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We consider the interaction of a free electron with longitudinal optical lattice vibrations in a 
multivalley ionic cubic crystal at arbitrary coupling force. It is shown within the framework of the 
effective-mass method that the polaron is localized in one of the valleys. The vibrational degrees of 
freedom are eliminated from the partition function of this system by the method of ordered 
operators. The resultant nonelementary operator, which depends only on the electron coordinates, can 
be approximated by some other operator, and this makes it possible to use a variational principle 
and determine the partition function of the polaron at arbitrary temperatures. The obtained partition 
function is used to determine the ground-state energy of the polaron and its effective mass. A 
computer calculation yields the energy of the ground state and the effective mass of the polaron as a 
function of the coupling constant of the mass anisotropy of the band electron. 

In our earlier papers we considered limiting cases 
of weak[l] and strong[2] coupling of an electron with 
lattice vibrations in crystals with multi valley conduc
tion bands. In most se miconductors, however, an inter
mediate coupling is realized, wherein neither expansion 
in powers of the coupling constant (perturbation theory) 
nor the use of adiabatic approximation is possible. 

In this paper we calculate the sum of states of a 
large-radius polaron in a multi valley semiconductor 
using a direct variational method without limitation on 
the coupling force. We have followed the method of["], 
developed for one isotropic valley; in this particular 
case our results agree with those obtained inl3], and at 
zero temperature they coincide also with the results of 
Feynman and Osaka[4,5]. At nonzero temperature, our 
results differ somewhat from those of Osaka[5], The 
case of an anisotropic valley is considered in this paper 
for the first time. 

The Hamiltonian of a system consisting of an elec
tron field with periodic potential W( r), interacting with 
longitudinal optical phonons, takes in the continual ap
proximation the form 

v = e (2nnwc )'" 
x g, V , • 

(1) 

where m is the mass of the free electron, K and w 
are the wave vector and the frequency of the longitudinal 
phonon oscillations, E is the static dielectric constant, 
n is the refractive index of the crystal, v is the volume 
of the principal cyclicity region, and e is the electron 
charge. 

Having a transition to the effective-mass method in 
mind) we seek the eigenfunctions of (1) in the form of 
an expansion in the basis 

'l'n" (r) =e i k<1!JnK;<r) "",exp{i(k+Kj)r} unK;<r), (2) 

where l/inKj are Bloch functions and Kj is the position 

of the energy minimum in the j -th valley. In accordance 
with the effective-mass method it is assumed for the 
large-radius polaron that only terms with small k 
(k « d-\ d is the lattice constant) are retained in the 
expansion in the functions (2). 
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Expanding the periodic function UnKj (r) in a 
Fourier series, we can easily reduce tlie matrix ele
ments 

to a sum of Ii-functions in the form 

b (k'-k-x-b.,+K,,-Ki), 

where bm are the reciprocal-lattice vectors. Inasmuch 
as I k I. I k' I. I K I « d-" and I Kj - Kj' I are of the order 
of dol but are not equal to the reciprocal-lattice vector, 
the Ii-functions differ from zero only if j '" j I and bm 
'" O. Thus, the matrix elements with j ;z; j' vanish, i.e., 
the wave function of the electron consists of Bloch func
tions of only one of the valleys. This reduction of the 
problem to a single-valley problem·takes place also in 
the limiting cases of weak[l] and strong[2] coupling. 

With the foregoing taken into account, the use of the 
effective-mass method is standard[6,7], and for an 
anisotropic equal-energy surface the Hamiltonian of 
the system can be written in the form 

H=l1o+H" 
, ft' I)' 

Ho=- .L, 21', ax,' • 
T-I 

H, = ~(nwa,:ax + V~axeixr + Vx'ax+e-iX'). 

The trial Hamiltonian is chosen in the form 

H'= .L,H/. 
T-l 

Cyl =J..lvI0l ;>12, 

where the masses 11 Yl of the auxiliary particles and 

(3 ) 

(4) 

the constants en of their elastic interaction with the 
electron are variational parameters determined from 
the condition that the trial sum of states be a maximum. 
An attempt is made here to increase the flexibility of 
the approximation of the Hamiltonian by introducing s 
auxiliary particles that replace the action exerted by 
the polarization field on the electron. In[3-5] and in 
many subsequent papers, only one isotropic auxiliary 
particle was used. Two isotropic auxiliary particles 
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(T = 0) were used in[B]. Introduction of the elastic in
teraction between the auxiliary particles does not im
prove the approximation, since it can be excluded from 
the Hamiltonian by a canonical transformation that 
affects only the coordinates of these particles. 

We add to (3) the operator 

1: ( h' ii' C" 2) H.= -----+-x, 
21t" iix,,' 2' . 

" 
(5 ) 

Since Hand Ha commute, the sought sum of states is 

lations, and am = qm + aj aqm and a:n = qm - aj aqm 
are the operators of annihilation and creation of the 
vibrational excitation. The linear connection between 
the old and new coordinates is 

x=x+ tQmqm, x,=X+ tQ,mqm, (12 ) 
m~i m~1 

The coefficients Q are determined from the condition 
that the operator (4) be equal to the sum of the opera
tors (10) and (11). 

equal to 

Z",Sp e-'H= Sp exp (-ARt) Z, 
Spexp(-AH.) Z.' 

Restoring again the index I' and taking H' to mean 
(6) the first of the formulas in (4), we obtain ultimately 

where 

Ht"'H+H.=H'- 1: ~" (x/-2x,x,,)+H •. 

" 
In Zt. the trace over the phonon variables and over 
x Yl is calculated in the same manner as in[S,4], after 
which we get 

)" >'1 

Z,=Z,Spexp i~j V"I' [S dAl S dA.exp {il( (r,.-r",) 
" 0 0 

k , 

-'''U(AI-A.)}+ii~dAl ~ dA.exp {il«r,.-r",) 
o 0 , 

-nw (A,-A,)} J-~ H r •• dAl+ L.CYIV~I-L.ey'V~I}' 
o ),1 y/ 

, 1 Ii 2 nWYL '" "I v,, =-2 x, •• dA,+-2-,-I I (x,." x,.,)exp[hoo,,(A,-A,) jdA,dA, 
o , 0 

limvl '" A 
+- 2[exp(Moo,,) -1] I I (x,." x,.,) exp[hoo,,(A,-A,) jdA,dA'" 

0' 

Z,= II (1-e- Moot', ii=(e',~oo-1r'· 

" 
According to the variational method of[ 3], the sum of 
states (6) should be sought as a maximum of the trial 
state function Z,::s Z, where 

z, -
z.~ -s)) e-'H'eU 

Z. ' 

a = L. eyl (-. _ii_ In spe-Hi') 
yl aCyl wyl=const 

+ L./ V" I' (_ii_, ln Spe-',(H'+H.») . 
"ii/V,,/ ,IV"I'~O 

(7) 

(8 ) 

(9 ) 

As seen from (4), the Hamiltonian Hy describes 
one-dimensional motion of a system of s + 1 particles 
that interact elastically in the absence of an external 
field. Introducing Jacobi coordinates[9], we can break 
up Hy into two independent conservative parts: the 
kinetic energy of motion of the center of gravity 

(10) 
1=1 

and the Hamiltonian H~ of the relative motion (the index 
Y is omitted for the time being for the sake of brevity). 
Owing to the linearity of the Jacobi transformation the 
potential energy in H~ retains the form of a homogene
ous quadratic form of the coordinates, making it possi
ble to introduce again normal coordinates qm by means 
of a linear transformation. As a result 

1 • ii" 1 
H/=2 L,hQm[ q,:- aqJ = L,hQm (am+am + 2 ), (11) 

m=1 711=1 

where Om are the eigenfunctions of the normal oscil-
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3 ( M ) 1/2 • [ A -, 
Z'=Spe-'H'=IT 27th:A IT 2Sh(2 hQ,m)] (13) 

'1'=1 m_1 

To calculate in (9) the deri vati ve with res pect to \ V K \2 
at the point \ V K \2 = 0, it is necessary to separate in 
the operator H, of (3) the term with one fixed K - HK, 

and calculate in second order in V K the quantity 

z,=Sp exp {-A(H'+Il.)}, (14) 

by using the Schwinger formula[10] and the auxiliary 
relation 

1 2k' 
= 1-e-' exp { - cth(AU/2)+cth(A(1-U)/2)-}-

(15 ) 

As a result of the calculation we obtain ultimately 

z,=Z' IT (~)'I'ITSh(AhooT,/2) exp{~ ~ cth (M QT') e,. iihQ TI 
It, ' sh (MQ,j2) 2 ~ 2 iiC,. 

l' I "l!.l 

( It) '1, 
Z'=vZ, IT --'-

27th'A ' , 
(16 ) 

V =~ ~IV I,C d ch("A1i.(f)v/2) {_A1i.2 (1- 2)'\1 xv' 
a 2 l..J " ~ V sh (Anw/2) exp 8 V l..J My 

" 0 y 

1 ~ , ,[ MQ" Ch(AhQ"v/2)]} 
- 1; ~ x, Q" cth -2- - sh (MQ"I2) . 

,I 

For the ordinary polaron, V K is determined by formula 
(1). In this case, replacing in (16) the summation over 
K by integration, we obtain 

_ e'hwc ( A ) 'I, 1 S'I ( '\1 { 1 2 '\1 
Va--z;;- 2; sh(Ahw/2) l..J (1-v') M, +J:ii' l..J Q/ 

o , I (17) 

[ I AhQ" Ch(MQ"VI2)]} " )-"' Ahoov d x cll--- s· ch--- Qdv. 
2 sh (MQ"n)' 2 

Here dO is a solid-angle element, and s I' is the pro
jection of the unit vector s lying inside em; My and 
Q n are determined by formulas (10) and (12). ·For 
example, in the case of the two auxiliary particles 
(s = 2), the eigenfrequencies 0 n are determined from 
the following secular equation: 

". ",[ '(1+ ItYl)+ '(1+ 1t'2)]+ 2 '(1+ ItYl+It,,)_o ~G, -~4y w y! - 00" - Wyt W y2 --- - , 

It, It, It, (18) 

Q,2=~ItTl+ItT21 1 [Q,_WTl'ItT2+ooT"ItTl]1 (19) 
, w M, QYl'-Q,,' ' (1t"+It,,)Q,, 

If we put in these formulas J.l. 1'2 '" 0, then we arrive at 
the case of one auxiliary particle (s '" 1). Then 01'2 
= WY2 and QY2 = O. 

To determine the energy of the ground state of the 
polaron and its effective mass, we consider henceforth 
only the limiting case of low temperatures, i.e., large 
A. We expand the logarithm of the trial function of the 
states in powers of A-I 
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/J!w ( 1 ) InZ,~lnZ'+-2-f,+f'+O ---:;: ; (20) 

here 

f.~ ~ '"' (w,,-Q,,+ '"' C,' I)Q,,,, ) + .. . ~'e ,J~J P e-'dQ dx, 
w ~ ~ DC" ""n(Z"hw)" 

w TOt 0 

1 '"' M, 1 '"' fL,' e'e JWJ' n s,' ,-x t,~- ~ln---~-+ 'I. P, -x e dQdx, 
2, It, 2" M, S"ft(2nnw)' 0 ~ M, (21) 

p= (L {;, + L ; Q,.' [ 1-cxp ( - Q,:X) ]}s,') -'I, . 
, , 

The average energy of the system is 

E=-~lnZ 
d).. , 

and the limit of this expression as A - Q() yields the 
energy Eo of the polaron ground state. 

(23) 

Let Tn be the operator of the translation of the elec
tron and polarization of the crystal through a whole
number lattice vector n. The Hamiltonian (1) is an in
variant of this translation and commutes with Tn. 
Therefore the state of the polaron is an eigenfunction 
of Tn with eigenvalue exp(iK·n). Thus, K is a con
tinuous quantum number (the quasimomentum of the 
polaron) and the polaron energy depends on K. The 
dispersion law near the energy minimum in the polaron 
band is assumed to be of the form 

ft' 
E (K) ~E,+ ~ -(K,-K,m'n)', 

~2!1Jl, , 
(24) 

where !1Jl yare the effective masses of the polaron. 
Calculating on the basis of (24) the sum of states at low 
temperatures and comparing it with (20), we obtain for 
the dimensionless average polaron mass 

!1Jl 'I. 
!1Jl,s: (II 1':) ~eZf,I'. (25) 

, 
We obtained the maximum of the trial sum of states 

Zl with respect to the parameters Il Yl and C Yl with 
the aid of a computer, for cases when the equal-energy 
surface has axial symmetry. We calculated the polaron 
ground-state energy Eo and !1Jl o as functions of the 
dimensionless coupling constant Q: and of the aniso
tropy parameter X of the band effective masses: 

=~( 2f'.L)'I. 
a 2ft ftw ' 

fLn 
X=-, 

1t.L 
(26) 

where Ill. = III = 1l2, Ilil = Il 3. In the isotropic case, i.e., 
at X = 1 and when one auxiliary particle is used, our 
results (23) and (25) go over exactly into the corre
sponding formulas of[S). In the case of two auxiliary 
partiCles and X = 1, the only published calculation of 
Eo and !1Jl 0 is for a = 3 [B). Our results agree in this 
case with[B). As seen from the tables, the introduction 
of the second auxiliary particle changes Eo and !1Jl,o by 
fractions of one percent in comparison with the case of 
one auxiliary particle. Therefore the anisotropic cases 
were calculated only with o?e auxiliary particle. In this 
case 

w,(v,-1)' 'w, (v,-1)' + VXJ~ e- xf(y-1) d 
t,=- ----- 2av, - x 

ffiVl (i) 2V3 :rt 0 XI~2 ' 

(27) 
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3 1 1 
!,=2Inv,+lnv'---2 +---;:-+-2 2 

v, Va 
(28) 

+~v X S~[f(Y-1)-2f'(Y-l) (X v': _Y)] x'~~x dX, 
2 nov, X, 

where 

X,=x + :. (Vi - ~.)[ 1-exp ( - ~~ViX)] , ;=1,3, (29 ) 

(V')' X, 
y=x -:;;;- X,' (30) 

{ 
y-'I, arctg y"', y?O 

t(y)= '/,(-y)-'''ln[ (t+(-y),I')/(1-(-y)''')]' y<O 

and Wl, W3, III = (1 + llu/lll.)1/2, 113 = (1 + 1l3l/llll) are 
variational parameters. 

In the limiting case of weak coupling, formulas (27) 
and (28) yield results that coincide with[lJ. Even at 
a = 2, the value of Eo obtained in the present paper is 
only 3-4% lower than in[l]. In the limiting case of 
strong coupling, Eq. (27) goes over into the correspond-

TABLE 1. Dependence of the negative dimensionless polaron energy 
- Eo /hw on the coupling constant a and on the anisotropy parameter X 

I 
I 

JOg 1.2S X 

I 3 I 4 I 5 I 6 I 7 l 8 I 9 

s=1 

0.107 --10 0.623 1.259 1.903 2.574 3.258 3.961 4.696 5.460 
0.131 -9 0.661 1.335 2.024 2.731 3.459 4.212 4.995 5.817 6.686 
0.168 -8 0.699 1.412 2.143 2.8"3 :3.666 4.468 5.305 6.187 7.128 
0.210 --7 0.737 1.491 2.26l 3.0j8 3.878 4.731 5.624 6.572 7.591 
0.262 --6 0.777 1.571 2.386 3.225 4.094 4.999 5.953 6.971 8.077 
0.328 -·5 0.816 1.652 2.510 3.3J5 4.313 5.274 6.291 7.386 8.586 
0.410 --4 0.856 1.733 2.635 3.5(;7 4.535 5.553 6.637 7.815 9.1[9 
0.512 --3 0.836 1.814 2.760 3.739 4.760 5.837 6.993 8.261 9.676 
0.64 --2 0.935 1.896 2.886 3.912 4.986 6.125 7.357 8.723 10.26 
0.8 --1 0.9,4 1.976 3.010 4.085 5.213 6.416 7.730 9.202 10.86 

s = 2 

0 1.013 2.056 3.136 I 4.282 I 5.448 I 6.722 I 8.126 19.710 111.50 

s=1 

I 0 1.013 2.055 3.133 4.256 5.440 6.711 8.113 9.696 11.48 
1.25 I 1.051 2.133 3.255 4.427 5.667 7.008 8.504 10.20 12.13 
1.562 2 1.088 2.210 3.374 4.599 5.893 7.309 8.903 10.72 12.79 
1. 953 3 1.123 2.284 3.492 4.761 6.118 7.612 9.:109 11.26 13.47 
2.441 4 1.158 2.356 3.606 4.924 6.342 7.917 9.722 11.80 14.16 
3.052 5 1.191 2.426 3.717 5.083 6.564 8.224 10.14 12.35 14.85 
3.815 6 1.223 2.493 3.824 5.239 6.783 8.532 10.56 12.90 15.56 
4.768 7 1.253 2.557 3.928 5.391 7.001 8.840 10.98 13.46 16.26 
5.960 8 1.282 2.619 4.027 5.540 7.216 9.147 11.41 14.01 16.96 
7.450 9 1.310 2.677 4.123 5.684 7.427 9.454 II .83 14.57 17.67 
9.313 10 1.335 2.732 4.214 5.823 7.636 9.758 12.25 15.12 18.36 

TABLE II. Dependence of the average polaron effective mass <~o on 
a andx 

I log,.", I I 3 I !, I I 6 I I 8 I 
s = 1 

0.107 --10 1.114 1.256 1.437 1.67, I. 997 2.452 3.135 4.211 --
0.134 --9 1.122 1.275 1.473 I. 73' 2.103 2.637 3.463 4.818 7.227 
0.168 --8 1.129 1.294 1.510 1.8~: 2.219 2.845 3.858 5.615 8.891 
0.210 --7 1.137 l.:l14 1.[49 1.874 2.350 3.031 4.348 6.677 11.23 
0.262 --6 1.145 1.334 1.590 1.951 2.495 3.382 4.959 8.065 14.32 
0.328 --5 1.153 1.356 1.634 2.037 2.660 3.726 5.728 9.897 18.65 
0.410 --4 1.162 1.378 1.681 2.133 2.853 4.129 6.725 12.42 24.19 
0.512 --3 1.170 1.401 1.729 2.229 3.063 4.617 7.991 15.70 31.13 
0.64 --2 1.179 1.424 1.781 2.338 3.302 5.227 9.589 19.97 39.96 
0.8 --I 1.187 1.448 1.834 2.456 3.578 5.955 11.79 25.04 50.96 

s=2 
0 1.196 1.474 1.896 I 2.5971 3.9221 6.8941 14.421 31.54162.79 

8 = 1 

1 0 1.196 1.473 1.892 2.587 3.910 6.880 14.32 31.49 62.60 
1.25 I 1.204 1.498 1.952 2.729 4.275 7.998 17.74 39.39 77.22 
1.562 2 1.213 1.524 2.015 2.887 4.704 9.361 21.98 48.29 92.59 
1.953 3 1.221 1.549 2.082 3.054 5.228 II .07 26.59 58.62 110.1 
2.441 4 1.229 1.576 2.152 3.245 5.835 13.08 32.14 69.61 128,6 
3.052 5 1,237 1.602 2.225 3.465 6.518 15.40 37.88 80.96 149.0 
3.815 6 1.245 1.629 2.302 3.698 7.351 18.21 44.46 93.52 169.8 
4.768 7 1.253 1.656 2.383 3.957 8.287 21.14 51.78 106.6 193.4 
5.960 8 1.260 1.683 2.469 4.242 9.402 24.55 59.38 121.3 217.4 
7.450 9 1.268 1. 710 2.557 4.562 10.54 28.28 67.20 135.0 240.6 
9.313 10 1.275 1.737 2.650 4.910 11.88 32.28 75.26 149.3 263.6 
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ing formula of[2], if we confine ourselves inli<J to ap
proximation of the electron wave function by a Gaussian 
curve. 

The authors thank M. I. Krivoglaz for a discussion 
of the work. 
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