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Two problems in the theory of semimetals are considered: (l) the fulfillment of the Luttinger 
theorem, and (2) the origin of the rhombohedral deformation of the sublattices. It is shown that the 
main assumptions of the theory of Abrikosov and Fal'kovskii[l] can be explained in a natural and 
consistent manner. In conclusion, some considerations are presented regarding the possibility of 
applying the ideas of semimetal theory to explain first-order metal-insulator phase transitions 
involving small distortion of the structure in transition-metal oxides. 

1. INTRODUCTION 

In the time that has passed since the publication of 
the theory of semimetals [lJ, calculations of different 
physical effects have been performed using the theory. 
The predictions of the theory have been subjected to 
comparison with experimental data. It has been possible 
to explain theoretically such qualitative effects as the 
high dielectric permittivity and the transparency in the 
infrared region[2J , the possibility of formation of a 
gapless state in bismuth-antimony alloys and the elon­
gation of the electron "ellipsoids" [3], the relation be­
tween the "spin" and orbital splittings of the levels in a 
magnetic field [4 ,5], etc. A comparison of the theory with 
the experimental characteristics of the energy spectrum 
of bismuth, obtained from cyclotron resonance, the 
de Haas-van Alphen effect and optical measurements, 
displays agreement to within 5% [6] • 

The theory of [1] permits the possibility in which the 
Fermi surface goes out a long way from the points T 
and L; in this case, the formulas found for the energy 
spectrum are inapplicable. This is the case for holes in 
As and Sb. The" large" Fermi surfaces arising in this 
case are found completely successfully by the pseudo­
potential method [7, 8J. On the other hand, when applied 
to bismuth, the pseudopotential method gives results 
differin~ from the experimental values by a considerable 
factor [9 • Thus, our approach and the pseudopotential 
method complement each other when we are concerned 
with the calculation of the energy spectrum. But the 
theory of[l] gives, in addition, the possibility of dis­
playing qualitative effects that can be overlooked in 
numerical calculations. 

The theory of semimetals [1] was based on certain 
assumptions. Some of these, e.g., the importance of the 
pOints T and L in the Brillouin zone and the appearance 
of a spontaneous displacement of the sublattices, were 
proved. There are certain others, however, which con­
tinue to raise doubts, as can be seen, e.g'j from the 
recent paper of Gordyunin and Gor'kov[ 10 1). 

The main objections of the paper[10] to our approach 
are the following: 

1. Luttinger's theorem is not fulfilled. 

2. The origin of the rhombohedral deformation re­
mains unclear. This is an important point, since in the 
absence of such a deformation the substance will not be 
a. semimetal, but an insulator. 

The present article is devoted to an analysis of these 
questions. 
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2. LUTTINGER'S THEORY AND EXTRA LEVELS 

According to Luttinger[12], the density of electrons is 
connected with the volume bounded by the Fermi surface 
(and by the Brillouin zone boundaries) by the same rela­
tion as for interacting electrons in a periodic field: 

2 
n=-(-(pVB+VF ), (1) 

2n)3 

where VB is the volume of the Brillouin zone, p is an 
integer, and V F is the volume inside the Fermi surface. 
As applied to the group-V semimetals, this statement 
has the following meaning. As is well known, their lat­
tices are obtained from the simple cubic lattice by a 
small displacement of the two face-centered sublattices 
along a body diagonal and by apprOXimately the same 
rhombohedral deformation of the sublattices. 

Since the number of electrons per cell in the original 
cubic lattice was odd, the sum of the volumes inside all 
the Fermi surfaces should be equal to V F '" (PI + %)V BO' 
where PI is an integer. In the displacement of the sub­
lattices, a new Brillouin zone is obtained, with volume 
VB'" %VBO' Consequently, VF '" (2P1 + 1)VB, i.e., VF is 
a multiple of VB' This corresponds fully to the fact that 
there is an even number of electrons per cell in the new 
lattice. But we note that the proportionality coefficient 
between V F and VB is an odd number. 

In our work it was assumed that the principal role is 
played by a doubly degenerate level at the special pOints 
on the C3 axes of the original cubic lattice. ]f we take 
only this energy level into account and assume that the 
Fermi boundary is in its vicinity, then the scheme of the 
Fermi surface and its occupation near these points has 
the form depicted in Fig. 1. The two surfaces in the 
vicinity of the special pOints are exactly superposed on 
reflection in a plane perpendicular to the C3 axis. In [1] , 
the assumption was made that a "dielectric" phase ex­
ists in which, in the limit of zero deformation, the same 
superposition of the surfaces occurs not only near the 
special points (which, in the new lattice, become the 
pOints T and L), but also far away from them. 

To make the situation clear, we have illustrated a 
twO-dimensional model in Fig. 2. The large square 
corresponds to the original Brillouin zone, and the 
dashed square to the new zone. Figures 2a and 2b illus­
trate our assumption. For an infinitesimal deformation 
the new zone arises and the Fermi surface is reduced ' 
to it. The empty spaces in Fig. 2a then compensate the 
occupied spaces in Fig. 2b and an insulator is obtained. 
It is not difficult to see, however, that the volume inside 
all the Fermi surfaces is in this case equal to VF '" VBO 
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= 2VB' which does not correspond to Luttinger's theorem 
(the proportionality coefficient is even). 

This circumstance was noted by Gordyunin and 
Gor' kov [10J , and the following escape was proposed. 
According to Luttinger[12J, V F in formula (1) is the vol­
ume not only inside the Fermi surfaces, but in general 
inside all surfaces at which Re G (w = 0, k) changes sign 
(G is the electron Green function). This can occur when 
Re G (0, k) goes to infinity or to zero. The first case 
corresponds to the Fermi surface. However, in the 
opinion of the authors of[lOJ , surfaces of the second type, 
which play no phYSical role but only rescue Luttinger's 
theorem, can also exist in a metal. It is difficult to 
agree with this opinion. In fact, Luttinger's theorem 
should be fulfilled not only for a normal metal, but also 
for a superconducting metal. In the latter case, if 
t:. « EF, the Green function near the Fermi surface will 
have the form 

G= w+s(p) . 
w 2-s2 (p)-A2 (p)+ill' 

(2) 

it is clear that Re G(O, p) = ° at the Fermi surface. We 
cannot give a proof that the presence of surfaces at 
which Re G(O, p) = ° is necessarily connected with super­
conductivity, but this is highly probable. 

We can, however, propose a more natural way out of 
this situation. We shall imagine that, in the original 
cubic lattice (in reality, we have in mind the "dielectric" 
phase in the limit of infinitesimal deformation) there is, 
in addition to the surfaces 2a and 2b, another surface, 
which coincides with the new Brillouin zone (Fig. 2c). 
In this case, when the new zone is formed, it will not 
give. free carriers but, on the other hand, it will elimin­
ate the difficulty with the Luttinger theorem. 

At first sight, this assumption seems artificial. In 
fact, it corresponds completely to the philosophy of [lJ 
and to calculations by the pseudo-potential method (cf., 
e.g" [13J ). As applied to semimetals, the corresponding 
analysis is carried through in [16J, in which the origin of 
the spectrum of the semimetals is investigated. Accord­
ing to this work, in the construction of the Fermi sur­
faces in the free-electron approximation there arises on 
the C3 axis a threefold degeneracy, which, being acci­
dental, is lifted by the pseudopotential of the simple 
cubic lattice. Because of the usual weakness of the 
pseudopotential, the Singlet level that is split off may be 
found at a comparatively small distance from the doubly 
degenerate level. The corresponding Fermi surfaces 
are at a small distance from the point at which the C3 
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axis intersects the boundary of the new Brillouin zone 
ariSing when the sub lattices are displaced (in the new 
lattice, these are the points T and L). With this con­
struction, it is made clear that, of the five valence elec­
trons, two correspond to a completely filled band (in a 
Simple cube), and only three remain "active." 

Arguing in the spirit of [lJ, we shall construct a new 
phase, which, in the limit of infinitesimal displacement 
of the sublattices, is an insulator with occupied bands 
corresponding to Figs. 2a, 2b and 2c. The free energy 
for such a phase is decreased on displacement of the 
sublattices, and has a minimum which may turn out to be 
lower than the energy of the "metallic" phase which con­
cerned us above. However, as was noted in [lJ, the depth 
of the minimum is not great (it is proportional to the 
square of the displacement of the sublattices) and, there­
fore, the metallic and dielectric phases should not differ 
greatly from each other. In view of this, in calculating 
the spectrum in the new phase it is necessary, strictly 
speaking, to take into account not only the doublet level, 
but also the extra singlet level. 

It is natural to suppose that the three active electrons 
correspond to the atomic p-electrons. The representa­
tion of the rotation group with J = 1 is split by a crystal 
field of symmetry C3v into the symmetric one-dimen­
sional representation A1 (Fig. 2c corresponds to this) 
and the two-dimensional representation E (Figs. 2a and 
2b). 

Depending on the relative position of these levels and 
the Fermi boundary, there can be three cases; a) the 
case considered in(1J, when the levels obtained from the 
Singlet are positioned comparatively far from the Fermi 
level and therefore need not be considered; b) the case 
when, on the contrary, the doublet level is unimportant; 
in this case, it is not possible to obtain a spectrum of 
the bismuth type; c) all the levels are positioned close 
to the Fermi energy and should be taken into account. 
This case is more difficult to analyze and, therefore, we 
shall perform the corresponding analysis for the vicinity 
of the point T, which is Simpler. 

We shall reckon the energy from the level E. We de­
note the energy of the level A1 (on the C3 axis) by v. 
Proceeding in complete analogy with [lJ , we take into ac­
count the spin-orbit coupling and construct a Hamiltonian 
matrix of the sixth rank. Using the functions iJl1 = iJI+X+, 
iJl2 = iJI-X+' iJl3 = \fiX .. iJl4 = lJi+X-, lJi5 = lJi-x-, and lJi6 = lJi'X­
(where lJi+, lJi- is the basis of E, and lJi' is the basis of A1), 
it has the form 

( D"'(A) ) D"'-- D(3)(-A) , • (3) 

where p = aKz, q:!: = bK;;, r., = b1K:!:, and P1 = a1 Kz· 

On displacement of the sublattices, the representa­
tions corresponding to ±ko merge and a 12th-rank ma­
trix is obtained. The corresponding off-diagonal ele­
ments are y = CU1 for lJi1, 1/!2, 1/J4 and 1/!5, and Y1 = C1U1 
for 1/!3 and lJi6 (U1 is the displacement of the sublattices). 
By interchanging the rows and columns, one can obtain 
the result that the full 12th-rank matrix takes the form 

D,t2,- (D,") (A) ) 
- D:') (-A) (4) 

where the order of the functions is as follows: lJil, lJi~, . 
lJi2' lJiL 1/!3, lJiL lJi4, if!~, lJi5, lJi~, lJi6, lJi~, where lJi~ is obtained 
from lJii by inversion. 1 

A. A. Abrikosov 1032 



The energy levels depend on A2, so that it is sufficient 
to consider the matrix D~6) (A): 

c· T q+ 0 r - 0 

Di') (1\)= q~ 
-p+1\ 0 -q. 0 

-'- ) 0 p-1\ '" r. 0 (5) . 
-q- T -p-1\ 0 -r. 

r. 0 r_ 0 p,+'11 T, 
0 -r. 0 -T T, -p,+'11 

(compared with [1], we have shifted the origin by f and 
have included the deformation term in v). 

The Fermi energy for the holes is bismuth is small 
compared with the characteristic parameters of the 
spectrum, and this makes it possible to expand the en­
ergy in the moments, i.e., to use the effective-mass ap­
proximation. For IC = 0, we have the following eigen.,. 
values and eigenfunctions: 

8,(0)=-1\-1, '1',= (qJ,-<p.)Jli2, 
8.(0) -1\-1, 

8, (0) =-(\+1, 
8.(0)=(\+1, 
e,(O) ='11-1', 
e.(O) ='11+1" 

'I' ,= (qJl-qJ.)/YZ, 
'I' ,= (qJ,+qJ.) 11'2, 
'1'.= (qJ,+qJ,) 11'2, 
'1',= (qJ,-qJ.)/l'2, 

'1'.= (qJ'+<P.) li2, 

(6) 

where <Pi are functions arranged in the order corre­
sponding to Di6), i.e., e.g.: <P1 = iJi1, <P2 = Ij!~, •••• Differ­
entiating D~S) with respect to IC, we obtain the velocity 
matrix 

c 
0 bn+ 0 b,n_ 

+-) 0 -anz 0 -bn. 0 
, bn 0 an. 0 aln+ 
V= 0- -bn 0 -anZ. 0 -b,n. . (7) 

b~. 0 b,n_ 0 aln z 0 
-b,n. 0 -b,n_ 0 -alnz. 

Using this, we can write the energy spectrum for small 
" in the form 

(8) 

From (6) and (7), we obtain 

p' q' r' 
8. =1+ 1\ + - + ---+ --,,------:--:-

21 2(1+1\) 1,+1-'11+1\' 

(9) 

p,' r' r' 
8,='11-1'- 21,- 1'+1-'11+1\ 1,+1-'11-1\ 

Pl' r' r' 
8.='11+1,+-+ +-,----,---,-

21' 1,+,,(+'11+(\ "(,+"(+'11-(\ 

In order not to obtain a large Fermi surface, it is neces­
sary in all cases that all the levels have either a maxi­
mum or a minimum at p, q, r = 0 (by y and A, we mean 
the absolute values, or, more simply, we choose y and 
A to be positive). It follows from the expression for Es 

that Y1 + Y + v - A > 0, and from the expression for E5 
we find y 1 + y - v - A > O. Thus, although y 1 and yare 
proportional to the small displacement of the sublattices 
A is the small spin-orbit splitting, and the quantity v is ' 
not formally small, it is nevertheless necessary that the 
condition 

(10) 
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be fulfilled. In reality, Y1 and yare the largest of the 
parameters. In experiment, y ~ 0.3 eV and, as we shall 
see from the following, y 1 should be still larger. On the 
other hand, as already noted above, the splitting v is due 
to the pseudo-potential for the cubic lattice and cannot be 
large (~ 1 to 0.1 eV). 

The inequality (10) places no restriction on the rela­
tive positions of E2(0) and E5(0). Of these levels, the 
higher one corresponds to the holes observable in bis­
muth. In order to choose between these two poSSibilities, 
we shall examine the question of the relation between 
the orbital and spin splittings of the levels in a magnetic 
field. 

The orbital splitting is expressed by the formula 
(cf., e.g., [13]) 

eH 2neH 
(\eort>= - = ---

m'c c8S/8e' 

where S is the area of the classical trajectory of the 
electron, E = const, and Pz = const. If, in the quadratic 
approximation given by formula (8), the second term is 
written using the prinCipal axes and the magnetic field is 
directed along the z-axis, then m* = v'MxMy. It follows 
from formula (9) that if the field is directed along the 
prinCipal axis C3, then for the bands E2 and E5 we have 

eH ( b' 2b,' 
1\8'orb=- --+ ) 

c "(-1\ 1,+"(+'11-1\' 
(11) 

(\ _ eH [. a,' (_4_b_,'-,-( 1:..:.,+----'-1-_'11...:.)_)] 'I, 
(12) 

B50rb- --c- 1. ("(1+'Y_V)2-L\~ . 

According to the effective-mass approximation, the 
spin splitting is equal to 

(13) 

Suppose the field lies along the principal axis C3. We 
then obtain 

For H 1 C3, we obtain 

(in the present case, we are not conSidering small 
splittings of the order of J.l.BH, where J.l.B is the Bohr 
magneton). 

(14) 

(15) 

It follows from the experimental data of[14] that the 
spin splitting for the holes becomes small or a multiple 
of the orbital splitting for H 1 C 3 and for H II C32 ). This 
agrees with formula (15) for both bands. However, it 
can be seen from formulas (12) and (14) that the band E5 
does not have the necessary property, since for H II C3 

the spin and orbital splittings are completely different. 
On the other hand, if we assume that the holes originate 
from the band E2, and compare formulas (2) and (14), 
then the spin splitting will be equal to the orbital split­
ting if 

(16) 
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FIG. 3 

Figure 3 schematically depicts the levels (9). The 
condition (10) means that the level E3 should be above Es, 
and the level E6 above E2. The additional requirement 
(16) means that the splitting between the levels Es and E6, 
which is equal to 2Y1, should be sufficiently great, viz., 
Y1 » y (it follows from the data of[14J that Y1 ~ 5y). 
But in this case the levels Es and E6 lie far from the 
Fermi level and therefore have practically no substan­
tial influence on the properties of bismuth (except on the 
optical properties at high frequencies). As regards the 
electron minimum at the point L, the position is evidently 
analogous. The pOint is that the coefficients of the spec­
trum in the regions of the points T and L are related to 
each other (YL = -YT/3, Y1L = -Y1T/3) and, therefore, 
a large splitting of the levels Es and E6 at the point T 
means that there is also a large splitting at the point L. 
At the same time, the levels E2 and E3 are very close at 
the point L, and, most likely, are even "inverted" 
(cf. [3J ). 

Thus, the introduction of the extra level is justified 
from all points of view: a) its presence follows from 
pseudo-potential calculations, b) it leads to agreement 
with Luttinger's theorem, and c) it has no essential in­
fluence on the properties of bismuth and thus does not 
spoil the agreement of the theory with experiment. 

3. THE RHOMBOHEDRAL DEFORMATION OF THE 
SUBLATTICES 

First of all, we note that a certain inaccuracy was 
allowed to pass in [lJ. As was correctly pOinted out 
in [10J , the self-consistent potential associated with the 
displacement U1 of the sublattices cannot have "diagonal" 
matrix elements between the functions IJ! i' but only be­
tween the functions IJ!. and IJ!~. This means that the co-

l 1 
efficients f and (3 cannot depend on U1' However, contrary 
to the statement in [10] , in this case (3 does not vanish, 
since, as shown by Fal'kovskir[15J, the tensor uik' i.e., 
the rhombohedral deformation of the sublattices, makes 
a contribution to this coefficient. Thus, there is no need 
to invoke the superlattice in order to save this coeffi­
cient, as was proposed in the second variant of [10J . In 
experiment, the rhombohedral deformation of the sub­
lattices in the lattices of semimetals is of the same 
order as the relative displacement of the sublattices. 
Moreover, since the coefficients f and (3 depend only on 
w = (lIxy + uyz + uzx}/3, w = 0 would mean f = (3 = O. But 
in this case, as remarked in[10J (cf. also[16J ), the spec­
trum of an insulator, and not of a semimetal, arises. 

We have shown in[lJ how the energy minimum with 
respect to the displacement of the sublattices arises in 
the dielectric phase. The formula . 
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(17) 

was obtained, where P is a large energy of the order of 
10 eV, the coefficient a is determined by the strong 
Coulomb interaction of the ions, and the coefficient X by 
the much weaker electron-ion interaction. Even if 
X - %0', then yo < 1O-2P• The same result is obtained 
in[10] from a self-consistency condition. It should be 
remarked that, in obtaining the expression for the free 
energy, the principal logarithmic integral arises in the 
integration over momenta far from the points T and L, 
Le., in the region where our formulas are inapplicable. 
The reasons why the result obtained is not too dependent 
on the model chosen were given in[lJ. 

However, this same factor (the integration over the 
large momenta) does not give the possibility of a simil­
arly definite answer to the question of the appearance of 
the rhombohedral deformation of the sublattices. The 
calculation of the free energy in[lJ is rigorous under 
the assumption that the spectrum is expressed by the 
"hole" formula in the viCinity of both T and L, even 
when we are not very close to these points. In this case, 
a dependence on w does not arise in the free energy. An 
improvement of this calculation in the sense of taking 
into account the coefficients (3 and 0 in the vicinity of the 
points L does not alter the position. Allowance for the 
third level (cf. the preceding section) also gives nothing3). 

A dependence on w starts to appear only at sufficiently 
large values of w, when the valence band at the point T 
and the conduction band at the point L overlap strongly, 
so that the Fermi level corresponds to open isoenergetic 
surfaces in both bands (cf. [1,17]). This is effectively the 
critical value of w referred to in[lOJ (second variant). 
But this answer is not the solution of the problem, since 
in bismuth there is no strong intersection, whereas, at 
the same time, there is a rhombohedral deformation of 
the sublattices. We cannot yet give a unique explanation 
of this phenomenon. Different variants are possible. 

a) It can be assumed that the fact that the electron-ion 
energy is independent of w is only a property of a par­
ticular model, since there are no reasons at all for our 
formulas for the spectrum to be valid far from the pOints 
T and L. 

We might expect that, under very general assump­
tions about the spectrum, the electron-ion energy will 
have the form 

Pia 
-CU12 In , 

u./(wlu,) 

where U1 is the displacement of the sublatiices and w is 
the rhombohedral deformation. Adding to this the elastic 
energy of the ions, we have 

F=gu,'+bw'-cu,'ln Pia (18) 
u.j(wlu,) 

Minimizing the energy with respect to U1 and w, we ob­
tain the old result for Ub and w a: U1_ 

As already stated, we have not succeeded in finding a 
model that leads to formula (18). It is not ruled out that 
it may be a completely general fact that the electron 
energy is independent of w for small w. The following 
reasoning argues for this. The logarithmic integral in 
(18) is obtained by integration over the momenta far 
from the pOints T and L. But in this case the treatment 
performed in [10J, in which the authors assumed a spec­
trum of a general form and introduced a deformation 
potential, should apply. Even under such general as-
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sumptions, the energy was found to be independent of w 
for small w. 

b) Another explanation of the rhombohedral deforma­
lion of the sublattices seems to us more probable. If we 
regard the displacement U1 of the sublattices as the main 
deformation, then, as a consequence of this, there will 
necessarily be a rhombohedral deformation uaJ3 of sec­
ond order in U1, since the cubic group permits an invar­
iant of the type u1au1J3uaW Introducing w = %(lIxy + llyz 
+ uzx) (in the cubic axes) and adding the elastic energy, 
we obtain terms in the free energy that depend on w: 

F(w) =bw'+du.'w. 

By taking the minimum with respect to w, we have 

w=-du.'l2b. (19) 

Of course, at first Sight, this formula contradicts the 
experimental data, since w and the ratio of U1 to the lat­
tice constant are of the same order of magnitude experi­
mentally and amount to 0.05-0.1. However, as we now 
show, there are good grounds for assuming that b <t:: d 
and, as a result, the second-order quantity simulates, as 
it were, a first-order quantity. 

We shall find the coefficient b for a model of ions 
interacting in accordance with Coulomb's law. According 
to [18J, for a simple cubic lattice with lattice constant ao 
we have 

_ Z'e' . (2n ( q.' 1) ] Axyxy---, hm ~- ~ - --
na, Q_~ 1;) L...,; q' 6q' 

q=(m,n,l) 

O<lql<Q 

The deformation energy is equal to 

Z'e' 
"'-0.6--, . 

na, 

7 Z'e' 
4Axu:ru{UX/J2+U:u:21+UllZ2) ~_~ __ .. w2, 

1t ao, 
(20) 

The negative modulus is not especially surprising, since 
it is known that a cubic lattice with central pair interac­
tion is unstable (cf. [19J ). On the other hand, a calculation 
of the electron energy in the model Of[lJ with the coeffi­
cients 13 and 6 taken into account, although it does not 
give an expression of the type (18), does give a positive 
term proportional to 132 (i.e., to w2). Hence it can be seen 
that the shear modulus b is determined both by the lat­
tice and by the electrons, and it is best of all to make 
use of the experimental value [20J . 

The elastic constants of bismuth depend little on the 
temperature in the range from 4 to 3000 K. The constants 
we need, in the principal axes (z II C3, X II C2), are equal 
to c 11 = 63.5, C 33 = 38.1, and c 13 = 24.5 (in units of 
1010 erg Icm3 ). The expressions for uaJ3 in the principal 
axes in terms of the corresponding expressions u~J3 in 
the cubic axes have the form uaJ3 = 0 for O! ~ 13, 

~=1/2(-UwC+UUc_UllZe), 

u llll=tj 3 (2u:u: e+l/ 2U"y e+l/ zUn C- UXII e+t/ ZUllI c-Uz:x: c), 

U zz =IJ 3 (U~ C+UYII c+ Uzz e+ UXlJ c+ UllZ c+Uzx c). 

Putting \L~ __ = uc = uc = v and \L~ = uc = uc = w we . --xx yy zz ' --xy yz zx ' 
obtain the elastic energy 

F,,= (cl1+c,,/2+2c,,) v'+ (-c l1+c,,+c,,) vw+ (c I1 /4+c,,/2-c,,) w'. 

Substituting the values given above, we find 

F,,=(131,5v'-0,9vw+1O.4w') ·10" erg/cm3• (21) 

According to our philosophy, the term proportional to 
vw should be absent, and it is in fact practically equal to 
zero. A very interesting fact is the comparatively small 
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value of the shear modulus (the coefficient of w2) com­
pared with the bulk modulus. 

In order to determine the terms in Fe1 proportional 
to u~ and u~w, it would be necessary to measure the fre­
quency of the optical mode and its variation with the 
rhombohedral deformation. Such data are not known to 
us. But since the Coulomb energy of the ions in the 
present case gives a large positive constant multiplying 
u~, it may be thought that the Coulomb contributions are 
the main part of the corresponding coeffiCients, or at 
least give the correct order of magnitude. 

The new coefficients are expressed in terms of a 
formally divergent sum. In view of this, we introduce 
screening: 

11R~t(R) =e-xRIR. 

In accordance with the properties of bismuth (cf. [2J ), 
K-1 ~ 100 ao (ao is the edge of the original cube). The 
second- and third-order terms in the Coulomb energy, 
expanded in the small displacements of the ions, have 
the form 

(22) 

xu u +!! Z'e' ~ [31l.~, (f,,_L)I+ R.R,R, (f,,,-r+~)]. 
"' 'V 12":'" R' R R' R R' 

R,tl.,f>,v -

The sum is taken over all the lattice sites. The origin 
is positioned at the site O. The vector u is the difference 
of the displacements: U = UR - Uo-

Since we are interested in the terms in the elastic 
energy that contain u~ the summation should run only 
over the atoms belonging to the sublattice that does not 
contain the site O. The density of such atoms is %N Iv. 

In the first term, we take into account only the dis­
placement U1 of the sublattices. In the second term, we 
seek an energy proportional to u~. For this we put 
UO! = u10! + (BUa IBXJ3) RJ3 and find the corresponding 
terms. It is not difficult to see that if we had taken 
f = 1/R we would have obtained formally logarithmically 
divergent expressions in both terms of (22). On the 
other hand, averaging over the directions of R makes 
each term vanish. This difficulty is circumvented by 
introducing screening. In the calculation, sums arise 
which converge for R ~ 11K. Since K- 1 ~ 100a, this 
makes it possible to replace the sums by integrals. The 
result does not depend on K. With the assumption that 
ultc = U1y = u1z = U1 liS-and lIxy = uyz = Uzx = w, we ob­
tam 

n Z'e' 14n Z'e' 
---UI2-----Ut2w. 
6 a,' 15 ao' (23) 

First of all, we call attention to the fact that the co­
efficient d < 0, and consequently w > O. This means that 
the rhombohedron is elongated, which is indeed the case 
in the semimetals. To find the coefficient d, we substi­
tute ao = 3.28 A, U1 = 4.J3 x (0.25-0.237)ao (cf. [16J ). The 
value of Z is somewhat uncertain. Substitution of the co­
efficients d and b into formula (19) gives w = 0.051Z2 and 
68 = -4w/.J3 = -0.118Z2 = -6°46'Z2. Even for Z = 1, 
this is greater than the true value for bismuth (-2 0 54'). 
Of course, the purely Coulomb value of the coefficient d 
cannot pretend to great accuracy. However, this estimate 
shows that the interpretation of the rhombohedral 
deformation as a secondary effect, quadratiC with respect 
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to the displacement of the sublattices, does not contra­
dict the experimental data. 

4. CONCLUSION 

Thus, the arguments and estimates given above make 
it possible to give an explanation of certain aspects of 
semimetal theory that are not completely obvious. As 
already remarked at the beginning of the article, the 
theory explains most of the experimental data well. 

Certain questions arise only with regard to the be­
havior of the levels in a magnetic field. In our opinion, 
however, the existing experimental data admit various 
interpretations (see footnote 2 ») and should be refined. 
There are certain problems in connection with the clos­
ing of the gap at the point L by means of a magnetic 
field. A separate article, by S. D. Beneslavskil and 
L. A. Fal'kovskil, will be devoted to this. 

It seems to us that, on the whole, there are no rea­
sons to doubt the correctness of the proposed model of 
semimetals. At first Sight, the assumption which lies at 
the basis of the model, viz., the complete "superposition" 
of two Fermi surfaces in the reduction to the new 
Brillouin zone, is somewhat exceptional. However, this 
is apparently not S04) and, in particular, it is not ruled 
out that metal-insulator phase transitions, together 
with the appearance of lattice distortion in transition­
metal oxides (cf. [21J), can be explained by an analogous 
mechanismS). 

In fact, we shall imagine a situation in which, in the 
metallic phase, there is a spectrum close to the "super­
position" situation. We now construct ''by hand" a new 
phase in which an exact superposition of the Fermi sur­
faces is obtained on infinitesimal displacement of the 
sublattices (on reduction of the spectrum to the new 
Brillouin zone). Of course, the energy of the new phase 
is higher than that of the old phase. However, in a finite 
displacement of the sublattices, there arises, as we have 
shown in [1J, an energy correction of the type 
-cu~ln(P/aul)' this being in reality a consequence of the 
"superposition" and not specific to the actual situation 
in bismuth. The presence of this negative term leads to 
a minimum of the energy in the dielectric phase. 

As a whole, the pattern of the thermodynamic poten­
tial may appear as in Fig. 3 of[l]. In this paper, we 
assumed that the minimum of ~ for the dielectric phase 
lies below the metallic minimum. However, in reality, 
the position of this minimum depends on the concrete 
conditions, e.g., on the pressure and temperature. 
Under certain conditions, it can be raised above the 
minimum for the metallic phase and a first-order tran­
sition then occurs. 

One of the possible reasons for the raising of the 
minimum is the same mechanism as in superconductiv­
ity, viz., a redistribution of the electrons over the states. 
At a "critical temperature" of order y, the minimum 
disappears completely, Le., if there were no other 
phase, there would be a second-order phase transition 
here. The fact that it is first-order transitions that are 
observed in the vanadium oxides argues in favor of the 
existence of a metallic phase and justifies the philosophy 
of our approach [1] • 

In semimetals of the bismuth type, a temperature 
phase transition is not observed. This can be explained 
by the fact that the melting pOints of these semimetals 
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(542 0 K for Bi and 903 0 K for Sb) lie below the corre­
sponding transition points; it is, perhaps, a consequence 
of the instability of the simple cubic lattice. 

In conclusion, the author takes the opportunity to ex­
press his gratitude to L. P. Gor'kov for numerous de­
bates and to L. A. Fal' kovskil for valuable discussions. 

I)In this paper, an attempt was made to obtain the spectrum of bismuth 
by means of a microscopic approach. The authors take the same initial 
spectrum of the undeformed lattice as in [1) , and, taking into account 
the interaction of the electrons with each other and with the phonons, 
treat the change of the spectrum in a manner analogous to that in the 
work of Keldysh and Kopaev [11) , i.e., by applying the self-consistent 
field method. In fact, such an approach is completely equivalent to the 
work of [1) , since the self-consistent field method was also applied in 
the latter. The only formal difference is that this field was determined 
from the minimum of the free energy in [I) and from the self-consisten­
cy condition in (10). However, in the case of thermodynamic equilibri­
um, these procedures always give the same results. 

2)It is stated in the paper (14) that for H II e3 the spin splitting is twice 
the orbital splitting. In fact, the curves of the dependence of the levels 
of the angle (He3) can be drawn through the points given in (14) in such 
a way that, for H II e3 , the two splittings will be the same. The final solu­
tion of the problem can be achieved only with the aid of an experiment 
in a sufficiently strong field, which would make it possible to reach the 
zero level. 

3)We shall not give the corresponding calculations here, as they are lengthy, 
but the energy does not depend on w in the result. 

4)The idea that the "superposition" situation is not exceptional and can 
explain other structural transitions was put forward by L. P. Gor'kov 
(cL, partially, in [10]) and was formulated by him in the pairing language 
of the paper by Keldysh and Kopaev (II). The model treated in [11) is 
a particular case of "superposition." 

S)The limiting case of the "superposition" situation is the coincidence of 
the Fermi surface with the new Brillouin zone (cf. Fig. 2c). This is the 
analog of the Peierls instability for a one-dimensional odd metal. Such 
a case can evidently occur in the quasi-one-dimensional situation in 
which there are linear chains of closely-spaced metal atoms in the sub­
stance. In this case, we can expect the appearance of a Fermi surface 
with large planar parts. It is most likely that V3Si is such an example (cf. 
(22)), and it is not ruled out that this is valid with regard to the vanadium 
oxides too. Naturally, all the general discussions on the "superposition" 
situation also apply to the given case. 
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