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The diffusion of a particle in a lattice is considered in the presence of absorbing traps. It is shown 
that for a small concentration of traps the problem can be reduced to that of an electron in a 
random field. The probability W (t) that the particle will not be absorbed by a trap is determined 
for long times in the one-, two-, and three-dimensional cases. It is shown that allowance for 
fluctuations of the trap density results in a much slower decrease of W (t) with time than in the 
usual gas approximation. The results are extended to the case of arbitrary values of the coefficient of 
attachment to a trap. 

1. Random walks of a particle on lattices that in
clude traps have been studied in[l-S]. This problem has 
several applications, such as to the diffusion of vacan
cies of interstitial atoms in crystals containing im
purity centers. In a recent paper[S] Ryazanov deter
mined the probability, in the so-called gas approxima
tion, that a particle will "survive" for a long time. 
This approximation, which is equivalent to the first 
term of the expansion in powers of the concentration as 
employed for the problem of state denSity in disordered 
systems,le] does not take into account the fluctuations 
of trap density. It is clear, however, that particle sur
vival for long periods of time will occur only in suf
ficiently large trap-free regions. 

The present paper is concerned mainly with the ef
fect of fluctuations in the trap distribution on the 
asymptotic survival probability Wet) after a long time 
t. It is shown here that for a small trap concentration 
c « 1 our problem is reduced to that of the spectrum 
and wave functions of a particle in a field of randomly 
situated impurities. For the considered small values 
of c an exact solution is obtained in the one-dimen
sional case. In the two-dimensional and three-dimen
sional cases an exponentially correct asymptotic form 
of Wet) is determined by means of a method similar to 
that which Lifshitz employed[6] to find the denSity of 
states near the edge of a band. The considered fluctua
tion mechanism is shown to govern the case of large t, 
and the limits of applicability of the gas apprOximation 
are obtained. 

2. Let us consider the random walks of partic les on 
a lattice containing randomly located traps at some 
sites. The density of the particles performing the ran
dom walks will be assumed to be much smaller than the 
trap concentration, so that we may neglect collisions 
between the particles or saturation of the traps. For 
simplicity, we shall discuss the random walk of a single 
particle. Let ~\( r) represent the probability that after 
t steps the particle is located at a site r; the unit in 
which t is measured is the time required for a jump 
between two neighboring sites. The equation of motion 
for \~'t( r) is 

W,+.(r)= .!:p(r-r')(l-Il,.)W,(r')+<'I,W,(r), (1) 

" 
Here per - r') is the probability of a transition from a 
site r' to a neighboring site r in a lattice without 
traps; the summation of per - r') with respect to r 
equals untty. When a trap is located at a site r the 
value of Ilr is unity, whereas it vanishes for "pure" 
sites. The factor (1 - Ilr') in (1) forbids the departure 
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of the particle from a trap; the last term in the equa
tion corresponds to a trapped particle. It is also seen 
from (1) that the summation of Wt( r) over all sites is 
independent of t; this corresponds to the conservation 
of the normalization. 

We shall hereafter be interested only in Wt( r) for 
pure sites, Le., the probability that the particle does 
not fall into a trap. It is therefore convenient to intro
duce the expression Wdr) = (1 - Ilr)Wt(r), which co
incides with Wt< r) at pure sites and vanishes at sites 
that are occupied by traps. The equation of motion for 
Wt (r) is obtained when (1) is multiplied by (1 - 6r) 
and can be written as 

W'+1(r) = D L '1(1', I' +p) W,(r + pl· (2) 

Here 0 is the probability of a jump from a neighboring 
site to a given site in a pure lattice; the summation in 
(2) goes over nearest neighbors, the number of which 
is 1/0. The factor 1)(r, r +p) is unity when rand 
r + p are pure sites, and vanishes when either r or 
r + p is a trap site. 

The exact formal solution of (2) is obtained conven
tionally by means of its expansion in terms of the eigen
functions <P1I( r) corresponding to the eigenvalues All: 

D L 11 (r, 1) 'Pv(r') =Av'Pv(r). (3) 

" 
Since the kernel of (3) is real and symmetric, the eigen
values All are real. It is also clear from physical con
siderations that the functions <P1I(r) comprise a com
plete system for the set of pure lattice sites: 

L'P:(r)'P.(r)=Il.v, L 'P:(r)'Pv{r')=Il,,·. (4) 

Here r represents pure sites; from (3) we have <P1I(r) 
= 0 for trap sites. Multiplying (3) by <p~(r) and sum
ming over r and II, we obtain the sum rule for All: 

(5) 

The general solution of (2) is expressed as follows in 
terms of All' <P1I(r), and the initial distribution Weer): 

W,{r) = L Av'Pv{r) A.', (6a) 

(6b) 

At t = 0, Eq. (6a) becomes an identity as a consequence 
of (4). 
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Let us assume that at t = 0 the particle is located 
with equal probability at anyone of the lattice sites. 
Here we have wo(r) = l/N, where N is the total num
ber of sites. For W( t), which is the total probability 
that the particle is not captured by a trap, we thus have 

(7) 

The summation with respect to r in this equation goes 
over only pure sites, so that W( 0) = 1 - c, where c is 
the trap concentration. It is clear from the bounds of 
Wt(r) and Wet) that the absolute value of All cannot 
exceed unity: - 1 ~ All ~ 1. 

Equations (6) and (7) provide us with an exact formal 
solution of our problem. Unlike the thermodynamic 
properties of systems containing impurities, which we 
have studied previously[7] and which were determined 
from only the energy spectrum of the appropriate equa
tions, the present random-walk problem requires 
knowledge of both the eigenvalues All and the eigen
functions rpll(r). Although our problem is therefore, 
generally speaking, more complex, certain limiting 
cases can be investigated. 

3. Let us first consider the exactly solvable problem 
of a one-dimensional walk. In the limiting case of low 
trap concentration c « 1 and long time t » 1 we can 
go from a discrete to a continuous description. Along 
a segment of length 1 between two neighboring traps 
(Z » 1 for small c) the partic Ie obeys the equation (2) 
for the motion of a free particle. For the large values 
of t and 1 that we are considering, this equation be
comes the ordinary diffusion equation 

8W(t, x)!at=Da'W(t, xl/ax'. 

Here we have the dimensionless diffusion coefficient 
D = %, the lattice constant is taken to equal unity, and 
W = 0 at the limits of the segment. 

Solving (8) for the region Xi ~ x ~ Xi + 1 (Xi and 

(8) 

Xi + 1 are the coordinates of neighboring traps) with the 
boundary conditions 

W(t, x,)=W(t, XH.) =0, W(O, x)=(1-c)/L""1/L, 

where L is the total length of the chain, we obtain 

4 .E~ { 1 } sin k n (x-x,) 
W(t x)=- exp --k't .' 
"L 2 n knl, 

n_O 

Here kn = (2n + 1) 7T/li, li = I Xi - xi+ 11. The desired 
quantity W( t), which equals the integral of W( t, x) 
over all values of x, is represented by the sum of a 
large number Ni of random q~ntities Wi(t): 

:1:1+1 

(9 ) 

W, (t) = S W, (t, x) dx. (10) 

(Ni = cN is the total number of traps). Therefore, in 
accordance with the law of large numbers, 

W(t)=.E W,(t) =N,(W,(t) >, (11) 

where ( ... > denotes averaging over the lengths of seg
ments (the distances 1 between impurities). For a 
random distribution of traps the distribution function 
f( 1 ) has the Poisson form: f( 1 ) = c exp (-cl ), where 
c = NdN = NdL, and from (9)-(11) after some trans
formations we obtain 

- 4S~ { a}Gd~ W(t)=- exp -- --, 
n' 0 s' sh 6 

(12) 
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At relatively short times t « c- 2 (but, as previously, 
t» 1) the decrease of Wet) is represented by a power 
function: 

2 )'" W(t)=1-2(-;:;-C't + ... , (13) 

and for t » C -2 by an exponential function: 

( 2c"t ) 'f, [3n'I' ] 
W(t)=8 ~ exp -~(C't)'I •. (14) 

The aforementioned gas approximation corresponds 
to the substitution li - f = C -1 in (9) For t « C -2 this 
yields (13), and for t» c- 2 it yields 

(15) 

A comparison of (15) with (14) shows that for 
t » C -2 the fluctuation mechanism is dominant, due to 
the absence of the region where (15) is applicable. 

4. We shall now consider random walks in the two
dimensional and three-dimensional cases, assuming, 
as previously, c « 1 and t » 1. It is here convenient 
to go from the discrete equation (3) to a continuous 
equation. Under the conSidered condition t» 1 the 
main contribution to (6) and (7) comes from values of 
All that are close to unit1, so that 1 - All == Ell « 1. The 
procedure employed in[7 can be followed for the transi
tion to a continuous equation. In regions without traps 
we can express (3) in terms of gradients, thus obtaining 
the Schrodinger equation for a free particle, with 
E = 1 - A in the role of the energy. The presence of 
traps is represented by introducing the potentials of the 
impurities, so that (3) becomes 

Ilcp(r) +k'cp(r) = .E V(r-r,)cp(r), k=(2e)"'. (16) 

Here the index II has been omitted, the lattice constant 
is unity as previously, and the summation in the right
hand side goes over the coordinates ri of the traps. 

To determine the form of V( r) we must, as in [7], 
obtain a solution for the scattering of a plane wave in a 
discrete lattice by a Single trap located, say, at the site 
r = O. We isolate the term in (3) that corresponds to a 
pure lattice and we transfer the inhomogeneity to the 
right side. The resulting equation is solved by means 
of a Fourier transformation, yielding 

'P (r) =e"'-G(r) /G (0). (17) 

Here G is the Green's function for scattering in a dis
crete lattice: 

.E eipr L 
G (r) - /)-++0, Ak= ,p (r) e'k<, 

- , A.-Ak+i/)' 
(18 ) 

p 

where per) = DT/(r, 0) as in (1) and (2). Values of Ak 
for different lattices are given in[1,2], for example. As 
we noted in[71, the form of the potential VCr) in (16) is 
not unique because agreement of the scattering ampli
tudes in the discrete problem (17) and the continuous 
problem (16) is required only within the region of inter
est k « 1, r » 1. We therefore select the potential 
V( r) in the very simple form of an impenetrable barrier 
with radius roo Then, comparing the solution of the 
Schrodinger equation with (17), we find that for agree
ment of the results when k « 1, r » 1 the potential 
radius ro in the two-dimensional and three-dimensional 
cases must be 

(2) e-C (3) 3 
T, = --=- ,,=,0.20, To = -- ,,=,0.31 (19) 

21'2 2nl. 
for a square and a simple cubic lattice, respectively. 

B. Va. Balagurov and V. G. Vaks 969 



Here C is Euler's constant and 11 = 1.516 is watson's 
integral. [1] 

The random walk problem has thus been reduced to 
determining the energy spectrum and eigenfunctions of 
~particle in a random field of impurities. 1) Specifically, 
W(t) of (11) can be expressed using the Green's function 
of the particle [from the time-dependent equation cor
responding to (16)]: 

W(t)= ~Jdr Jdr'G(r,r'; -it). (20) 

The features of the energy spectrum of a particle in 
a random field have been considered by several writers, 
in[6] for example. However, to our knowledge the 
properties of the eigenfunctions in such systems have 
not been treated. It is therefore difficult to investigate 
(6), (7), and (20) directly. 

However, an exponentially correct asymptotic form 
of W(t) can be obtained. For this purpose we follow 
the method that Lifshitz[6] employed to determine the 
density of states near the edge of a band, For large 
values of t a particle will survive only inside suffic
iently large regions that are free of traps. Within such 
regions the particle obeys the ordinary diffusion equa
tion that follows from (2) for t» 1, r » 1. The attenu
ation of W( t, r) at a boundary occurs within a distance 
smaller than or of the same order as the average dis
tance between the impurities (see[B], for example); this 
distance is much smaller than the dimension 1 of the 
region. Therefore it is sufficiently accurate for our 
purposes to assume W(t, r) = 0 at the boundary. Then 
for the probability that the particle will not be captured 
by traps in a region of volume V (or of area S in the 
two-dimensional case), when t is large we obtain from 
the diffusion equation the result 

W(t)-exp (-Dko't). (21) 

Here ko, the smallest possible wave number for the 
given region, is of the order V-1/ 3 (S-1/2). The desired 
quantity W(t) is the sum of expressions having the 
form of (21) for all the fluctuation regions, i.e., it can 
be represented, as in (11), by the sum of a large num
ber of random quantities. Therefore W (t) is obtained 
from (21) by averaging W(t) over the regions with the 
aid of a distribution function f( V). 

We shall assume that the traps are scattered at ran
dom, so that f(V) is a POisson distribution. Since for a 
given V (or S) this distribution does not depend on the 
shape of the region, we must, as a general rule, first 
sum (21) over all possible configurations of the bound
aries of a fixed volume (or area). However, to derive 
an exponentially correct form of W( t) it is sufficient 
to confine ourselves to the shape of the region yielding 
the smallest value (ko)min; from symmetry this region 
is a sphere (or circle). [6] For a sphere of radius R we 
have 

ko=nlR=n(4n/3) 'I,V-"', 

and for a circle we have ko = iJ. o/R = iJ. 0 ..f1is-1/ 2, where 
iJ. 0"" 2 .405 is the first zero of the Bessel function 
J 0 (iJ.). Averaging (21) on the basis of the Poisson dis
tribution f( V) = c exp ( -c V), in the three-dimensional 
case we obtain 

(22) 

Analogously in the two-dimensional case, when f(S) 
= ce-cS we obtain 
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W(t)-exp [-a,(ct)"'], a,=¥rrfLo,.,4.3, Pi/c. (23) 

To determine the pre-exponential factors in (22) and 
(23) it would be necessary to perform the aforemen
tioned averaging of W with respect to boundary configu
rations close to a sphere (or circle). 

Let us now compare these results with the gas ap
proximation, in which trap density fluctuations are 
neglected. Thus the true potential in (16) is here re
placed by an average potential; the consequent electron 
energy shift is ~c in the three-dimensional case. For 
large tin (7) it is sufficient to confine ourselves to the 
minimum value Amin = 1 - Emin, where Emin ~ c. In 
conjunction with the equality At = (1 - E)t", e- Et this 
procedure gives us 

Wg(t)-exp (-et). (24) 

Numerical factors of the order of unity have been 
omitted in the arguments of the exponentials in (24) and 
(25). A comparison of (24) with (22) shows that the 
"fluctuation" mechanism of survival is dominant for 
t » c -3/ 2, so that (24) can be applied for c -1 « t « c -3/2. 

For two-dimensional walks, as was shown by 
Ryazanov, the average energy shift in the gas approxi
mation is determined from the relation E In (1/ E) ~ c, 
whence, with logarithmic correctness, we have 
E ~ c[ln(1/cW1. Correspondingly, from (7) we obtain[5] 

Wg(t) -exp [- In(l~e) t]' (25) 

According to (23) and (25), the fluctuation mechanism 
becomes dominant when t» c-1 ln2(1/c). Thus the 
exponential law (25) is actually applicable to only a 
small region: 

1 1 1, 1 
-In-<t<-ln -. (26) 

c c e e 

5. Let us now consider a somewhat more complex 
trap model that allows for the possible presence of a 
potential barrier against the capture of a particle by 
an impurity. We shall describe this effect by introduc
ing a "sticking coefficient" that differs from unity, 
1 - TJ. A partic Ie that has reached an impurity site can 
in the next instant jump from the trap (be reflected) 
with the probability TJ. But if the particle is captured 
it can no longer leave the trap, so that the probability 
of escape from the trap is zero during the following 
instants. Instead of (1), the equation for the time
dependent probability is now 

W,+.(r)= .Ep(r-r') [(1-6,.)W,(r')+1J Il,' LP(r'-r")W,-.(r") 1 
" ," (27) 

+1\, [W,(r)-1J.E p (r-r')W,_,(r')]. 

" 
The notation is here the same as in (1). Since we were 
considering the application to the case of low concen
trations, for Simplicity we neglected configurations with 
two or more neighboring traps. The above-considered 
case of fully effectual sticking corresponds to TJ = 0, 
and the absence of capture (in a pure lattice) corresponds 
to TJ = 1, when the solution (27), as is easily verified, 
represents free-particle walks, which are solutions of 
(1) without terms containing 1)r. It is also easily veri
fied that (27), like (1), satisfies the condition that 
normalization is conserved. 

As in the foregOing, it is convenient to introduce the 
quantity Wt<r) = (1 - 1)r )Wt<r), for which we write the 
equation 
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W'+I.(r) = L,PI(r, r')W,(r')+1]L. p,(r, r') W'_I (r'), 
r' r' 

PI(r, r')=(1-1I,)p(r-r') (1-11,.), (28) 

p,(r,r') = (1-11,) L,p(r-r")II'''p(r''-r') (1-11,·). 
," 

Instead of (3) we shall now have 

A.'Ql.(r) =A. L, PI (r, r') Ql. (r') +1] L, p, (r, r') Ql. (r'). (29) 

" " 
The solution of (28) subject to the additional initial 
condition W- 1 (r) = 0 can be written in the form of (6a), 
where, as previously, (6b) can be used for Av in the 
gi yen case of small c. 

In the case of small c and suffiCiently large t we go, 
as previously, from (29) to a continuous equation. Then 
we revert to (16), where the potential barrier (for a 
simple cubic lattice) now has the radius 

(.) 3 g 1-1] ( ) 
ro (1])=--- g=-- 30 

2:Jt 1+gl, ' 1]' 

where II is the same quantity as in (19). 

The subsequent discussion remains the same as 
above and leads again to (22), but with a region of ap
plicability that now depends on the value of g. For 
g ~ 1 the gas approximation yields (24), as previously, 
so that the foregoing calculations are retained. How
ever, for small g « 1 [g In (cgfl « 1 in the two-dimen
sional case] the gas approximation applies to a wider 
region. The gas approximation here leads to (24) with 
the substitution c - cg, while the fluctuation contribu
tion retains the form of (22), as is proved by reasoning 
similar to that of Zaslavskii and Pokrovskir [8] in their 
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analysis of state density. Therefore the fluctuation 
mechanism becomes the main mechanism only for 
t » c -3/ 2g -5/ 2 in the three-dimensional case, and for 
t» (cg 2fl in the two-dimensional case. 

The authors are deeply grateful to G. V. Ryazanov 
for making us aware of this problem and for interesting 
discussions. 
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