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The time dependence of the intensities of the resonant "1 radiation scattered by or transmitted 
through an ideal crystal is investigated. The case when the source is located in the crystal itself is 
also investigated. The influence of the suppression of inelastic channels and of the interference of the 
nuclear and electron scattering, and also of the photoefTect and conversion, is analyzed. The problem 
of the decay of collective excited state in an ideal crystal is analyzed on the basis of the dynamic 
theory of the scattering of "1 quanta. 

1. INTRODUCTION 

In experiments of the Mossbauer type, the presence 
of long-lived excited states of nuclei makes it possible, 
besides the usual measurement of the spectrum of the 
transmitted or scattered y radiation, also to study their 
time evolution. For the case of passage through a reson­
ant absorber, the time dependence of the radiation was 
considered by Lynch et al. [lJ. The first results of 
measurements of the spectrum with time delay are given 
in the same paper and also in a paper by Wu et al. [2J. 
Thieberger et al. [3J investigated theoretically and ex­
perimentally the time dependence of radiation scattered 
by a polycrystal. In all these papers, the time was 
reckoned from the instant when an excited isomeric 
state was produced in the source. This instant was fixed 
by the y quantum of the preceding decay. 

This paper is devoted to the time dependence of the 
spectrum of radiation passing through a thick perfect 
crystal under diffraction conditions, when the source is 
located either outside or inside the crystal, The analysis 
is based on the dynamic theory of interaction of resonant 
radiation with a crystal, developed by Kagan and 
Afanas' ev (see [4, 5J ). (The dynamic theory for the case 
when the source is inside the crystal was developed in a 
paper by Aleksandrov and Kagan [6J .) Particular interest 
attaches here to a determination of the influence of the 
suppression effect (SE) of the inelastic channels of a 
nuclear reaction [4,5J on the character of the time evolu­
tion, and also to the role of interference between the 
resonance and Rayleigh scatterings and between the 
photo effect and conversion (see[7,8J). 

It should be noted that the question of the time de­
pendence of the intensity of radiation emerging from a 
crystal was considered earlier by Pham Zuy Hien [9J . 
Unfortunately, the results of his paper, which deals with 
the most interesting case corresponding to satisfaction 
of the Bragg condition, are in error (see below). 

Among the problems involving time, particular inter­
est attaches to an investigation of the character of the 
evolution of the radiation emerging from a crystal under 
conditions when the experiment is performed with chop­
ping of the incident beam. This problem arises in con­
nection with the possibility of directly proving, within 
the framework of such an experiment, the existence of a 
nuclear exciton, which is a collective excited nuclear 
state smeared out over the crystal (see the papers of 
Kagan and Afanas'ev[1O,1l,5J ). It is clear that radiation 
that emerges with a time delay from a crystal after 
complete interruption of an incident beam is connected 
only with the decay of the resultant excited states. 
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This problem is considered here in detail and it is 
proved, in particular, that rapid chopping does not pre­
vent experimental proof of the existence of a nuclear 
exciton. 

2. INFLUENCE OF THE SUPPRESSION EFFECT 

A. We assume that the source is thin enough so that 
the absorption in it can be neglected. In addition, we 
take for simplicity an unsplit line in the source and in 
the crystal. Then the amplitude of the radiation incident 
on the crystal is given by 

A(oo) =AI(oo-ooo+ir/2). (2.1) 

The time dependence of the amplitude of the radiation 
field passing through the crystal can be represented in 
the form 

1 00 

a, (t) = z; L E. (00) e-'o' doo, (2.2) 

where Es(w) is the Fourier component of the field as it 
emerges from the crystal. 

We consider a crystal in the form of a flat plate and 
confine ourselves to the Laue case. If a plane wave with 
wave vector K 0 close to satisfaction of the Bragg condi­
tion is incident on the crystal, then the field at the point 
r inside the crystal assumes the following value (see [4J): 

A(oo)ei~,r 
E,(oo,r)= (') (1) 

2(8 .. -S .. ) 

(2.3) 

Here 
E~:·')='I.(g,o'+g,,·-a) ±'I.[ (goo'+g,,'-a)'+4(agoo'-~,)]'" 

(2.4) 

where a is the deviation from the Bragg angle, n is the 
inner normal to the surface of the crystal, K is the 
reciprocal-lattice vector, and 81 2s are two mutually 
perpendicular polarization vecto~s. The quantities g~w 
which are proportional to the corresponding amplitudes 
for the scattering by an individual atom, can be repre­
sented in the simultaneous presence of the resonant 
nuclear and potential electron scattering in the form 

Here Zj (IC) is the Debye-Waller factor, f~j and fej are 
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the coherent parts of the nuclear and electronic ampli­
tudes for scattering by the j-th atom in the unit cell: 

f '(x x) __ 1 r, 2/+1 p .( 
n, 0" - 2xo w-wo'+ir/2 210+1 n a,~), 

(2.6) 
f,,(x o , x,) =-roF;( \ xo-x,\) P: (a, ~), 

Fj is the atomic factor of the j -th atom, ro is the class­
ical radius of the electron, and P~ e are the polarization 
factors. ' 

We shall henceforth deal for simplicity with the crys­
tal in which the conditions 

t ' f' d 'th s - s d s - s are sa 1S le ,Wl gll - goo an gOl - g10' 

(2.7) 

If the radiation is incident on a crystal exactly at the 
Bragg angle (Cl' '" 0), then the field inside the crystal is 
described by a superposition of four waves. It was 
shown in [4J that for one polarization, in the case of an 
E1 transition (eOs perpendicular to the scattering plane 
(K oK 1), which corresponds to s '" 1), and for the second 
polarization for the transition M1 (both polarization 
vectors in the scattering plane, s '" 2), the amplitude for 
the production of an excited state for one pair of waves 
vanishes. As a result, this wave pair propagates in the 
crystal without absorption, whereas the other pair, to the 
contrary, is absorbed more strongly than in the usual 
case. Let us determine the time dependence of the 
radiation passing through the crystal. 

Substituting (2.3) in (2.2), we obtain at unity incident­
radiation intenSity, in the case of polarization where the 
suppression effect is fully pronounced (Le., P~ '" 1) and 
Wo '" w~: 

a, (t) =1/2 exp (ixor-iCilot-rtl2) {eo. [1 +/0 (2"1'28t) 1 
+e .. eiKr[ -1 +Jo(2-y28t) j}, (2.8) 

Xol r 
B=-go-, go=lgoo'(w=wo') I; 

210 2 

here 1 is the thickness of the crystal. The terms of (2.8) 
with the Bessel function in the square brackets corre­
spond to two strongly-absorbing waves. In a thick crys­
tal at Bt » 1, these terms become negligibly small and 
the radiation emerges from the crystal without changing 
its time dependence at all. It is interesting that as a re­
sult of the suppression effect it is as though no capture 
of y quanta with excitation of the nuclei occurs in the 
crystal and by the same token the temporal "dragging" 
of the radiation does not take place. 

It follows from (2.8), in particular, that in the limit of 
a thin crystal (Bt « 1) the intensity of the diffracted 
wave (the second term in (2.8)) takes the form 

/,(t) =e-rt(Bt)', (2.9) 
The quadratic dependence on the crystal thickness is 

connected with the coherent character of the interaction 
of the y quanta with the nuclei. A quadratic dependence 
on the time also arises in the case of independent scat­
teririg by individual nuclei in a thin layer, as was first 
obtained by Thieberger et al. [3J 

For the second polarization, all four waves attenuate 
rapidly in the general case. The time dependence of the 
amplitude then takes the form 

B, (t) ='1, exp[ixor-i(wo-ir/2) t] {e,[Jo (2"I'2aBt) +lo (2"1' (i-a) 28t) r 
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+e"eiK'-1 p [-/o(2"1'2aBt)+l0(21'(1-a)2Bt)1}., 
-2a 
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(2.10) 

We have introduced here the following notation for the 
polarization factors: 

Pn'(O, 1) ""P=COS <POi, <P01=<l:(XO,x,), 

a= 1-p' (1- 1-P') 
4 4' 

If p tends to unity, then the time dependence of the ampli­
tude becomes close to (2.8). This corresponds to the 
appearance of a partial suppression effect. 

Let us consider the case when the radiation is inci­
dent on the crystal at an angle greatly deviating from 
the Bragg angle (Cl' »go). The amplitude of the reflected 
wave (second term in (2.3» is then negligibly small. The 
time dependence of the intenSity of the radiation pa3sing 
through the crystal is given by 

lo(t) =rrtJo'(2-yBt) , (2.11) 

This result, which is true for both polarizations, was 
first obtained by Lynch, Holland, and Hamermesh[lJ . 

We note that allowance for the vanishing of the elas­
tic width n when y quanta move in an ideal crystal 
(see [1OJ ) leads to a formula somewhat different from 
(2.11), but that in a sufficiently thick crystal (Bt » 1) 
we again arrive at an expression analogous to (2.11), 
where the width r in the argument of the exponential 
should be taken to mean the total width of the line in the 
source, and the coefficient B contains r 2 instead of r. 

Let us consider the question of the time dependence 
of the intensity for radiation emerging from a crystal, 
i.e., a source in the form of excited nuclei is situated 
inside a crystal containing resonant nuclei in the ground 
state. The question of the angular distribution of the y. 
radiation was investigated in[sJ. In the most interesting 
case of a thick crystal, as was shown above, the radia­
tion emerges from the crystal only along surfaces of 
cones with axis along the reciprocal-lattice vector and 
with apex angles 90° - 0B (OB is the Bragg angle). The 
character of the angular distribution was fundamentally 
different depending on whether the radiating nucleus is 
at a site or in an interstice. 

In [sJ we used a reciprocity theorem that connects the 
radiation field produced inside the crystal by an ex­
ternal source with the radiation field outside the crystal 
produced in y decay of nuclei situated in the crystal. 
This theorem was used in [sJ for the Fourier components 
of the field, but it is easy to show that a similar relation 
also holds true for the time-dependent field amplitudes, 
and in particular for as(t). 

Let the radiating nucleus be situated in an interstice, 
and let its position be specified by the relative coordin­
ate Ih We consider the time dependence of the radiation 
emerging in a direction satisfying the Bragg condition. 
Using the results of[sJ, we obtain directly 

I (t) =se-rt 11-eiKP+lo (2y2Bt) (He iKp )1', (2.12) 
Here ~ is a constant that does not depend on the time, 
and B contains the distance from the radiating nucleus 
to the surface of the crystal. It is seen from (2.12) that 
if the decaying nucleus is situated at a sufficiently large 
depth, then the emerging radiation has the same time 
dependence as in the case of total absence of resonant 
interaction between the y quanta and the crystal nuclei. 
This is again a direct manifestation of the suppression 
effect. 

It is interesting that if the radiating nucleus is situa­
ted at a site of the crystal lattice, then the time picture 
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becomes radically different. Indeed, using the same re­
sults, we obtain 

(2.13) 

In comparison with the preceding result, the time de­
pendence is greatly altered. The reason is that by virtue 
of the suppression effect, the excitation amplitude van­
ishes for nuclei located at the lattice sites, and conse­
quently the probability of emission of a coherent super­
position of a wave pair producing an undamped state in 
the crystal also vanishes. Thus, the emerging radiation 
is connected only with the second pair of the strongly 
absorbing waves, and we thus arrive at (2.13). 

If the exact Bragg condition is not satisfied and 
(JI ~ go, the time dependence of the emerging radiation 
is strongly altered, and the intensity decreases with 
time much more weakly than in (2.13). The reason is 
that now the probability of generation of the first pair of 
waves in the decay is finite and the damping is still 
weak (for more detail, see fSJ). It is interesting that the 
time dependence of the intenSity thus turns out in the 
general case to be very sensitive to a small change in 
the direction of the emission of the decay y quanta from 
the crystal. 

If the y quanta emerging from the crystal are ob­
served in an arbitrary direction «(JI »go), the time de­
pendence naturally remains exactly the same as in the 
case of (2.11) with the appropriate value of l. 

As already noted in the Introduction, the question of 
the emission of excited nuclei from a crystal was con­
sidered in [9J. The expressions obtained in that paper 
for the intensity of the radiation from the crystal on the 
Bragg angle are naturally similar to (2.11), but the re­
sults corresponding to satisfaction of the Bragg angle do 
not coincide with (2.13) (the decaying nucleus was situa­
ted at a lattice site) due to incorrect accounting for the 
coherent picture in the crystal. 

3. INFLUENCE OF INTERFERENCE ON THE CHAR­
ACTER OF THE TIME DEPENDENCE 

We consider the interference between elastic reson­
ant scattering by a nucleus and Rayleigh scattering by 
electrons. As seen from (2.5), the quantities g~J3 can be 
represented in the case of interest to us in the form g~ f3 
= gN + ge' For Simplicity we neglect absorption of the 
resonant y quanta by the electrons, and by the same 
token regard ge as a real quantity. When the radiation is 
incident on the crystal far from the Bragg angle, the 
field in the crystal is described by one wave, and in view 
of the fact that ge does not depend on w, we obtain for 
the time-dependent intensity a result similar to (2.11). 

On the other hand, if the radiation with a polarization 
that is better from the point of view of the suppression 
effect is incident at the Bragg angle «(JI = 0), then we ob­
tain the following result for the field amplitude (we have 
introduced here the shift aw between the lines in the 
source and in the crystal): 

1 ir 
a.(t) ~ 2exp[ ixor-i (wo- 2) t] . 

x {e.[ He"".t (idfJl)'" (2~ ) ,,'I' Jm (2Y2Bt) ] (3.1) 
II,,,,,I} 
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We have put here Be = Kogel/2yo. We see that the inter­
ference manifests itself both in the direct and in the 
diffracted wave. In a thick crystal, the two rapidly­
absorbed waves drop out, and no interference takes 
place between the remaining pair of waves, i.e., elec­
tron scattering does not influence the time dependence. 
The clearest manifestation of the interference occurs in 
diffraction by a thin crystal. For the intensity of the dif­
fracted wave we obtain from (3.1) at Bt « 1 

II(t)~e-rt(B,'+ 2B'(1-cosdwt)+ 2B.B (1-cosdwt)). (3.2) 
dOl' dOl 

The first and second terms of this formula correspond 
to potential scattering by electrons, which does not 
change the time dependence, and to nuclear resonant 
scattering. The third term is the manifestation of the 
interference of these two types of scattering. 

The interference of two inelastic processes, photo­
effect and conversion, were first considered in [8J (see 
also [12J). If we have a nuclear transition of type E1 and 
the projection of the spin of the ground state of the 
nucleus is not altered by the interaction, then the final 
states of the two processes are indistinguishable and a 
unique interference should be observed in the total cross 
section; this interference was first observed in[7J and 
leads to violation of the symmetry of the line in trans­
mission through the absorber. The total cross section 
is then given by (see [8J ) 

_ + liI',I' 21 +1 -Z(Xo) 1+2~v (w-wo)!I' 
at -;:)Ph 2)(02 210+1 e (W_WO)2+I'2/4' 

~ _ 20: [21+1 crph ]'" 

,- 0:+13(210+1) ~ . 

(3.3) 

Here (JI is the conversion coefficient, aph is the cross 
section of the photoeffect, and a~ is the conversion cross 
section at resonance. Returning to expressions (2.5) and 
(2.6), we recall that all the formulas presented above 
contain only the elastic part of the scattering amplitude. 
Thus, to take into account the interference of the photo­
effect and conversion it is necessary to have a more ac­
curate expression for the imaginary part of the scatter­
ing amplitude. 

As is well known, the total cross section is connected 
with the aid of the optical theorem with the imaginary 
part of the zero-angle elastic-scattering amplitude: 

Imf~xa,j4rr. (3.4) 

Substituting at from (3.3), we obtain 1m f. Then, from 
the known imaginary part we reconstruct the real part of 
the scattering amplitude with the aid of the dispersion 
relation. Adding them, we obtain 

f( ) - 21+1 -z(><) 1 (1 ·0) I', (35) 
W - - 210+ 1 e 0 2xo -I,..v w-coo+iI'/2 +1,· • 

Further, taking the polarization factors into account, we 
substitute this scattering amplitude in the expression for 
g~J3 and obtain the time dependence in the usual manner. 

Let a beam of y quanta be incident on the crystal in 
an arbitrary direction; we then obtain for the intensity 
of the transmitted radiation 

(3.6) 
L~cr"hlhovo. 

We have also taken the photoeffect into account in the 
imaginary part of the amplitude for scattering by elec­
trons, and this has led to the appearance in (3.6) of a 
factor that attenuates exponentially with depth. For a 
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thick crystal (Bt ~ 1), using the asymptotic form of the 
Bessel function, we obtain for (3y ~ 1: 

lo(t)= e-rt - L [exp 11 2r.tL +2cos(41Bt-~) +exp (-11 2r,tL)] 
rr,l Bt 3 2 3 

. (3.7) 

Here n is the inelastic width of the nuclear level. The 
appearance of two exponential terms in the square 
brackets of (3.7) is due entirely to interference between 
the photoeffect and the conversion. Such an appreciable 
influence of the interference enables us to investigate 
the time dependence of this phenomenon experimentally. 
It must be noted that the interference between the photo­
effect and conversion becomes manifest in transmission 
experiments, precis;;ly where the interference between 
the nuclear and Rayleigh scatterings does not come into 
play. 

Let us consider the case of incidence of the y quanta 
at the Bragg angle. For the time dependence of the in­
tensity of the radiation diffracted by a thin crystal we 
have 

2B' 
I, (t) =e-r , (B.'+ -(1 +~i) (1-cos doot) 

doo' 

2BoE sin doot ) 
+--A-(1-cosdoot)+2B.B~,-- . 

uoo doo 

(3.8) 

Comparing (3.8) with (3.2), we see that the interference 
of the photoeffect and the conversion has led to a change 
in the principal term of the nuclear scattering. Further, 
an additional term has appeared, which depends on both 
types of interference and has a time dependence that is 
essentially different from that of the other terms. 

4. DECAY OF COLLECTIVE STATE 

We consider the time-dependent problem with chop­
ping. This problem is of importance when it comes to 
observing the decay of a collective state in a crystal (10]. 
Assume that the law governing the chopper operation is 

[ ( t-t )] -, 
1+exp ~ . (4.1) 

USing the time dependence of the radiation of a thin 
source and the law governing the chopping, we find the 
emission spectrum past the chopper with the aid of the 
Fourier transformation: 

- S~ [( r ) ] [ ( t-t,)] -'I. B,,(Ol)=lr exp -iooo- 2 (t-to)+ioot 1+exp -,,- dt. 

4 (4.2) 

Here to is the instant when the excited state is produced 
in the source. Now, knowing the incident-radiation spec­
trum and the frequency dependence of the field in the 
crystal (2.3), we can obtain, using the inverse Fourier 
transformation, the time dependence of the amplitude of 
the radiation emerging from the crystal: 

at,(t)= S dooB,,(Ol)E.(Ol)e-'·'. (4.3) 

In this problem we do not fix the instant when the excited 
stat~ is produced in the source, and therefore the inten­
sity must be averaged over to, so that we obtain the in­
tensity registered by the detector: 

, 
l(t) =io S lat,(t) I' dto. (4.4) 

Here io is the number of decays without recoil in the 
source in a given solid angle per unit time. The inte­
gration in (4.4) is over the entire measurement interval 
to. ' 
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The integral in (4.2) can be calculated (see(13J ), and 
we have 

'tlf 1 ( t,-t,) 
B~(oo)=-. --.-exp -iOlt,+-- . 

2m 'I,-!~h 2" 

( 1 1 3 ( t, -t, )) XF - - -iQ't - -iQ't· -exp --
2 ' 2 ' 2 • ,,' 

(4.5) 

where F is the hypergeometric function and n = w - Wo 

+ ir/2, 
Let the beam past the chopper be incident on a thin 

crystal at an angle greatly deviating from the Bragg 
angle. Then, substituting (4.5) and (2.3) in (4.3) we ob­
tain for the decay amplitude 

at,(t) =e, exp[ixor+i (000-ir/2) (to-t) J lr { i [ Hexp ( t~to ) ] -'I, 

B ( t,-t) (1 1 3 ( t,-t )) 
-i/2"-dOO exp ~ F Z'Z+idOl't'Z+iL\Ol"; -exp -'t-

+ ./2 B A exp [iL\oo (t-to) + t,-to ] (4. 6) 
! "-uOO 2" 

F ( f f 3 ( t,-t,))} x 2' 2" +idOl't, 2" +iL\Ol"; -exp -,,- . 

On the other hand, if Aw = 0, then the hypergeometric 
series that enter here can be summed (see [13J ) and 
(4.6) goes over into 

a,,(t) =ie, exp [ix,r+i (000- i~ ) (t,-t) ] if· 

{ [ ( t-t, )] _'I, .[ ( t,-t) [ ( t,-t ) ] 'I,] 1 +exp -,,- +2B-r In exp ~ + exp --r- +1 

[ ( t, -t, ) [ ( t, -t, ) ] 'I,] } -2B-r In exp ~ + exp --r- +1 . (4.7) 

The first term in these two formulas corresponds to 
radiation that does not interact with the crystal. The 
remaining two terms correspond to the fraction of y 
quanta which have become absorbed and produced the 
excited state as a result of resonant interaction with the 
nuclei. 

Let us consider the case of rapid chopping T ~ l/r, 
and let t - t1 ~ T. The condition T ~ l/r causes the 
time interval to making the principal contribution to 
formulas (4.6) and (4.7) to satisfy the condition t1 - to 
~ T. Thus, we have the following conditions: 

(4.8) 

When the first and second conditions from (4.8) are 
satisfied, it is possible to retain in (4.6) and (4.7) only 
the third term, whereas the first and second terms are 
small and are of the order of exp{(t1 - t)/2}. 

From the form of the expression for the amplitude it 
follows that decay from the crystal past the chopper will 
occur only in direction of the vector «0, which charac­
terizes the initial direction of the y quanta. This impor­
tant circumstance pertains, of course, only to the coher­
ent part of the decay, i.e., to decay that does not pre­
serve a trace of the position of the exCiting nucleus. If, 
however, we have, for example, a change of the nuclear 
spin in the decay, then the intensity becomes distributed 
over the entire angle interval. 

The incoherent part of the decay was not included in 
the expression for the radiation-field amplitude from 
the very outset because since the solution (2.3) corre­
sponds only to the coherent part of the field. The pres­
ence of incoherent scattering is equivalent to effective 
absorption and is automatically taken into account in the 
elastic-scattering amplitude. The collective state should 
become manifest precisely in the coherent decay, and it 
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is important that the rapid chopping preserve fully the 
angular directivity of the radiation. 

Let us find the intensity of the forward decay. We 
consider directly the case when Ll.w ;, 0 and the quantities 
Ll.w(t - to) and Ll.w(t - t1) are arbitrary. In accordance 
with the conditions (4.8), we neglect the first and second 
terms in (4.6), and in the hypergeometric function of the 
third term we carry out an analytic continuation into the 
region exp{(t1 - to)h} > 1 and substitute the obtained 
expression in (4.4). The last of the conditions (4.8) 
makes it possible to carry out the integration with 
respect to to only up to t1, as the result of which we ob­
tain for the decay intensity per unit time 

2B' I (t)=i ___ e-r(l-"'. 
o 06.",'+f' 

(4.9) 

Let us analyze this formula. The number of excited 
states N* in the crystal at the instant of shutoff (at 
T « 1/r) is determined Simply from the condition 

ioo, (6.",) l/a'=N'W,'. (4.10) 

Here W; is the total decay probability of the excited 
nucleus, a is the interatomic distance, and a't(Ll.w) is the 
total scattering cross section averaged over the fre­
quency distribution of the incident y quanta, i.e., 

;- 6.", _ 2:n; r. (f2/4) d", 
,( )- r ..:~ cr, (aJ) ('''-'''0)2+f2/4 

= 2:n; ~ 21+1 -Z(x.) 

xo' 6.",'+f2 210+ 1 e 

It is seen from this relation that the appearance of the 
squared width in the denominator of (4.9) is connected 
with the foregoing averaging over the frequency distri­
bution in the source, Thus, the number of excited states 
is equal to 

., i o2:n;ff.1 (21 +1) e-Z(x.) 

1\ = xo'a. (6.",2+f') (2/0-1-.1) W,.· ( 4.11) 

Returning to (4,9), we represent the intensity at the in­
stant t - tl in the form 10 = N*W*. Here w* is the decay 
probability of the excited state in the crystal, and 

( 4.12) 

where W 0 is the probability of the elastic decay of the 
individual nucleus. It is interesting to note that this 
agrees fully with the result predicted by Afanas' ev and 
Kagan [10]. It has thus become possible to separate two 
processes-the formation of a collective excited state 
(see (4011)) and its decay (4.12). The exponential de­
pendence of the intensity in (4.9) on the time corre­
sponds to a decrease in the number of excited states 
with increasing time. 

When the external beam is incident at the Bragg 
angle, we can observe the decay of the collective state 
both forward and at the Bragg angle. Substituting (2.3) 
at Q' = 0 in the thin-crystal limit in (4.3), we obtain for 
the forward-decay amplitude an expression similar to 
(4.6), but withthe substitution B - 2B. The amplitude of 
the decay at the Bragg angle is given by 

2B if 
81".(t)=e" '/ expli(xo+K)r+i(",o--,---) (to-t)], 6.",-( 2, 2 , 

[ t,-t,] (1 1 3 (tl-t')) -exp i~", (t-t,) + -- F -;--, - +i6."", - +i~",,: -exp --
2T 2 2 2 T 

We see therefore. that the decay occurs in the direction 
of the vector IC 0 + K. Here, unlike the forward-decay 
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amplitude, there is no term that corresponds to radia­
tion that has not reacted with the crystal. This circum­
stance makes decay at the Bragg angle more convenient 
from the point of view of experiments aimed at observ­
ing the collective state. Using (4.8) and substituting 
(4.13) in (4.4), we obtain for the intensity of the decay 
at the Bragg angle 

io,8B' 
I, (t) = 6.",'+ f' e-r(l-"'. (4.14) 

The intensities of the forward decay and of the decay at 
the Bragg angle are equal. 

Let us examine the influence of the interference of 
nuclear and electronic interactions, and also that of the 
photo effect and conversion, on the decay of a collective 
state. We substitute the elastic part of the scattering 
amplitude (3.7), determined with allowance for the inter­
ference between the photo effect and the conversion, into 
the expression for g~B' Let an external beam be incident 
on the crystal at an angle remote from the Bragg angle. 
Calculations analogous to those used in the derivation of 
(4.9) yield for the forward-decay intensity 

2B' -
10 (t) =io---(1 +" ') e-""-'" 

6.",'+f'"' ' (4.15) 

Here, just as in the time dependence without chopping, 
the elastic scattering by the electrons exerted no effect 
on the intensity, and the interference between the photo­
effect and the conversion was manifested in the form of 
a small increment that did not change the frequency de­
pendence. 

On the other hand, if the beam is incident on the crys­
tal at the Bragg angle, then the intensity of the diffracted 
radiation will contain interference both between the elec­
tron Rayleigh and the nuclear scattering and between the 
photoeffect and conversion. The Rayleigh scattering is 
not connected with the formation of a long-lived excited 
state, so that the terms corresponding to this process 
turn out to be proportional to (1 + exp (t - t1)hr1, while 
the interference terms are proportional to the square 
root of this quantity. Consequently, in the limit of rapid 
chopping, i.e., when conditions (4.8) are satisfied, the 
Rayleigh scattering and its interference with the nuclear 
scattering can be neglected, and an expression similar 
to (4.15) can again be used for the intensity of the decay 
of a collective state at the Bragg angle. 

In conclusion, the author takes the opportunity to ex­
press his gratitude to Yu. M. Kagan for suggesting the 
problem and for fruitful discussions. 
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