..fA/8 and Xii (0) is the adiabatic susceptibility 
determined from (26) at w = 0: 

N,(gf,to)'T' exp{- (TJT)'} 
x;,(O)~ 6(T'-T,') (T'+T/) . 

(31 ) 

After turning off the interaction with the nuclear spins, 
we should obtain the susceptibility of an isolated spin. 
It is easy to see that expression (30) at T c = 0 does 
indeed yield this value for the isothermal susceptibility. 
We note also that the dive rgence of the susceptibility as 
T - Tc is the same as in the Curie-Weiss law. The 
phYSical cause of this divergence was already discussed 
earlier. 

3. NORMALIZATION AND GREEN'S FUNCTION OF 
IMPURITY 

A general expression for the normalization of the 
mean values in spin diagram technique in the presence 
of a magnetic field is given in (2]. In our case, we have 
for the part of the normalization not taken into account 
in the calculation of the diagram contribution 

e'A/T eh/T 

N(u)~--(a +a )~--T \"1 g (ro u)e;wn, 
2S+1 " 2S+1 k.. an n, , 

'[ .... +0. (32) 

We have used here the well-known expression (af/af3) 
in terms of the Green's function (see(S]). As usual, on 
going from summation to integration along the corre­
sponding contour, we obtain 

2 ~ 

N(u) ~- - S 1m gnnR(t, u)ch~dt, 
n , T 

(33) 

where gR is the retarded Green's function. 

To determine the Green's function of the impurity, 
let us consider its self-energy part ~. A diagram anal­
ysis similar to that in the preceding section shows that 
in the main the diagrams for ~ at z » 1 in the region 
T » Zl/3V will be the diagrams shown in Fig. 3. The 
heavy lines correspond here to the impurity Green's 
function g. Single differentiation of the Green's function 
leads to the appearance of a vertex in the corresponding 
line. We therefore arrive at the following differential 
equation for the self-energy part: 

~n,(t, h)~ASn,g,.(t, h) (S,,+a~.,(t, h)/ah), (34) 
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FIG. 3 

where we have introduced a new variable t = iwn-A. 
Therefore, using Dyson's equation, we obtain an equa­
tion for the Green's function of the impurity 

8g.,(t, h) (0)- (h)-O AS.. -g.. (t, h) gop t, +6.,-. 
8h 

(35) 

Since the tensor ga{3 can be represented in the form 

g.,(t, h)=g,(t, h')6.,+(Sh).,g,(t, h'), (36) 

we arrive at a system of equations for gl and g2: 

g.'(t, u)+g,(t, u)-tg,(t, u)=O, '/,Ag,'(t, u)+ 
+'/2A (u+'/,) g,(t, u)-tg,(t, u)-1=0. (37) 

Substituting g2 from the first equation of the system in 
the second, we obtain 

3 2t' 2t (38) 
u(eUg, (t, u) )"+ 2(eug, (t, u»' - Te"g, (t, u) =- Aeu. 

The requirement that gl(t, u) be finite at u = 0 enables 
us to write the solution in the form 

Y2 11 St'u SU 11 St'v 
+e-U -chy-- dve"sh y-A 

Au A 0 

1/2 11 St'u 
-c (t) e- U y Au sh Y ---::t. (39) 

The function c(t) is chosen here to satisfy the condition 
that the Green's function go over in the absence of inter­
action into the free function g(O) . This leads to the follow­
ing expression for c(t): 

c(t)= Lexp[v+ Y s:v ] dV=e-"/AD_, ( -2iY:), (40) 

where D-2 is a parabolic-cylinder function. 

We need the retarded Gr:een's function. Choosing in 
(40) that branch of the root which ensures analyticity 
of c(t) in the upper half-plane, we get 
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1/2 ( 1(~ U y8fv"" 
-e-U y- sh y --S dv e" ch --

Au A A 
o 

l/Bif;; U 1/8i,2;; ) 
- ch Y ~ S dv e" sh y -::t ' 

o 

cR(t) =e-"/AD_, (2it/iA). 

For the function g~(t, u) we obtain 

g,R(t, u) = -.!., (g,R(t, u) +g,R· (t, u». 
t 

(41 ) 

(42) 

(43) 

ExpreSSions (36) and (41)-(43) determine the retarded 
Green's function of the impurity. The quantity 1m g~(t, u) 
needed for the normalization and determined from (41) 
is given at real t by 

Y~ y~ Img."(t,u)=-2 --e-U-"'/Ash __ 
A'u A . 

(44) 

Substituting this expression in (33), we obtain on nor­
malization 

N(u) =e A / ST' (Ch 11 Au + 11 A sh 11 Au ) 
V 2T' Y ST'u Y 2T' (45) 

=eA / ST' I ch -.!: + ~ sh -.!:) 
T 2hT T· 

We note in conclusion that at A = 0 we obtain from 
(45) the usual normalization factor for the mean values 
in a magnetic field. 

1) All other third-order diagrams vanish. 
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